summaryrefslogtreecommitdiff
path: root/src/mem/physical.cc
blob: a49c12a5c7c9f138a445b89be14d6a8ee4587577 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
/*
 * Copyright (c) 2001-2005 The Regents of The University of Michigan
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Ron Dreslinski
 *          Ali Saidi
 */

#include <sys/types.h>
#include <sys/mman.h>
#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
#include <zlib.h>

#include <iostream>
#include <string>

#include "arch/isa_traits.hh"
#include "base/misc.hh"
#include "base/random.hh"
#include "base/types.hh"
#include "config/full_system.hh"
#include "mem/packet_access.hh"
#include "mem/physical.hh"
#include "sim/eventq.hh"

using namespace std;
using namespace TheISA;

PhysicalMemory::PhysicalMemory(const Params *p)
    : MemObject(p), pmemAddr(NULL), pagePtr(0),
      lat(p->latency), lat_var(p->latency_var),
      cachedSize(params()->range.size()), cachedStart(params()->range.start)
{
    if (params()->range.size() % TheISA::PageBytes != 0)
        panic("Memory Size not divisible by page size\n");

    if (params()->null)
        return;

    int map_flags = MAP_ANON | MAP_PRIVATE;
    pmemAddr = (uint8_t *)mmap(NULL, params()->range.size(),
                               PROT_READ | PROT_WRITE, map_flags, -1, 0);

    if (pmemAddr == (void *)MAP_FAILED) {
        perror("mmap");
        fatal("Could not mmap!\n");
    }

    //If requested, initialize all the memory to 0
    if (p->zero)
        memset(pmemAddr, 0, p->range.size());
}

void
PhysicalMemory::init()
{
    if (ports.size() == 0) {
        fatal("PhysicalMemory object %s is unconnected!", name());
    }

    for (PortIterator pi = ports.begin(); pi != ports.end(); ++pi) {
        if (*pi)
            (*pi)->sendStatusChange(Port::RangeChange);
    }
}

PhysicalMemory::~PhysicalMemory()
{
    if (pmemAddr)
        munmap((char*)pmemAddr, params()->range.size());
    //Remove memPorts?
}

Addr
PhysicalMemory::new_page()
{
    Addr return_addr = pagePtr << LogVMPageSize;
    return_addr += start();

    ++pagePtr;
    return return_addr;
}

int
PhysicalMemory::deviceBlockSize()
{
    //Can accept anysize request
    return 0;
}

Tick
PhysicalMemory::calculateLatency(PacketPtr pkt)
{
    Tick latency = lat;
    if (lat_var != 0)
        latency += random_mt.random<Tick>(0, lat_var);
    return latency;
}



// Add load-locked to tracking list.  Should only be called if the
// operation is a load and the LLSC flag is set.
void
PhysicalMemory::trackLoadLocked(PacketPtr pkt)
{
    Request *req = pkt->req;
    Addr paddr = LockedAddr::mask(req->getPaddr());

    // first we check if we already have a locked addr for this
    // xc.  Since each xc only gets one, we just update the
    // existing record with the new address.
    list<LockedAddr>::iterator i;

    for (i = lockedAddrList.begin(); i != lockedAddrList.end(); ++i) {
        if (i->matchesContext(req)) {
            DPRINTF(LLSC, "Modifying lock record: context %d addr %#x\n",
                    req->contextId(), paddr);
            i->addr = paddr;
            return;
        }
    }

    // no record for this xc: need to allocate a new one
    DPRINTF(LLSC, "Adding lock record: context %d addr %#x\n",
            req->contextId(), paddr);
    lockedAddrList.push_front(LockedAddr(req));
}


// Called on *writes* only... both regular stores and
// store-conditional operations.  Check for conventional stores which
// conflict with locked addresses, and for success/failure of store
// conditionals.
bool
PhysicalMemory::checkLockedAddrList(PacketPtr pkt)
{
    Request *req = pkt->req;
    Addr paddr = LockedAddr::mask(req->getPaddr());
    bool isLLSC = pkt->isLLSC();

