summaryrefslogtreecommitdiff
path: root/src/mem/physical.cc
blob: e38a4f76e035af46a3a40ec98d44b20dfa2f0da6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
/*
 * Copyright (c) 2012 ARM Limited
 * All rights reserved
 *
 * The license below extends only to copyright in the software and shall
 * not be construed as granting a license to any other intellectual
 * property including but not limited to intellectual property relating
 * to a hardware implementation of the functionality of the software
 * licensed hereunder.  You may use the software subject to the license
 * terms below provided that you ensure that this notice is replicated
 * unmodified and in its entirety in all distributions of the software,
 * modified or unmodified, in source code or in binary form.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Andreas Hansson
 */

#include <sys/mman.h>
#include <sys/types.h>
#include <sys/user.h>
#include <fcntl.h>
#include <unistd.h>
#include <zlib.h>

#include <cerrno>
#include <climits>
#include <cstdio>
#include <iostream>
#include <string>

#include "base/trace.hh"
#include "debug/BusAddrRanges.hh"
#include "debug/Checkpoint.hh"
#include "mem/abstract_mem.hh"
#include "mem/physical.hh"

using namespace std;

PhysicalMemory::PhysicalMemory(const string& _name,
                               const vector<AbstractMemory*>& _memories) :
    _name(_name), size(0)
{
    // add the memories from the system to the address map as
    // appropriate
    for (vector<AbstractMemory*>::const_iterator m = _memories.begin();
         m != _memories.end(); ++m) {
        // only add the memory if it is part of the global address map
        if ((*m)->isInAddrMap()) {
            memories.push_back(*m);

            // calculate the total size once and for all
            size += (*m)->size();

            // add the range to our interval tree and make sure it does not
            // intersect an existing range
            if (addrMap.insert((*m)->getAddrRange(), *m) == addrMap.end())
                fatal("Memory address range for %s is overlapping\n",
                      (*m)->name());
        } else {
            DPRINTF(BusAddrRanges,
                    "Skipping memory %s that is not in global address map\n",
                    (*m)->name());
            // this type of memory is used e.g. as reference memory by
            // Ruby, and they also needs a backing store, but should
            // not be part of the global address map

            // simply do it independently, also note that this kind of
            // memories are allowed to overlap in the logic address
            // map
            vector<AbstractMemory*> unmapped_mems;
            unmapped_mems.push_back(*m);
            createBackingStore((*m)->getAddrRange(), unmapped_mems);
        }
    }

    // iterate over the increasing addresses and create as large
    // chunks as possible of contigous space to be mapped to backing
    // store, also remember what memories constitute the range so we
    // can go and find out if we have to init their parts to zero
    AddrRange curr_range;
    vector<AbstractMemory*> curr_memories;
    for (AddrRangeMap<AbstractMemory*>::const_iterator r = addrMap.begin();
         r != addrMap.end(); ++r) {
        // simply skip past all memories that are null and hence do
        // not need any backing store
        if (!r->second->isNull()) {
            // if the current range is valid, decide if we split or
            // not
            if (curr_range.valid()) {
                // if the ranges are neighbours, then append, this
                // will eventually be extended to include support for
                // address striping and merge the interleaved ranges
                if (curr_range.end + 1 == r->first.start) {
                    DPRINTF(BusAddrRanges,
                            "Merging neighbouring ranges %x:%x and %x:%x\n",
                            curr_range.start, curr_range.end, r->first.start,
                            r->first.end);
                    // update the end of the range and add the current
                    // memory to the list of memories
                    curr_range.end = r->first.end;
                    curr_memories.push_back(r->second);
                } else {
                    // what we already have is valid, and this is not
                    // contigious, so create the backing store and
                    // then start over
                    createBackingStore(curr_range, curr_memories);

                    // remember the current range and reset the current
                    // set of memories to contain this one
                    curr_range = r->first;
                    curr_memories.clear();
                    curr_memories.push_back(r->second);
                }
            } else {
                // we haven't seen any valid ranges yet, so remember
                // the current range and reset the current set of
                // memories to contain this one
                curr_range = r->first;
                curr_memories.clear();
                curr_memories.push_back(r->second);
            }
        }
    }

    // if we have a valid range upon finishing the iteration, then
    // create the backing store
    if (curr_range.valid())
        createBackingStore(curr_range, curr_memories);
}

void
PhysicalMemory::createBackingStore(AddrRange range,
                                   const vector<AbstractMemory*>& _memories)
{
    // perform the actual mmap
    DPRINTF(BusAddrRanges, "Creating backing store for range %x:%x\n",
            range.start, range.end);
    int map_flags = MAP_ANON | MAP_PRIVATE;
    uint8_t* pmem = (uint8_t*) mmap(NULL, range.size(),
                                    PROT_READ | PROT_WRITE,
                                    map_flags, -1, 0);

    if (pmem == (uint8_t*) MAP_FAILED) {
        perror("mmap");
        fatal("Could not mmap %d bytes for range %x:%x!\n", range.size(),
              range.start, range.end);
    }

