summaryrefslogtreecommitdiff
path: root/src/mem/protocol/MESI_CMP_directory-L2cache.sm
blob: a8fcb07d16494f835b0ab93e5a4298e9dd4f468b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121

/*
 * Copyright (c) 1999-2005 Mark D. Hill and David A. Wood
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * $Id: MSI_MOSI_CMP_directory-L2cache.sm 1.12 05/01/19 15:55:40-06:00 beckmann@s0-28.cs.wisc.edu $
 *
 */

machine(L2Cache, "MESI Directory L2 Cache CMP")
 : CacheMemory * L2cacheMemory,
   int l2_request_latency = 2,  
   int l2_response_latency = 2,
   int to_l1_latency = 1
{
  // L2 BANK QUEUES
  // From local bank of L2 cache TO the network
  MessageBuffer DirRequestFromL2Cache, network="To", virtual_network="0", ordered="false", vnet_type="request";  // this L2 bank -> Memory
  MessageBuffer L1RequestFromL2Cache, network="To", virtual_network="0", ordered="false", vnet_type="request";  // this L2 bank -> a local L1
  MessageBuffer responseFromL2Cache, network="To", virtual_network="1", ordered="false", vnet_type="response";  // this L2 bank -> a local L1 || Memory

  // FROM the network to this local bank of L2 cache
  MessageBuffer unblockToL2Cache, network="From", virtual_network="2", ordered="false", vnet_type="unblock";  // a local L1 || Memory -> this L2 bank
  MessageBuffer L1RequestToL2Cache, network="From", virtual_network="0", ordered="false", vnet_type="request";  // a local L1 -> this L2 bank
  MessageBuffer responseToL2Cache, network="From", virtual_network="1", ordered="false", vnet_type="response";  // a local L1 || Memory -> this L2 bank
//  MessageBuffer unblockToL2Cache, network="From", virtual_network="4", ordered="false", vnet_type="unblock";  // a local L1 || Memory -> this L2 bank

  // STATES
  state_declaration(State, desc="L2 Cache states", default="L2Cache_State_NP") {
    // Base states
    NP, AccessPermission:Invalid, desc="Not present in either cache";
    SS, AccessPermission:Read_Only, desc="L2 cache entry Shared, also present in one or more L1s";
    M, AccessPermission:Read_Write, desc="L2 cache entry Modified, not present in any L1s", format="!b";
    MT, AccessPermission:Maybe_Stale, desc="L2 cache entry Modified in a local L1, assume L2 copy stale", format="!b";

    // L2 replacement
    M_I, AccessPermission:Busy, desc="L2 cache replacing, have all acks, sent dirty data to memory, waiting for ACK from memory";
    MT_I, AccessPermission:Busy, desc="L2 cache replacing, getting data from exclusive";
    MCT_I, AccessPermission:Busy, desc="L2 cache replacing, clean in L2, getting data or ack from exclusive";
    I_I, AccessPermission:Busy, desc="L2 replacing clean data, need to inv sharers and then drop data";
    S_I, AccessPermission:Busy, desc="L2 replacing dirty data, collecting acks from L1s";

    // Transient States for fetching data from memory
    ISS, AccessPermission:Busy, desc="L2 idle, got single L1_GETS, issued memory fetch, have not seen response yet";
    IS, AccessPermission:Busy, desc="L2 idle, got L1_GET_INSTR or multiple L1_GETS, issued memory fetch, have not seen response yet";
    IM, AccessPermission:Busy, desc="L2 idle, got L1_GETX, issued memory fetch, have not seen response(s) yet";

    // Blocking states
    SS_MB, AccessPermission:Busy, desc="Blocked for L1_GETX from SS";
    MT_MB, AccessPermission:Busy, desc="Blocked for L1_GETX from MT";
    M_MB, AccessPermission:Busy, desc="Blocked for L1_GETX from M";

    MT_IIB, AccessPermission:Busy, desc="Blocked for L1_GETS from MT, waiting for unblock and data";
    MT_IB, AccessPermission:Busy, desc="Blocked for L1_GETS from MT, got unblock, waiting for data";
    MT_SB, AccessPermission:Busy, desc="Blocked for L1_GETS from MT, got data,  waiting for unblock";
 
  }

  // EVENTS
  enumeration(Event, desc="L2 Cache events") {
    // L2 events

    // events initiated by the local L1s
    L1_GET_INSTR,            desc="a L1I GET INSTR request for a block maped to us";
    L1_GETS,                 desc="a L1D GETS request for a block maped to us";
    L1_GETX,                 desc="a L1D GETX request for a block maped to us";
    L1_UPGRADE,                 desc="a L1D GETX request for a block maped to us";

    L1_PUTX,                 desc="L1 replacing data";
    L1_PUTX_old,             desc="L1 replacing data, but no longer sharer";

    Fwd_L1_GETX,             desc="L1 did not have data, so we supply";
    Fwd_L1_GETS,             desc="L1 did not have data, so we supply";
    Fwd_L1_GET_INSTR,             desc="L1 did not have data, so we supply";

    // events initiated by this L2
    L2_Replacement,     desc="L2 Replacement", format="!r";
    L2_Replacement_clean,     desc="L2 Replacement, but data is clean", format="!r";

    // events from memory controller
    Mem_Data,     desc="data from memory", format="!r";
    Mem_Ack,     desc="ack from memory", format="!r";

    // M->S data writeback
    WB_Data,  desc="data from L1";
    WB_Data_clean,  desc="clean data from L1";
    Ack,      desc="writeback ack";
    Ack_all,      desc="writeback ack";