    // Initialize return value.  Non-conditional stores always
    // succeed.  Assume conditional stores will fail until proven
    // otherwise.
    bool success = !isLLSC;

    // Iterate over list.  Note that there could be multiple matching
    // records, as more than one context could have done a load locked
    // to this location.
    list<LockedAddr>::iterator i = lockedAddrList.begin();

    while (i != lockedAddrList.end()) {

        if (i->addr == paddr) {
            // we have a matching address

            if (isLLSC && i->matchesContext(req)) {
                // it's a store conditional, and as far as the memory
                // system can tell, the requesting context's lock is
                // still valid.
                DPRINTF(LLSC, "StCond success: context %d addr %#x\n",
                        req->contextId(), paddr);
                success = true;
            }

            // Get rid of our record of this lock and advance to next
            DPRINTF(LLSC, "Erasing lock record: context %d addr %#x\n",
                    i->contextId, paddr);
            i = lockedAddrList.erase(i);
        }
        else {
            // no match: advance to next record
            ++i;
        }
    }

    if (isLLSC) {
        req->setExtraData(success ? 1 : 0);
    }

    return success;
}


#if TRACING_ON

#define CASE(A, T)                                                      \
  case sizeof(T):                                                       \
    DPRINTF(MemoryAccess, A " of size %i on address 0x%x data 0x%x\n",  \
            pkt->getSize(), pkt->getAddr(), pkt->get<T>());             \
  break


#define TRACE_PACKET(A)                                                 \
    do {                                                                \
        switch (pkt->getSize()) {                                       \
          CASE(A, uint64_t);                                            \
          CASE(A, uint32_t);                                            \
          CASE(A, uint16_t);                                            \
          CASE(A, uint8_t);                                             \
          default:                                                      \
            DPRINTF(MemoryAccess, A " of size %i on address 0x%x\n",    \
                    pkt->getSize(), pkt->getAddr());                    \
        }                                                               \
    } while (0)

#else

#define TRACE_PACKET(A)

#endif

Tick
PhysicalMemory::doAtomicAccess(PacketPtr pkt)
{
    assert(pkt->getAddr() >= start() &&
           pkt->getAddr() + pkt->getSize() <= start() + size());

    if (pkt->memInhibitAsserted()) {
        DPRINTF(MemoryAccess, "mem inhibited on 0x%x: not responding\n",
                pkt->getAddr());
        return 0;
    }

    uint8_t *hostAddr = pmemAddr + pkt->getAddr() - start();

    if (pkt->cmd == MemCmd::SwapReq) {
        IntReg overwrite_val;
        bool overwrite_mem;
        uint64_t condition_val64;
        uint32_t condition_val32;

        if (!pmemAddr)
            panic("Swap only works if there is real memory (i.e. null=False)");
        assert(sizeof(IntReg) >= pkt->getSize());

        overwrite_mem = true;
        // keep a copy of our possible write value, and copy what is at the
        // memory address into the packet
        std::memcpy(&overwrite_val, pkt->getPtr<uint8_t>(), pkt->getSize());
        std::memcpy(pkt->getPtr<uint8_t>(), hostAddr, pkt->getSize());

        if (pkt->req->isCondSwap()) {
            if (pkt->getSize() == sizeof(uint64_t)) {
                condition_val64 = pkt->req->getExtraData();
                overwrite_mem = !std::memcmp(&condition_val64, hostAddr,
                                             sizeof(uint64_t));
            } else if (pkt->getSize() == sizeof(uint32_t)) {
                condition_val32 = (uint32_t)pkt->req->getExtraData();
                overwrite_mem = !std::memcmp(&condition_val32, hostAddr,
                                             sizeof(uint32_t));
            } else
                panic("Invalid size for conditional read/write\n");
        }

        if (overwrite_mem)
            std::memcpy(hostAddr, &overwrite_val, pkt->getSize());

