1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
|
/*
* Copyright (c) 2009 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*
* Authors: Brad Beckmann
* Tushar Krishna
*/
machine(MachineType:L1Cache, "Garnet_standalone L1 Cache")
: Sequencer * sequencer;
Cycles issue_latency := 2;
// NETWORK BUFFERS
MessageBuffer * requestFromCache, network="To", virtual_network="0",
vnet_type = "request";
MessageBuffer * forwardFromCache, network="To", virtual_network="1",
vnet_type = "forward";
MessageBuffer * responseFromCache, network="To", virtual_network="2",
vnet_type = "response";
MessageBuffer * mandatoryQueue;
{
// STATES
state_declaration(State, desc="Cache states", default="L1Cache_State_I") {
I, AccessPermission:Invalid, desc="Not Present/Invalid";
}
// EVENTS
enumeration(Event, desc="Cache events") {
// From processor
Request, desc="Request from Garnet_standalone";
Forward, desc="Forward from Garnet_standalone";
Response, desc="Response from Garnet_standalone";
}
// STRUCTURE DEFINITIONS
DataBlock dummyData;
// CacheEntry
structure(Entry, desc="...", interface="AbstractCacheEntry") {
State CacheState, desc="cache state";
DataBlock DataBlk, desc="Data in the block";
}
// FUNCTIONS
Tick clockEdge();
MachineID mapAddressToMachine(Addr addr, MachineType mtype);
// cpu/testers/networktest/networktest.cc generates packets of the type
// ReadReq, INST_FETCH, and WriteReq.
// These are converted to LD, IFETCH and ST by mem/ruby/system/RubyPort.cc.
// These are then sent to the sequencer, which sends them here.
// Garnet_standalone-cache.sm tags LD, IFETCH and ST as Request, Forward,
// and Response Events respectively, which are then injected into
// virtual networks 0, 1 and 2 respectively.
// This models traffic of different types within the network.
//
// Note that requests and forwards are MessageSizeType:Control,
// while responses are MessageSizeType:Data.
//
Event mandatory_request_type_to_event(RubyRequestType type) {
if (type == RubyRequestType:LD) {
return Event:Request;
} else if (type == RubyRequestType:IFETCH) {
return Event:Forward;
} else if (type == RubyRequestType:ST) {
return Event:Response;
} else {
error("Invalid RubyRequestType");
}
}
State getState(Entry cache_entry, Addr addr) {
return State:I;
}
void setState(Entry cache_entry, Addr addr, State state) {
}
AccessPermission getAccessPermission(Addr addr) {
return AccessPermission:NotPresent;
}
void setAccessPermission(Entry cache_entry, Addr addr, State state) {
}
Entry getCacheEntry(Addr address), return_by_pointer="yes" {
return OOD;
}
void functionalRead(Addr addr, Packet *pkt) {
error("Garnet_standalone does not support functional read.");
}
int functionalWrite(Addr addr, Packet *pkt) {
error("Garnet_standalone does not support functional write.");
}
// NETWORK PORTS
out_port(requestNetwork_out, RequestMsg, requestFromCache);
out_port(forwardNetwork_out, RequestMsg, forwardFromCache);
out_port(responseNetwork_out, RequestMsg, responseFromCache);
// Mandatory Queue
in_port(mandatoryQueue_in, RubyRequest, mandatoryQueue, desc="...") {
if (mandatoryQueue_in.isReady(clockEdge())) {
peek(mandatoryQueue_in, RubyRequest) {
trigger(mandatory_request_type_to_event(in_msg.Type),
in_msg.LineAddress, getCacheEntry(in_msg.LineAddress));
}
}
}
// ACTIONS
// The destination directory of the packets is embedded in the address
// map_Address_to_Directory is used to retrieve it.
action(a_issueRequest, "a", desc="Issue a request") {
enqueue(requestNetwork_out, RequestMsg, issue_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:MSG;
out_msg.Requestor := machineID;
out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory));
// To send broadcasts in vnet0 (to emulate broadcast-based protocols),
// replace the above line by the following:
// out_msg.Destination := broadcast(MachineType:Directory);
out_msg.MessageSize := MessageSizeType:Control;
}
}
action(b_issueForward, "b", desc="Issue a forward") {
enqueue(forwardNetwork_out, RequestMsg, issue_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:MSG;
out_msg.Requestor := machineID;
out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory));
out_msg.MessageSize := MessageSizeType:Control;
}
}
action(c_issueResponse, "c", desc="Issue a response") {
enqueue(responseNetwork_out, RequestMsg, issue_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:MSG;
out_msg.Requestor := machineID;
out_msg.Destination.add(mapAddressToMachine(address, MachineType:Directory));
out_msg.MessageSize := MessageSizeType:Data;
}
}
action(m_popMandatoryQueue, "m", desc="Pop the mandatory request queue") {
mandatoryQueue_in.dequeue(clockEdge());
}
action(r_load_hit, "r", desc="Notify sequencer the load completed.") {
sequencer.readCallback(address, dummyData);
}
action(s_store_hit, "s", desc="Notify sequencer that store completed.") {
sequencer.writeCallback(address, dummyData);
}
// TRANSITIONS
// sequencer hit call back is performed after injecting the packets.
// The goal of the Garnet_standalone protocol is only to inject packets into
// the network, not to keep track of them via TBEs.
transition(I, Response) {
s_store_hit;
c_issueResponse;
m_popMandatoryQueue;
}
transition(I, Request) {
r_load_hit;
a_issueRequest;
m_popMandatoryQueue;
}
transition(I, Forward) {
r_load_hit;
b_issueForward;
m_popMandatoryQueue;
}
}
|