    Unblock, desc="Unblock from L1 requestor";
    Unblock_Cancel, desc="Unblock from L1 requestor (FOR XACT MEMORY)";
    Exclusive_Unblock, desc="Unblock from L1 requestor";

    MEM_Inv, desc="Invalidation from directory";

  }

  // TYPES

  // CacheEntry
  structure(Entry, desc="...", interface="AbstractCacheEntry") {
    State CacheState,          desc="cache state";
    NetDest Sharers,               desc="tracks the L1 shares on-chip";
    MachineID Exclusive,          desc="Exclusive holder of block";
    DataBlock DataBlk,       desc="data for the block";
    bool Dirty, default="false", desc="data is dirty";
  }

  // TBE fields
  structure(TBE, desc="...") {
    Address Address,            desc="Physical address for this TBE";
    State TBEState,             desc="Transient state";
    DataBlock DataBlk,          desc="Buffer for the data block";
    bool Dirty, default="false", desc="Data is Dirty";

    NetDest L1_GetS_IDs,            desc="Set of the internal processors that want the block in shared state";
    MachineID L1_GetX_ID,          desc="ID of the L1 cache to forward the block to once we get a response";
    bool isPrefetch,            desc="Set if this was caused by a prefetch";

    int pendingAcks,            desc="number of pending acks for invalidates during writeback";
  }

  structure(TBETable, external="yes") {
    TBE lookup(Address);
    void allocate(Address);
    void deallocate(Address);
    bool isPresent(Address);
  }

  TBETable L2_TBEs, template_hack="<L2Cache_TBE>";

  void set_cache_entry(AbstractCacheEntry a);
  void unset_cache_entry();
  void set_tbe(TBE a);
  void unset_tbe();

  // inclusive cache, returns L2 entries only
  Entry getCacheEntry(Address addr), return_by_pointer="yes" {
    return static_cast(Entry, "pointer", L2cacheMemory[addr]);
  }

  std::string getCoherenceRequestTypeStr(CoherenceRequestType type) {
    return CoherenceRequestType_to_string(type);
  }

  bool isOneSharerLeft(Address addr, MachineID requestor, Entry cache_entry) {
    assert(is_valid(cache_entry));
    assert(cache_entry.Sharers.isElement(requestor));
    return (cache_entry.Sharers.count() == 1);
  }

  bool isSharer(Address addr, MachineID requestor, Entry cache_entry) {
    if (is_valid(cache_entry)) {
      return cache_entry.Sharers.isElement(requestor);
    } else {
      return false;
    }
  }

  void addSharer(Address addr, MachineID requestor, Entry cache_entry) {
    assert(is_valid(cache_entry));
    DPRINTF(RubySlicc, "machineID: %s, requestor: %s, address: %s\n",
            machineID, requestor, addr);
    cache_entry.Sharers.add(requestor);
  }

  State getState(TBE tbe, Entry cache_entry, Address addr) {
    if(is_valid(tbe)) {
      return tbe.TBEState;
    } else if (is_valid(cache_entry)) {
      return cache_entry.CacheState;
    }
    return State:NP;
  }

  std::string getStateStr(TBE tbe, Entry cache_entry, Address addr) {
    return L2Cache_State_to_string(getState(tbe, cache_entry, addr));
  }

  void setState(TBE tbe, Entry cache_entry, Address addr, State state) {

    // MUST CHANGE
    if (is_valid(tbe)) {
      tbe.TBEState := state;
    }

    if (is_valid(cache_entry)) {
      cache_entry.CacheState := state;
    }
  }

  AccessPermission getAccessPermission(Address addr) {
    TBE tbe := L2_TBEs[addr];
    if(is_valid(tbe)) {
      DPRINTF(RubySlicc, "%s\n", L2Cache_State_to_permission(tbe.TBEState));
      return L2Cache_State_to_permission(tbe.TBEState);
    }

    Entry cache_entry := getCacheEntry(addr);
    if(is_valid(cache_entry)) {
      DPRINTF(RubySlicc, "%s\n", L2Cache_State_to_permission(cache_entry.CacheState));
      return L2Cache_State_to_permission(cache_entry.CacheState);
    }

    DPRINTF(RubySlicc, "%s\n", AccessPermission:NotPresent);
    return AccessPermission:NotPresent;
  }

  DataBlock getDataBlock(Address addr), return_by_ref="yes" {
    return getCacheEntry(addr).DataBlk;
  }

  void setAccessPermission(Entry cache_entry, Address addr, State state) {
    if (is_valid(cache_entry)) {
      cache_entry.changePermission(L2Cache_State_to_permission(state));
    }
  }

  Event L1Cache_request_type_to_event(CoherenceRequestType type, Address addr,
                                      MachineID requestor, Entry cache_entry) {
    if(type == CoherenceRequestType:GETS) {
      return Event:L1_GETS;
    } else if(type == CoherenceRequestType:GET_INSTR) {
      return Event:L1_GET_INSTR;
    } else if (type == CoherenceRequestType:GETX) {
      return Event:L1_GETX;
    } else if (type == CoherenceRequestType:UPGRADE) {
      if ( is_valid(cache_entry) && cache_entry.Sharers.isElement(requestor) ) {
        return Event:L1_UPGRADE;
      } else {
        return Event:L1_GETX;
      }
    } else if (type == CoherenceRequestType:PUTX) {
      if (isSharer(addr, requestor, cache_entry)) {
        return Event:L1_PUTX;
      } else {
        return Event:L1_PUTX_old;
      }
    } else {
      DPRINTF(RubySlicc, "address: %s, Request Type: %s\n", addr, type);
      error("Invalid L1 forwarded request type");
    }
  }

  int getPendingAcks(TBE tbe) {
    return tbe.pendingAcks;
  }

  bool isDirty(Entry cache_entry) {
    assert(is_valid(cache_entry));
    return cache_entry.Dirty;
  }