        TRACE_PACKET("Read/Write");
    } else if (pkt->isRead()) {
        assert(!pkt->isWrite());
        if (pkt->isLLSC()) {
            trackLoadLocked(pkt);
        }
        if (pmemAddr)
            memcpy(pkt->getPtr<uint8_t>(), hostAddr, pkt->getSize());
        TRACE_PACKET("Read");
    } else if (pkt->isWrite()) {
        if (writeOK(pkt)) {
            if (pmemAddr)
                memcpy(hostAddr, pkt->getPtr<uint8_t>(), pkt->getSize());
            TRACE_PACKET("Write");
        }
    } else if (pkt->isInvalidate()) {
        //upgrade or invalidate
        if (pkt->needsResponse()) {
            pkt->makeAtomicResponse();
        }
    } else {
        panic("unimplemented");
    }

    if (pkt->needsResponse()) {
        pkt->makeAtomicResponse();
    }
    return calculateLatency(pkt);
}


void
PhysicalMemory::doFunctionalAccess(PacketPtr pkt)
{
    assert(pkt->getAddr() >= start() &&
           pkt->getAddr() + pkt->getSize() <= start() + size());


    uint8_t *hostAddr = pmemAddr + pkt->getAddr() - start();

    if (pkt->isRead()) {
        if (pmemAddr)
            memcpy(pkt->getPtr<uint8_t>(), hostAddr, pkt->getSize());
        TRACE_PACKET("Read");
        pkt->makeAtomicResponse();
    } else if (pkt->isWrite()) {
        if (pmemAddr)
            memcpy(hostAddr, pkt->getPtr<uint8_t>(), pkt->getSize());
        TRACE_PACKET("Write");
        pkt->makeAtomicResponse();
    } else if (pkt->isPrint()) {
        Packet::PrintReqState *prs =
            dynamic_cast<Packet::PrintReqState*>(pkt->senderState);
        // Need to call printLabels() explicitly since we're not going
        // through printObj().
        prs->printLabels();
        // Right now we just print the single byte at the specified address.
        ccprintf(prs->os, "%s%#x\n", prs->curPrefix(), *hostAddr);
    } else {
        panic("PhysicalMemory: unimplemented functional command %s",
              pkt->cmdString());
    }
}


Port *
PhysicalMemory::getPort(const std::string &if_name, int idx)
{
    // Accept request for "functional" port for backwards compatibility
    // with places where this function is called from C++.  I'd prefer
    // to move all these into Python someday.
    if (if_name == "functional") {
        return new MemoryPort(csprintf("%s-functional", name()), this);
    }

    if (if_name != "port") {
        panic("PhysicalMemory::getPort: unknown port %s requested", if_name);
    }

    if (idx >= ports.size()) {
        ports.resize(idx+1);
    }

    if (ports[idx] != NULL) {
        panic("PhysicalMemory::getPort: port %d already assigned", idx);
    }

    MemoryPort *port =
        new MemoryPort(csprintf("%s-port%d", name(), idx), this);

    ports[idx] = port;
    return port;
}


void
PhysicalMemory::recvStatusChange(Port::Status status)
{
}

PhysicalMemory::MemoryPort::MemoryPort(const std::string &_name,
                                       PhysicalMemory *_memory)
    : SimpleTimingPort(_name, _memory), memory(_memory)
{ }

void
PhysicalMemory::MemoryPort::recvStatusChange(Port::Status status)
{
    memory->recvStatusChange(status);
}

void
PhysicalMemory::MemoryPort::getDeviceAddressRanges(AddrRangeList &resp,
                                                   bool &snoop)
{
    memory->getAddressRanges(resp, snoop);
}

void
PhysicalMemory::getAddressRanges(AddrRangeList &resp, bool &snoop)
{
    snoop = false;
    resp.clear();
    resp.push_back(RangeSize(start(), params()->range.size()));
}

int
PhysicalMemory::MemoryPort::deviceBlockSize()
{
    return memory->deviceBlockSize();
}

