summaryrefslogtreecommitdiff
path: root/src/mem/protocol/MESI_Three_Level-L0cache.sm
blob: e2a1142ce1e2cdd8dc57fff3763c5ba04da4bf6c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
/*
 * Copyright (c) 2013 Mark D. Hill and David A. Wood
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

machine(L0Cache, "MESI Directory L0 Cache")
 : Sequencer * sequencer;
   CacheMemory * Icache;
   CacheMemory * Dcache;
   Cycles request_latency := 2;
   Cycles response_latency := 2;
   bool send_evictions;

   // From this node's L0 cache to the network
   MessageBuffer * bufferToL1, network="To";

   // To this node's L0 cache FROM the network
   MessageBuffer * bufferFromL1, network="From";
{
  // Message queue between this controller and the processor
  MessageBuffer mandatoryQueue;

  // STATES
  state_declaration(State, desc="Cache states", default="L0Cache_State_I") {
    // Base states

    // The cache entry has not been allocated.
    I, AccessPermission:Invalid;

    // The cache entry is in shared mode. The processor can read this entry
    // but it cannot write to it.
    S, AccessPermission:Read_Only;

    // The cache entry is in exclusive mode. The processor can read this
    // entry. It can write to this entry without informing the directory.
    // On writing, the entry moves to M state.
    E, AccessPermission:Read_Only;

    // The processor has read and write permissions on this entry.
    M, AccessPermission:Read_Write;

    // Transient States

    // The cache controller has requested an instruction.  It will be stored
    // in the shared state so that the processor can read it.
    Inst_IS, AccessPermission:Busy;

    // The cache controller has requested that this entry be fetched in
    // shared state so that the processor can read it.
    IS, AccessPermission:Busy;

    // The cache controller has requested that this entry be fetched in
    // modify state so that the processor can read/write it.
    IM, AccessPermission:Busy;

    // The cache controller had read permission over the entry. But now the
    // processor needs to write to it. So, the controller has requested for
    // write permission.
    SM, AccessPermission:Read_Only;
  }

  // EVENTS
  enumeration(Event, desc="Cache events") {
    // L0 events
    Load,            desc="Load request from the home processor";
    Ifetch,          desc="I-fetch request from the home processor";
    Store,           desc="Store request from the home processor";

    Inv,           desc="Invalidate request from L2 bank";

    // internal generated request
    L0_Replacement,  desc="L0 Replacement", format="!r";

    // other requests
    Fwd_GETX,   desc="GETX from other processor";
    Fwd_GETS,   desc="GETS from other processor";
    Fwd_GET_INSTR,   desc="GET_INSTR from other processor";

    Data,               desc="Data for processor";
    Data_Exclusive,     desc="Data for processor";

    Ack,        desc="Ack for processor";
    Ack_all,      desc="Last ack for processor";

    WB_Ack,        desc="Ack for replacement";
  }

  // TYPES

  // CacheEntry
  structure(Entry, desc="...", interface="AbstractCacheEntry" ) {
    State CacheState,        desc="cache state";
    DataBlock DataBlk,       desc="data for the block";
    bool Dirty, default="false",   desc="data is dirty";
  }

  // TBE fields
  structure(TBE, desc="...") {
    Address Addr,              desc="Physical address for this TBE";
    State TBEState,        desc="Transient state";
    DataBlock DataBlk,                desc="Buffer for the data block";
    bool Dirty, default="false",   desc="data is dirty";
    int pendingAcks, default="0", desc="number of pending acks";
  }

  structure(TBETable, external="yes") {
    TBE lookup(Address);
    void allocate(Address);
    void deallocate(Address);
    bool isPresent(Address);
  }

  TBETable TBEs, template="<L0Cache_TBE>", constructor="m_number_of_TBEs";

  void set_cache_entry(AbstractCacheEntry a);
  void unset_cache_entry();
  void set_tbe(TBE a);
  void unset_tbe();
  void wakeUpBuffers(Address a);
  void wakeUpAllBuffers(Address a);
  void profileMsgDelay(int virtualNetworkType, Cycles c);

  // inclusive cache returns L0 entries only
  Entry getCacheEntry(Address addr), return_by_pointer="yes" {
    Entry Dcache_entry := static_cast(Entry, "pointer", Dcache[addr]);
    if(is_valid(Dcache_entry)) {
      return Dcache_entry;
    }