  // ** OUT_PORTS **

  out_port(L1RequestIntraChipL2Network_out, RequestMsg, L1RequestFromL2Cache);
  out_port(DirRequestIntraChipL2Network_out, RequestMsg, DirRequestFromL2Cache);
  out_port(responseIntraChipL2Network_out, ResponseMsg, responseFromL2Cache);


  in_port(L1unblockNetwork_in, ResponseMsg, unblockToL2Cache) {
    if(L1unblockNetwork_in.isReady()) {
      peek(L1unblockNetwork_in,  ResponseMsg) {
        Entry cache_entry := getCacheEntry(in_msg.Address);
        TBE tbe := L2_TBEs[in_msg.Address];
        DPRINTF(RubySlicc, "Addr: %s State: %s Sender: %s Type: %s Dest: %s\n",
                in_msg.Address, getState(tbe, cache_entry, in_msg.Address),
                in_msg.Sender, in_msg.Type, in_msg.Destination);

        assert(in_msg.Destination.isElement(machineID));
        if (in_msg.Type == CoherenceResponseType:EXCLUSIVE_UNBLOCK) {
          trigger(Event:Exclusive_Unblock, in_msg.Address, cache_entry, tbe);
        } else if (in_msg.Type == CoherenceResponseType:UNBLOCK) {
          trigger(Event:Unblock, in_msg.Address, cache_entry, tbe);
        } else {
          error("unknown unblock message");
        }
      }
    }
  }

  // Response IntraChip L2 Network - response msg to this particular L2 bank
  in_port(responseIntraChipL2Network_in, ResponseMsg, responseToL2Cache) {
    if (responseIntraChipL2Network_in.isReady()) {
      peek(responseIntraChipL2Network_in, ResponseMsg) {
        // test wether it's from a local L1 or an off chip source
        assert(in_msg.Destination.isElement(machineID));
        Entry cache_entry := getCacheEntry(in_msg.Address);
        TBE tbe := L2_TBEs[in_msg.Address];

        if(machineIDToMachineType(in_msg.Sender) == MachineType:L1Cache) {
          if(in_msg.Type == CoherenceResponseType:DATA) {
            if (in_msg.Dirty) {
              trigger(Event:WB_Data, in_msg.Address, cache_entry, tbe);
            } else {
              trigger(Event:WB_Data_clean, in_msg.Address, cache_entry, tbe);
            }
          } else if (in_msg.Type == CoherenceResponseType:ACK) {
            if ((getPendingAcks(tbe) - in_msg.AckCount) == 0) {
              trigger(Event:Ack_all, in_msg.Address, cache_entry, tbe);
            } else {
              trigger(Event:Ack, in_msg.Address, cache_entry, tbe);
            }
          } else {
            error("unknown message type");
          }

        } else { // external message
          if(in_msg.Type == CoherenceResponseType:MEMORY_DATA) {
              // L2 now has data and all off-chip acks
              trigger(Event:Mem_Data, in_msg.Address, cache_entry, tbe);
          } else if(in_msg.Type == CoherenceResponseType:MEMORY_ACK) {
              // L2 now has data and all off-chip acks
              trigger(Event:Mem_Ack, in_msg.Address, cache_entry, tbe);
          } else if(in_msg.Type == CoherenceResponseType:INV) {
              // L2 now has data and all off-chip acks
              trigger(Event:MEM_Inv, in_msg.Address, cache_entry, tbe);
          } else {
            error("unknown message type");
          }
        }
      }
    }  // if not ready, do nothing
  }

  // L1 Request
  in_port(L1RequestIntraChipL2Network_in, RequestMsg, L1RequestToL2Cache) {
    if(L1RequestIntraChipL2Network_in.isReady()) {
      peek(L1RequestIntraChipL2Network_in,  RequestMsg) {
        Entry cache_entry := getCacheEntry(in_msg.Address);
        TBE tbe := L2_TBEs[in_msg.Address];

        DPRINTF(RubySlicc, "Addr: %s State: %s Req: %s Type: %s Dest: %s\n",
                in_msg.Address, getState(tbe, cache_entry, in_msg.Address),
                in_msg.Requestor, in_msg.Type, in_msg.Destination);

        assert(machineIDToMachineType(in_msg.Requestor) == MachineType:L1Cache);
        assert(in_msg.Destination.isElement(machineID));

        if (is_valid(cache_entry)) {
          // The L2 contains the block, so proceeded with handling the request
          trigger(L1Cache_request_type_to_event(in_msg.Type, in_msg.Address,
                                                in_msg.Requestor, cache_entry),
                  in_msg.Address, cache_entry, tbe);
        } else {
          if (L2cacheMemory.cacheAvail(in_msg.Address)) {
            // L2 does't have the line, but we have space for it in the L2
            trigger(L1Cache_request_type_to_event(in_msg.Type, in_msg.Address,
                                                  in_msg.Requestor, cache_entry),
                    in_msg.Address, cache_entry, tbe);
          } else {
            // No room in the L2, so we need to make room before handling the request
            Entry L2cache_entry := getCacheEntry(L2cacheMemory.cacheProbe(in_msg.Address));
            if (isDirty(L2cache_entry)) {
              trigger(Event:L2_Replacement, L2cacheMemory.cacheProbe(in_msg.Address),
                      L2cache_entry, L2_TBEs[L2cacheMemory.cacheProbe(in_msg.Address)]);
            } else {
              trigger(Event:L2_Replacement_clean, L2cacheMemory.cacheProbe(in_msg.Address),
                      L2cache_entry, L2_TBEs[L2cacheMemory.cacheProbe(in_msg.Address)]);
            }
          }
        }
      }
    }
  }