Tick
PhysicalMemory::MemoryPort::recvAtomic(PacketPtr pkt)
{
    return memory->doAtomicAccess(pkt);
}

void
PhysicalMemory::MemoryPort::recvFunctional(PacketPtr pkt)
{
    pkt->pushLabel(memory->name());

    if (!checkFunctional(pkt)) {
        // Default implementation of SimpleTimingPort::recvFunctional()
        // calls recvAtomic() and throws away the latency; we can save a
        // little here by just not calculating the latency.
        memory->doFunctionalAccess(pkt);
    }

    pkt->popLabel();
}

unsigned int
PhysicalMemory::drain(Event *de)
{
    int count = 0;
    for (PortIterator pi = ports.begin(); pi != ports.end(); ++pi) {
        count += (*pi)->drain(de);
    }

    if (count)
        changeState(Draining);
    else
        changeState(Drained);
    return count;
}

void
PhysicalMemory::serialize(ostream &os)
{
    if (!pmemAddr)
        return;

    gzFile compressedMem;
    string filename = name() + ".physmem";

    SERIALIZE_SCALAR(filename);

    // write memory file
    string thefile = Checkpoint::dir() + "/" + filename.c_str();
    int fd = creat(thefile.c_str(), 0664);
    if (fd < 0) {
        perror("creat");
        fatal("Can't open physical memory checkpoint file '%s'\n", filename);
    }

    compressedMem = gzdopen(fd, "wb");
    if (compressedMem == NULL)
        fatal("Insufficient memory to allocate compression state for %s\n",
                filename);

    if (gzwrite(compressedMem, pmemAddr, params()->range.size()) !=
        params()->range.size()) {
        fatal("Write failed on physical memory checkpoint file '%s'\n",
              filename);
    }

    if (gzclose(compressedMem))
        fatal("Close failed on physical memory checkpoint file '%s'\n",
              filename);
}

void
PhysicalMemory::unserialize(Checkpoint *cp, const string &section)
{
    if (!pmemAddr)
        return;

    gzFile compressedMem;
    long *tempPage;
    long *pmem_current;
    uint64_t curSize;
    uint32_t bytesRead;
    const int chunkSize = 16384;

    string filename;

    UNSERIALIZE_SCALAR(filename);

    filename = cp->cptDir + "/" + filename;

    // mmap memoryfile
    int fd = open(filename.c_str(), O_RDONLY);
    if (fd < 0) {
        perror("open");
        fatal("Can't open physical memory checkpoint file '%s'", filename);
    }

    compressedMem = gzdopen(fd, "rb");
    if (compressedMem == NULL)
        fatal("Insufficient memory to allocate compression state for %s\n",
                filename);

    // unmap file that was mmaped in the constructor
    // This is done here to make sure that gzip and open don't muck with our
    // nice large space of memory before we reallocate it
    munmap((char*)pmemAddr, params()->range.size());

    pmemAddr = (uint8_t *)mmap(NULL, params()->range.size(),
        PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0);

    if (pmemAddr == (void *)MAP_FAILED) {
        perror("mmap");
        fatal("Could not mmap physical memory!\n");
    }

    curSize = 0;
    tempPage = (long*)malloc(chunkSize);
    if (tempPage == NULL)
        fatal("Unable to malloc memory to read file %s\n", filename);

    /* Only copy bytes that are non-zero, so we don't give the VM system hell */
    while (curSize < params()->range.size()) {
        bytesRead = gzread(compressedMem, tempPage, chunkSize);
        if (bytesRead != chunkSize &&
            bytesRead != params()->range.size() - curSize)
            fatal("Read failed on physical memory checkpoint file '%s'"
                  " got %d bytes, expected %d or %d bytes\n",
                  filename, bytesRead, chunkSize,
                  params()->range.size() - curSize);

        assert(bytesRead % sizeof(long) == 0);

        for (int x = 0; x < bytesRead/sizeof(long); x++)
        {
             if (*(tempPage+x) != 0) {
                 pmem_current = (long*)(pmemAddr + curSize + x * sizeof(long));
                 *pmem_current = *(tempPage+x);
             }
        }
        curSize += bytesRead;
    }

    free(tempPage);

    if (gzclose(compressedMem))
        fatal("Close failed on physical memory checkpoint file '%s'\n",
              filename);

}

PhysicalMemory *
PhysicalMemoryParams::create()
{
    return new PhysicalMemory(this);
}