    // remember this backing store so we can checkpoint it and unmap
    // it appropriately
    backingStore.push_back(make_pair(range, pmem));

    // point the memories to their backing store, and if requested,
    // initialize the memory range to 0
    for (vector<AbstractMemory*>::const_iterator m = _memories.begin();
         m != _memories.end(); ++m) {
        DPRINTF(BusAddrRanges, "Mapping memory %s to backing store\n",
                (*m)->name());
        (*m)->setBackingStore(pmem);

        // if it should be zero, then go and make it so
        if ((*m)->initToZero())
            memset(pmem, 0, (*m)->size());

        // advance the pointer for the next memory in line
        pmem += (*m)->size();
    }
}

PhysicalMemory::~PhysicalMemory()
{
    // unmap the backing store
    for (vector<pair<AddrRange, uint8_t*> >::iterator s = backingStore.begin();
         s != backingStore.end(); ++s)
        munmap((char*)s->second, s->first.size());
}

bool
PhysicalMemory::isMemAddr(Addr addr) const
{
    // see if the address is within the last matched range
    if (addr != rangeCache) {
        // lookup in the interval tree
        AddrRangeMap<AbstractMemory*>::const_iterator r = addrMap.find(addr);
        if (r == addrMap.end()) {
            // not in the cache, and not in the tree
            return false;
        }
        // the range is in the tree, update the cache
        rangeCache = r->first;
    }

    assert(addrMap.find(addr) != addrMap.end());

    // either matched the cache or found in the tree
    return true;
}

AddrRangeList
PhysicalMemory::getConfAddrRanges() const
{
    // this could be done once in the constructor, but since it is unlikely to
    // be called more than once the iteration should not be a problem
    AddrRangeList ranges;
    for (vector<AbstractMemory*>::const_iterator m = memories.begin();
         m != memories.end(); ++m) {
        if ((*m)->isConfReported()) {
            ranges.push_back((*m)->getAddrRange());
        }
    }

    return ranges;
}

void
PhysicalMemory::access(PacketPtr pkt)
{
    assert(pkt->isRequest());
    Addr addr = pkt->getAddr();
    AddrRangeMap<AbstractMemory*>::const_iterator m = addrMap.find(addr);
    assert(m != addrMap.end());
    m->second->access(pkt);
}

void
PhysicalMemory::functionalAccess(PacketPtr pkt)
{
    assert(pkt->isRequest());
    Addr addr = pkt->getAddr();
    AddrRangeMap<AbstractMemory*>::const_iterator m = addrMap.find(addr);
    assert(m != addrMap.end());
    m->second->functionalAccess(pkt);
}

void
PhysicalMemory::serialize(ostream& os)
{
    // serialize all the locked addresses and their context ids
    vector<Addr> lal_addr;
    vector<int> lal_cid;

    for (vector<AbstractMemory*>::iterator m = memories.begin();
         m != memories.end(); ++m) {
        const list<LockedAddr>& locked_addrs = (*m)->getLockedAddrList();
        for (list<LockedAddr>::const_iterator l = locked_addrs.begin();
             l != locked_addrs.end(); ++l) {
            lal_addr.push_back(l->addr);
            lal_cid.push_back(l->contextId);
        }
    }

    arrayParamOut(os, "lal_addr", lal_addr);
    arrayParamOut(os, "lal_cid", lal_cid);

    // serialize the backing stores
    unsigned int nbr_of_stores = backingStore.size();
    SERIALIZE_SCALAR(nbr_of_stores);

    unsigned int store_id = 0;
    // store each backing store memory segment in a file
    for (vector<pair<AddrRange, uint8_t*> >::iterator s = backingStore.begin();
         s != backingStore.end(); ++s) {
        nameOut(os, csprintf("%s.store%d", name(), store_id));
        serializeStore(os, store_id++, s->first, s->second);
    }
}

void
PhysicalMemory::serializeStore(ostream& os, unsigned int store_id,
                               AddrRange range, uint8_t* pmem)
{
    // we cannot use the address range for the name as the
    // memories that are not part of the address map can overlap
    string filename = name() + ".store" + to_string(store_id) + ".pmem";
    long range_size = range.size();

    DPRINTF(Checkpoint, "Serializing physical memory %s with size %d\n",
            filename, range_size);

    SERIALIZE_SCALAR(store_id);
    SERIALIZE_SCALAR(filename);
    SERIALIZE_SCALAR(range_size);