  // ACTIONS

  action(a_issueFetchToMemory, "a", desc="fetch data from memory") {
    peek(L1RequestIntraChipL2Network_in, RequestMsg) {
      enqueue(DirRequestIntraChipL2Network_out, RequestMsg, latency=l2_request_latency) {
        out_msg.Address := address;
        out_msg.Type := CoherenceRequestType:GETS;
        out_msg.Requestor := machineID;
        out_msg.Destination.add(map_Address_to_Directory(address));
        out_msg.MessageSize := MessageSizeType:Control;
      }
    }
  }

  action(b_forwardRequestToExclusive, "b", desc="Forward request to the exclusive L1") {
    peek(L1RequestIntraChipL2Network_in, RequestMsg) {
      enqueue(L1RequestIntraChipL2Network_out, RequestMsg, latency=to_l1_latency) {
        assert(is_valid(cache_entry));
        out_msg.Address := address;
        out_msg.Type := in_msg.Type;
        out_msg.Requestor := in_msg.Requestor;
        out_msg.Destination.add(cache_entry.Exclusive);
        out_msg.MessageSize := MessageSizeType:Request_Control;
      }
    }
  }

  action(c_exclusiveReplacement, "c", desc="Send data to memory") {
    enqueue(responseIntraChipL2Network_out, ResponseMsg, latency=l2_response_latency) {
      assert(is_valid(cache_entry));
      out_msg.Address := address;
      out_msg.Type := CoherenceResponseType:MEMORY_DATA;
      out_msg.Sender := machineID;
      out_msg.Destination.add(map_Address_to_Directory(address));
      out_msg.DataBlk := cache_entry.DataBlk;
      out_msg.Dirty := cache_entry.Dirty;
      out_msg.MessageSize := MessageSizeType:Response_Data;
    }
  }

  action(c_exclusiveCleanReplacement, "cc", desc="Send ack to memory for clean replacement") {
    enqueue(responseIntraChipL2Network_out, ResponseMsg, latency=l2_response_latency) {
      out_msg.Address := address;
      out_msg.Type := CoherenceResponseType:ACK;
      out_msg.Sender := machineID;
      out_msg.Destination.add(map_Address_to_Directory(address));
      out_msg.MessageSize := MessageSizeType:Response_Control;
    }
  }

  action(ct_exclusiveReplacementFromTBE, "ct", desc="Send data to memory") {
    enqueue(responseIntraChipL2Network_out, ResponseMsg, latency=l2_response_latency) {
      assert(is_valid(tbe));
      out_msg.Address := address;
      out_msg.Type := CoherenceResponseType:MEMORY_DATA;
      out_msg.Sender := machineID;
      out_msg.Destination.add(map_Address_to_Directory(address));
      out_msg.DataBlk := tbe.DataBlk;
      out_msg.Dirty := tbe.Dirty;
      out_msg.MessageSize := MessageSizeType:Response_Data;
    }
  }

  action(d_sendDataToRequestor, "d", desc="Send data from cache to reqeustor") {
    peek(L1RequestIntraChipL2Network_in, RequestMsg) {
      enqueue(responseIntraChipL2Network_out, ResponseMsg, latency=l2_response_latency) {
        assert(is_valid(cache_entry));
        out_msg.Address := address;
        out_msg.Type := CoherenceResponseType:DATA;
        out_msg.Sender := machineID;
        out_msg.Destination.add(in_msg.Requestor);
        out_msg.DataBlk := cache_entry.DataBlk;
        out_msg.Dirty := cache_entry.Dirty;
        out_msg.MessageSize := MessageSizeType:Response_Data;

        out_msg.AckCount := 0 - cache_entry.Sharers.count();
        if (cache_entry.Sharers.isElement(in_msg.Requestor)) {
          out_msg.AckCount := out_msg.AckCount + 1;
        }
      }
    }
  }

  action(dd_sendExclusiveDataToRequestor, "dd", desc="Send data from cache to reqeustor") {
    peek(L1RequestIntraChipL2Network_in, RequestMsg) {
      enqueue(responseIntraChipL2Network_out, ResponseMsg, latency=l2_response_latency) {
        assert(is_valid(cache_entry));
        out_msg.Address := address;
        out_msg.Type := CoherenceResponseType:DATA_EXCLUSIVE;
        out_msg.Sender := machineID;
        out_msg.Destination.add(in_msg.Requestor);
        out_msg.DataBlk := cache_entry.DataBlk;
        out_msg.Dirty := cache_entry.Dirty;
        out_msg.MessageSize := MessageSizeType:Response_Data;

        out_msg.AckCount := 0 - cache_entry.Sharers.count();
        if (cache_entry.Sharers.isElement(in_msg.Requestor)) {
          out_msg.AckCount := out_msg.AckCount + 1;
        }
      }
    }
  }

  action(ds_sendSharedDataToRequestor, "ds", desc="Send data from cache to reqeustor") {
    peek(L1RequestIntraChipL2Network_in, RequestMsg) {
      enqueue(responseIntraChipL2Network_out, ResponseMsg, latency=l2_response_latency) {
        assert(is_valid(cache_entry));
        out_msg.Address := address;
        out_msg.Type := CoherenceResponseType:DATA;
        out_msg.Sender := machineID;
        out_msg.Destination.add(in_msg.Requestor);
        out_msg.DataBlk := cache_entry.DataBlk;
        out_msg.Dirty := cache_entry.Dirty;
        out_msg.MessageSize := MessageSizeType:Response_Data;
        out_msg.AckCount := 0;
      }
    }
  }

  action(e_sendDataToGetSRequestors, "e", desc="Send data from cache to all GetS IDs") {
    assert(is_valid(tbe));
    assert(tbe.L1_GetS_IDs.count() > 0);
    enqueue(responseIntraChipL2Network_out, ResponseMsg, latency=to_l1_latency) {
      assert(is_valid(cache_entry));
      out_msg.Address := address;
      out_msg.Type := CoherenceResponseType:DATA;
      out_msg.Sender := machineID;
      out_msg.Destination := tbe.L1_GetS_IDs;  // internal nodes
      out_msg.DataBlk := cache_entry.DataBlk;
      out_msg.Dirty := cache_entry.Dirty;
      out_msg.MessageSize := MessageSizeType:Response_Data;
    }
  }

  action(ex_sendExclusiveDataToGetSRequestors, "ex", desc="Send data from cache to all GetS IDs") {
    assert(is_valid(tbe));
    assert(tbe.L1_GetS_IDs.count() == 1);
    enqueue(responseIntraChipL2Network_out, ResponseMsg, latency=to_l1_latency) {
      assert(is_valid(cache_entry));
      out_msg.Address := address;
      out_msg.Type := CoherenceResponseType:DATA_EXCLUSIVE;
      out_msg.Sender := machineID;
      out_msg.Destination := tbe.L1_GetS_IDs;  // internal nodes
      out_msg.DataBlk := cache_entry.DataBlk;
      out_msg.Dirty := cache_entry.Dirty;
      out_msg.MessageSize := MessageSizeType:Response_Data;
    }
  }

  action(ee_sendDataToGetXRequestor, "ee", desc="Send data from cache to GetX ID") {
    enqueue(responseIntraChipL2Network_out, ResponseMsg, latency=to_l1_latency) {
      assert(is_valid(tbe));
      assert(is_valid(cache_entry));
      out_msg.Address := address;
      out_msg.Type := CoherenceResponseType:DATA;
      out_msg.Sender := machineID;
      out_msg.Destination.add(tbe.L1_GetX_ID);
      DPRINTF(RubySlicc, "%s\n", out_msg.Destination);
      out_msg.DataBlk := cache_entry.DataBlk;
      out_msg.Dirty := cache_entry.Dirty;
      DPRINTF(RubySlicc, "Address: %s, Destination: %s, DataBlock: %s\n",
              out_msg.Address, out_msg.Destination, out_msg.DataBlk);
      out_msg.MessageSize := MessageSizeType:Response_Data;
    }
  }

  action(f_sendInvToSharers, "f", desc="invalidate sharers for L2 replacement") {
    enqueue(L1RequestIntraChipL2Network_out, RequestMsg, latency=to_l1_latency) {
      assert(is_valid(cache_entry));
      out_msg.Address := address;
      out_msg.Type := CoherenceRequestType:INV;
      out_msg.Requestor := machineID;
      out_msg.Destination := cache_entry.Sharers;
      out_msg.MessageSize := MessageSizeType:Request_Control;
    }
  }

  action(fw_sendFwdInvToSharers, "fw", desc="invalidate sharers for request") {
    peek(L1RequestIntraChipL2Network_in, RequestMsg) {
      enqueue(L1RequestIntraChipL2Network_out, RequestMsg, latency=to_l1_latency) {
        assert(is_valid(cache_entry));
        out_msg.Address := address;
        out_msg.Type := CoherenceRequestType:INV;
        out_msg.Requestor := in_msg.Requestor;
        out_msg.Destination := cache_entry.Sharers;
        out_msg.MessageSize := MessageSizeType:Request_Control;
      }
    }
  }

  action(fwm_sendFwdInvToSharersMinusRequestor, "fwm", desc="invalidate sharers for request, requestor is sharer") {
    peek(L1RequestIntraChipL2Network_in, RequestMsg) {
      enqueue(L1RequestIntraChipL2Network_out, RequestMsg, latency=to_l1_latency) {
        assert(is_valid(cache_entry));
        out_msg.Address := address;
        out_msg.Type := CoherenceRequestType:INV;
        out_msg.Requestor := in_msg.Requestor;
        out_msg.Destination := cache_entry.Sharers;
        out_msg.Destination.remove(in_msg.Requestor);
        out_msg.MessageSize := MessageSizeType:Request_Control;
      }
    }
  }

  // OTHER ACTIONS
  action(i_allocateTBE, "i", desc="Allocate TBE for internal/external request(isPrefetch=0, number of invalidates=0)") {
    check_allocate(L2_TBEs);
    assert(is_valid(cache_entry));
    L2_TBEs.allocate(address);
    set_tbe(L2_TBEs[address]);
    tbe.L1_GetS_IDs.clear();
    tbe.DataBlk := cache_entry.DataBlk;
    tbe.Dirty := cache_entry.Dirty;
    tbe.pendingAcks := cache_entry.Sharers.count();
  }

  action(s_deallocateTBE, "s", desc="Deallocate external TBE") {
    L2_TBEs.deallocate(address);
    unset_tbe();
  }

  action(jj_popL1RequestQueue, "\j", desc="Pop incoming L1 request queue") {
    profileMsgDelay(0, L1RequestIntraChipL2Network_in.dequeue_getDelayCycles());
  }

  action(k_popUnblockQueue, "k", desc="Pop incoming unblock queue") {
    profileMsgDelay(0, L1unblockNetwork_in.dequeue_getDelayCycles());
  }

  action(o_popIncomingResponseQueue, "o", desc="Pop Incoming Response queue") {
    profileMsgDelay(3, responseIntraChipL2Network_in.dequeue_getDelayCycles());
  }