    // write memory file
    string filepath = Checkpoint::dir() + "/" + filename.c_str();
    int fd = creat(filepath.c_str(), 0664);
    if (fd < 0) {
        perror("creat");
        fatal("Can't open physical memory checkpoint file '%s'\n",
              filename);
    }

    gzFile compressed_mem = gzdopen(fd, "wb");
    if (compressed_mem == NULL)
        fatal("Insufficient memory to allocate compression state for %s\n",
              filename);

    uint64_t pass_size = 0;

    // gzwrite fails if (int)len < 0 (gzwrite returns int)
    for (uint64_t written = 0; written < range.size();
         written += pass_size) {
        pass_size = (uint64_t)INT_MAX < (range.size() - written) ?
            (uint64_t)INT_MAX : (range.size() - written);

        if (gzwrite(compressed_mem, pmem + written,
                    (unsigned int) pass_size) != (int) pass_size) {
            fatal("Write failed on physical memory checkpoint file '%s'\n",
                  filename);
        }
    }

    // close the compressed stream and check that the exit status
    // is zero
    if (gzclose(compressed_mem))
        fatal("Close failed on physical memory checkpoint file '%s'\n",
              filename);

}

void
PhysicalMemory::unserialize(Checkpoint* cp, const string& section)
{
    // unserialize the locked addresses and map them to the
    // appropriate memory controller
    vector<Addr> lal_addr;
    vector<int> lal_cid;
    arrayParamIn(cp, section, "lal_addr", lal_addr);
    arrayParamIn(cp, section, "lal_cid", lal_cid);
    for(size_t i = 0; i < lal_addr.size(); ++i) {
        AddrRangeMap<AbstractMemory*>::iterator m = addrMap.find(lal_addr[i]);
        m->second->addLockedAddr(LockedAddr(lal_addr[i], lal_cid[i]));
    }

    // unserialize the backing stores
    unsigned int nbr_of_stores;
    UNSERIALIZE_SCALAR(nbr_of_stores);

    for (unsigned int i = 0; i < nbr_of_stores; ++i) {
        unserializeStore(cp, csprintf("%s.store%d", section, i));
    }

}

void
PhysicalMemory::unserializeStore(Checkpoint* cp, const string& section)
{
    const uint32_t chunk_size = 16384;

    unsigned int store_id;
    UNSERIALIZE_SCALAR(store_id);

    string filename;
    UNSERIALIZE_SCALAR(filename);
    string filepath = cp->cptDir + "/" + filename;

    // mmap memoryfile
    int fd = open(filepath.c_str(), O_RDONLY);
    if (fd < 0) {
        perror("open");
        fatal("Can't open physical memory checkpoint file '%s'", filename);
    }

    gzFile compressed_mem = gzdopen(fd, "rb");
    if (compressed_mem == NULL)
        fatal("Insufficient memory to allocate compression state for %s\n",
              filename);

    uint8_t* pmem = backingStore[store_id].second;
    AddrRange range = backingStore[store_id].first;

    // unmap file that was mmapped in the constructor, this is
    // done here to make sure that gzip and open don't muck with
    // our nice large space of memory before we reallocate it
    munmap((char*) pmem, range.size());

    long range_size;
    UNSERIALIZE_SCALAR(range_size);

    DPRINTF(Checkpoint, "Unserializing physical memory %s with size %d\n",
            filename, range_size);

    if (range_size != range.size())
        fatal("Memory range size has changed! Saw %lld, expected %lld\n",
              range_size, range.size());

    pmem = (uint8_t*) mmap(NULL, range.size(), PROT_READ | PROT_WRITE,
                           MAP_ANON | MAP_PRIVATE, -1, 0);

    if (pmem == (void*) MAP_FAILED) {
        perror("mmap");
        fatal("Could not mmap physical memory!\n");
    }

    uint64_t curr_size = 0;
    long* temp_page = new long[chunk_size];
    long* pmem_current;
    uint32_t bytes_read;
    while (curr_size < range.size()) {
        bytes_read = gzread(compressed_mem, temp_page, chunk_size);
        if (bytes_read == 0)
            break;

        assert(bytes_read % sizeof(long) == 0);

        for (uint32_t x = 0; x < bytes_read / sizeof(long); x++) {
            // Only copy bytes that are non-zero, so we don't give
            // the VM system hell
            if (*(temp_page + x) != 0) {
                pmem_current = (long*)(pmem + curr_size + x * sizeof(long));
                *pmem_current = *(temp_page + x);
            }
        }
        curr_size += bytes_read;
    }

    delete[] temp_page;

    if (gzclose(compressed_mem))
        fatal("Close failed on physical memory checkpoint file '%s'\n",
              filename);
}