  action(m_writeDataToCache, "m", desc="Write data from response queue to cache") {
    peek(responseIntraChipL2Network_in, ResponseMsg) {
      assert(is_valid(cache_entry));
      cache_entry.DataBlk := in_msg.DataBlk;
      cache_entry.Dirty := in_msg.Dirty;
    }
  }

  action(mr_writeDataToCacheFromRequest, "mr", desc="Write data from response queue to cache") {
    peek(L1RequestIntraChipL2Network_in, RequestMsg) {
      assert(is_valid(cache_entry));
      cache_entry.DataBlk := in_msg.DataBlk;
      cache_entry.Dirty := in_msg.Dirty;
    }
  }

  action(q_updateAck, "q", desc="update pending ack count") {
    peek(responseIntraChipL2Network_in, ResponseMsg) {
      assert(is_valid(tbe));
      tbe.pendingAcks := tbe.pendingAcks - in_msg.AckCount;
      APPEND_TRANSITION_COMMENT(in_msg.AckCount);
      APPEND_TRANSITION_COMMENT(" p: ");
      APPEND_TRANSITION_COMMENT(tbe.pendingAcks);
    }
  }

  action(qq_writeDataToTBE, "\qq", desc="Write data from response queue to TBE") {
    peek(responseIntraChipL2Network_in, ResponseMsg) {
      assert(is_valid(tbe));
      tbe.DataBlk := in_msg.DataBlk;
      tbe.Dirty := in_msg.Dirty;
    }
  }

  action(z_stall, "z", desc="Stall") {
  }

  action(ss_recordGetSL1ID, "\s", desc="Record L1 GetS for load response") {
    peek(L1RequestIntraChipL2Network_in, RequestMsg) {
      assert(is_valid(tbe));
      tbe.L1_GetS_IDs.add(in_msg.Requestor);
    }
  }

  action(xx_recordGetXL1ID, "\x", desc="Record L1 GetX for store response") {
    peek(L1RequestIntraChipL2Network_in, RequestMsg) {
      assert(is_valid(tbe));
      tbe.L1_GetX_ID := in_msg.Requestor;
    }
  }

  action(set_setMRU, "\set", desc="set the MRU entry") {
    L2cacheMemory.setMRU(address);
  }

  action(qq_allocateL2CacheBlock, "\q", desc="Set L2 cache tag equal to tag of block B.") {
    if (is_invalid(cache_entry)) {
      set_cache_entry(L2cacheMemory.allocate(address, new Entry));
    }
  }

  action(rr_deallocateL2CacheBlock, "\r", desc="Deallocate L2 cache block.  Sets the cache to not present, allowing a replacement in parallel with a fetch.") {
    L2cacheMemory.deallocate(address);
    unset_cache_entry();
  }

  action(t_sendWBAck, "t", desc="Send writeback ACK") {
    peek(L1RequestIntraChipL2Network_in, RequestMsg) {
      enqueue(responseIntraChipL2Network_out, ResponseMsg, latency=to_l1_latency) {
        out_msg.Address := address;
        out_msg.Type := CoherenceResponseType:WB_ACK;
        out_msg.Sender := machineID;
        out_msg.Destination.add(in_msg.Requestor);
        out_msg.MessageSize := MessageSizeType:Response_Control;
      }
    }
  }

  action(ts_sendInvAckToUpgrader, "ts", desc="Send ACK to upgrader") {
    peek(L1RequestIntraChipL2Network_in, RequestMsg) {
      enqueue(responseIntraChipL2Network_out, ResponseMsg, latency=to_l1_latency) {
        assert(is_valid(cache_entry));
        out_msg.Address := address;
        out_msg.Type := CoherenceResponseType:ACK;
        out_msg.Sender := machineID;
        out_msg.Destination.add(in_msg.Requestor);
        out_msg.MessageSize := MessageSizeType:Response_Control;
        // upgrader doesn't get ack from itself, hence the + 1
        out_msg.AckCount := 0 - cache_entry.Sharers.count() + 1;
      }
    }
  }

  action(uu_profileMiss, "\u", desc="Profile the demand miss") {
    peek(L1RequestIntraChipL2Network_in, RequestMsg) {
      //profile_L2Cache_miss(convertToGenericType(in_msg.Type), in_msg.AccessMode, MessageSizeTypeToInt(in_msg.MessageSize), in_msg.Prefetch, L1CacheMachIDToProcessorNum(in_msg.Requestor));
    }
  }

  action(ww_profileMissNoDir, "\w", desc="Profile this transition at the L2 because Dir won't see the request") {
    peek(L1RequestIntraChipL2Network_in, RequestMsg) {
      // profile_request(in_msg.L1CacheStateStr, getStateStr(address), "NA", getCoherenceRequestTypeStr(in_msg.Type));
    }
  }

  action(nn_addSharer, "\n", desc="Add L1 sharer to list") {
    peek(L1RequestIntraChipL2Network_in, RequestMsg) {
      assert(is_valid(cache_entry));
      addSharer(address, in_msg.Requestor, cache_entry);
      APPEND_TRANSITION_COMMENT( cache_entry.Sharers );
    }
  }

  action(nnu_addSharerFromUnblock, "\nu", desc="Add L1 sharer to list") {
    peek(L1unblockNetwork_in, ResponseMsg) {
      assert(is_valid(cache_entry));
      addSharer(address, in_msg.Sender, cache_entry);
    }
  }

  action(kk_removeRequestSharer, "\k", desc="Remove L1 Request sharer from list") {
    peek(L1RequestIntraChipL2Network_in, RequestMsg) {
      assert(is_valid(cache_entry));
      cache_entry.Sharers.remove(in_msg.Requestor);
    }
  }

  action(ll_clearSharers, "\l", desc="Remove all L1 sharers from list") {
    peek(L1RequestIntraChipL2Network_in, RequestMsg) {
      assert(is_valid(cache_entry));
      cache_entry.Sharers.clear();
    }
  }

  action(mm_markExclusive, "\m", desc="set the exclusive owner") {
    peek(L1RequestIntraChipL2Network_in, RequestMsg) {
      assert(is_valid(cache_entry));
      cache_entry.Sharers.clear();
      cache_entry.Exclusive := in_msg.Requestor;
      addSharer(address, in_msg.Requestor, cache_entry);
    }
  }

  action(mmu_markExclusiveFromUnblock, "\mu", desc="set the exclusive owner") {
    peek(L1unblockNetwork_in, ResponseMsg) {
      assert(is_valid(cache_entry));
      cache_entry.Sharers.clear();
      cache_entry.Exclusive := in_msg.Sender;
      addSharer(address, in_msg.Sender, cache_entry);
    }
  }

  action(zz_recycleL1RequestQueue, "zz", desc="recycle L1 request queue") {
    L1RequestIntraChipL2Network_in.recycle();
  }

  action(zn_recycleResponseNetwork, "zn", desc="recycle memory request") {
    responseIntraChipL2Network_in.recycle();
  }


  //*****************************************************
  // TRANSITIONS
  //*****************************************************


  //===============================================
  // BASE STATE - I

  // Transitions from I (Idle)
  transition({NP, IS, ISS, IM, SS, M, M_I, I_I, S_I, M_MB, MT_IB, MT_SB}, L1_PUTX) {
    t_sendWBAck;    
    jj_popL1RequestQueue;
  }

  transition({NP, SS, M, MT, M_I, I_I, S_I, IS, ISS, IM, M_MB, MT_IB, MT_SB}, L1_PUTX_old) {
    t_sendWBAck;    
    jj_popL1RequestQueue;
  }

  transition({IM, IS, ISS, SS_MB, M_MB, MT_MB, MT_IIB, MT_IB, MT_SB}, {L2_Replacement, L2_Replacement_clean}) {
    zz_recycleL1RequestQueue;
  }

  transition({IM, IS, ISS, SS_MB, M_MB, MT_MB, MT_IIB, MT_IB, MT_SB}, MEM_Inv) {         
    zn_recycleResponseNetwork;
  }

  transition({S_I, M_I, MT_I}, MEM_Inv) {         
    o_popIncomingResponseQueue;
  }


  transition({SS_MB, M_MB, MT_MB, MT_IIB, MT_IB, MT_SB}, {L1_GETS, L1_GET_INSTR, L1_GETX, L1_UPGRADE}) {
    zz_recycleL1RequestQueue;
  }


  transition(NP, L1_GETS,  ISS) {
    qq_allocateL2CacheBlock;
    ll_clearSharers;
    nn_addSharer;
    i_allocateTBE;
    ss_recordGetSL1ID;
    a_issueFetchToMemory;
    uu_profileMiss;
    jj_popL1RequestQueue;
  }

  transition(NP, L1_GET_INSTR, IS) {
    qq_allocateL2CacheBlock;
    ll_clearSharers;
    nn_addSharer;
    i_allocateTBE;
    ss_recordGetSL1ID;
    a_issueFetchToMemory;
    uu_profileMiss;
    jj_popL1RequestQueue;
  }

  transition(NP, L1_GETX, IM) {
    qq_allocateL2CacheBlock;
    ll_clearSharers;
    // nn_addSharer;
    i_allocateTBE;
    xx_recordGetXL1ID;
    a_issueFetchToMemory;
    uu_profileMiss;
    jj_popL1RequestQueue;
  }


  // transitions from IS/IM

  transition(ISS, Mem_Data, MT_MB) {
    m_writeDataToCache;
    ex_sendExclusiveDataToGetSRequestors;
    s_deallocateTBE;
    o_popIncomingResponseQueue;
  }

  transition(IS, Mem_Data, SS) {
    m_writeDataToCache;
    e_sendDataToGetSRequestors;
    s_deallocateTBE;
    o_popIncomingResponseQueue;
  }

  transition(IM, Mem_Data, MT_MB) {
    m_writeDataToCache;
    ee_sendDataToGetXRequestor;
    s_deallocateTBE;
    o_popIncomingResponseQueue;
  }

  transition({IS, ISS}, {L1_GETS, L1_GET_INSTR}, IS) {
    nn_addSharer;
    ss_recordGetSL1ID;
    uu_profileMiss;
    jj_popL1RequestQueue;
  }

  transition({IS, ISS}, L1_GETX) {
    zz_recycleL1RequestQueue;
  }

  transition(IM, {L1_GETX, L1_GETS, L1_GET_INSTR}) {
    zz_recycleL1RequestQueue;
  }

  // transitions from SS
  transition(SS, {L1_GETS, L1_GET_INSTR}) {
    ds_sendSharedDataToRequestor;
    nn_addSharer;
    uu_profileMiss;
    set_setMRU;
    jj_popL1RequestQueue;
  }


  transition(SS, L1_GETX, SS_MB) {
    d_sendDataToRequestor;
    // fw_sendFwdInvToSharers;
    fwm_sendFwdInvToSharersMinusRequestor;
    uu_profileMiss;
    set_setMRU;
    jj_popL1RequestQueue;
  }

  transition(SS, L1_UPGRADE, SS_MB) {
    fwm_sendFwdInvToSharersMinusRequestor;
    ts_sendInvAckToUpgrader;
    uu_profileMiss;
    set_setMRU;
    jj_popL1RequestQueue;
  }

  transition(SS, L2_Replacement_clean, I_I) {
    i_allocateTBE;
    f_sendInvToSharers;
    rr_deallocateL2CacheBlock;
  }

  transition(SS, {L2_Replacement, MEM_Inv}, S_I) {
    i_allocateTBE;
    f_sendInvToSharers;
    rr_deallocateL2CacheBlock;
  }


  transition(M, L1_GETX, MT_MB) {
    d_sendDataToRequestor;
    uu_profileMiss;
    set_setMRU;
    jj_popL1RequestQueue;
  }

  transition(M, L1_GET_INSTR, SS) {
    d_sendDataToRequestor;
    nn_addSharer;
    uu_profileMiss;
    set_setMRU;
    jj_popL1RequestQueue;
  }

  transition(M, L1_GETS, MT_MB) {
    dd_sendExclusiveDataToRequestor;
    uu_profileMiss;
    set_setMRU;
    jj_popL1RequestQueue;
  }

  transition(M, {L2_Replacement, MEM_Inv}, M_I) {
    i_allocateTBE;
    c_exclusiveReplacement;
    rr_deallocateL2CacheBlock;
  }

  transition(M, L2_Replacement_clean, M_I) {
    i_allocateTBE;
    c_exclusiveCleanReplacement;
    rr_deallocateL2CacheBlock;
  }


  // transitions from MT

  transition(MT, L1_GETX, MT_MB) {
    b_forwardRequestToExclusive;
    uu_profileMiss;
    set_setMRU;
    jj_popL1RequestQueue;
  }


  transition(MT, {L1_GETS, L1_GET_INSTR}, MT_IIB) {
    b_forwardRequestToExclusive;
    uu_profileMiss;
    set_setMRU;
    jj_popL1RequestQueue;
  }

  transition(MT, {L2_Replacement, MEM_Inv}, MT_I) {
    i_allocateTBE;
    f_sendInvToSharers;
    rr_deallocateL2CacheBlock;
  }

  transition(MT, L2_Replacement_clean, MCT_I) {
    i_allocateTBE;
    f_sendInvToSharers;
    rr_deallocateL2CacheBlock;
  }

  transition(MT, L1_PUTX, M) {
    ll_clearSharers;
    mr_writeDataToCacheFromRequest;
    t_sendWBAck;
    jj_popL1RequestQueue;
  }


  // transitions from blocking states
  transition(SS_MB, Unblock_Cancel, SS) {
    k_popUnblockQueue;
  }

  transition(MT_MB, Unblock_Cancel, MT) {
    k_popUnblockQueue;
  }

  transition(MT_IB, Unblock_Cancel, MT) {
    k_popUnblockQueue;
  }

  transition(SS_MB, Exclusive_Unblock, MT) {
    // update actual directory
    mmu_markExclusiveFromUnblock;
    k_popUnblockQueue;
  }

  transition({M_MB, MT_MB}, Exclusive_Unblock, MT) {
    // update actual directory
    mmu_markExclusiveFromUnblock;
    k_popUnblockQueue;
  }
  
  transition(MT_IIB, {L1_PUTX, L1_PUTX_old}){
    zz_recycleL1RequestQueue;
  }

  transition(MT_IIB, Unblock, MT_IB) {
    nnu_addSharerFromUnblock;
    k_popUnblockQueue;
  }

  transition(MT_IIB, {WB_Data, WB_Data_clean}, MT_SB) {
    m_writeDataToCache;
    o_popIncomingResponseQueue;
  }

  transition(MT_IB, {WB_Data, WB_Data_clean}, SS) {
    m_writeDataToCache;
    o_popIncomingResponseQueue;
  }

  transition(MT_SB, Unblock, SS) {
    nnu_addSharerFromUnblock;
    k_popUnblockQueue;
  }

  // writeback states
  transition({I_I, S_I, MT_I, MCT_I, M_I}, {L1_GETX, L1_UPGRADE, L1_GETS, L1_GET_INSTR}) {
    zz_recycleL1RequestQueue;
  }

  transition(I_I, Ack) {
    q_updateAck;
    o_popIncomingResponseQueue;
  }

  transition(I_I, Ack_all, M_I) {
    c_exclusiveCleanReplacement;
    o_popIncomingResponseQueue;
  }

  transition({MT_I, MCT_I}, WB_Data, M_I) {
    qq_writeDataToTBE;
    ct_exclusiveReplacementFromTBE;
    o_popIncomingResponseQueue;
  }

  transition(MCT_I, {WB_Data_clean, Ack_all}, M_I) {
    c_exclusiveCleanReplacement;   
    o_popIncomingResponseQueue;
  }

  transition(MCT_I,  {L1_PUTX, L1_PUTX_old}){
    zz_recycleL1RequestQueue; 
  }
  
  // L1 never changed Dirty data
  transition(MT_I, Ack_all, M_I) {
    ct_exclusiveReplacementFromTBE;
    o_popIncomingResponseQueue;
  }

  transition(MT_I, {L1_PUTX, L1_PUTX_old}){
    zz_recycleL1RequestQueue; 
  }

  // possible race between unblock and immediate replacement
  transition({MT_MB,SS_MB}, {L1_PUTX, L1_PUTX_old}) {
    zz_recycleL1RequestQueue;
  }

  transition(MT_I, WB_Data_clean, NP) {
    s_deallocateTBE;
    o_popIncomingResponseQueue;
  }

  transition(S_I, Ack) {
    q_updateAck;
    o_popIncomingResponseQueue;
  }

  transition(S_I, Ack_all, M_I) {
    ct_exclusiveReplacementFromTBE;
    o_popIncomingResponseQueue;
  }

  transition(M_I, Mem_Ack, NP) {
    s_deallocateTBE;
    o_popIncomingResponseQueue;
  }
}