    Entry Icache_entry := static_cast(Entry, "pointer", Icache[addr]);
    return Icache_entry;
  }

  Entry getDCacheEntry(Address addr), return_by_pointer="yes" {
    Entry Dcache_entry := static_cast(Entry, "pointer", Dcache[addr]);
    return Dcache_entry;
  }

  Entry getICacheEntry(Address addr), return_by_pointer="yes" {
    Entry Icache_entry := static_cast(Entry, "pointer", Icache[addr]);
    return Icache_entry;
  }

  State getState(TBE tbe, Entry cache_entry, Address addr) {
    assert((Dcache.isTagPresent(addr) && Icache.isTagPresent(addr)) == false);

    if(is_valid(tbe)) {
      return tbe.TBEState;
    } else if (is_valid(cache_entry)) {
      return cache_entry.CacheState;
    }
    return State:I;
  }

  void setState(TBE tbe, Entry cache_entry, Address addr, State state) {
    assert((Dcache.isTagPresent(addr) && Icache.isTagPresent(addr)) == false);

    // MUST CHANGE
    if(is_valid(tbe)) {
      tbe.TBEState := state;
    }

    if (is_valid(cache_entry)) {
      cache_entry.CacheState := state;
    }
  }

  AccessPermission getAccessPermission(Address addr) {
    TBE tbe := TBEs[addr];
    if(is_valid(tbe)) {
      DPRINTF(RubySlicc, "%s\n", L0Cache_State_to_permission(tbe.TBEState));
      return L0Cache_State_to_permission(tbe.TBEState);
    }

    Entry cache_entry := getCacheEntry(addr);
    if(is_valid(cache_entry)) {
      DPRINTF(RubySlicc, "%s\n", L0Cache_State_to_permission(cache_entry.CacheState));
      return L0Cache_State_to_permission(cache_entry.CacheState);
    }

    DPRINTF(RubySlicc, "%s\n", AccessPermission:NotPresent);
    return AccessPermission:NotPresent;
  }

  void functionalRead(Address addr, Packet *pkt) {
    TBE tbe := TBEs[addr];
    if(is_valid(tbe)) {
      testAndRead(addr, tbe.DataBlk, pkt);
    } else {
      testAndRead(addr, getCacheEntry(addr).DataBlk, pkt);
    }
  }

  int functionalWrite(Address addr, Packet *pkt) {
    int num_functional_writes := 0;

    TBE tbe := TBEs[addr];
    if(is_valid(tbe)) {
      num_functional_writes := num_functional_writes +
        testAndWrite(addr, tbe.DataBlk, pkt);
      return num_functional_writes;
    }

    num_functional_writes := num_functional_writes +
        testAndWrite(addr, getCacheEntry(addr).DataBlk, pkt);
    return num_functional_writes;
  }

  void setAccessPermission(Entry cache_entry, Address addr, State state) {
    if (is_valid(cache_entry)) {
      cache_entry.changePermission(L0Cache_State_to_permission(state));
    }
  }

  Event mandatory_request_type_to_event(RubyRequestType type) {
    if (type == RubyRequestType:LD) {
      return Event:Load;
    } else if (type == RubyRequestType:IFETCH) {
      return Event:Ifetch;
    } else if ((type == RubyRequestType:ST) || (type == RubyRequestType:ATOMIC)) {
      return Event:Store;
    } else {
      error("Invalid RubyRequestType");
    }
  }

  int getPendingAcks(TBE tbe) {
    return tbe.pendingAcks;
  }

  out_port(requestNetwork_out, CoherenceMsg, bufferToL1);

  // Messages for this L0 cache from the L1 cache
  in_port(messgeBuffer_in, CoherenceMsg, bufferFromL1, rank = 1) {
    if (messgeBuffer_in.isReady()) {
      peek(messgeBuffer_in, CoherenceMsg, block_on="Addr") {
        assert(in_msg.Dest == machineID);

        Entry cache_entry := getCacheEntry(in_msg.Addr);
        TBE tbe := TBEs[in_msg.Addr];

        if(in_msg.Class == CoherenceClass:DATA_EXCLUSIVE) {
            trigger(Event:Data_Exclusive, in_msg.Addr, cache_entry, tbe);
        } else if(in_msg.Class == CoherenceClass:DATA) {
            trigger(Event:Data, in_msg.Addr, cache_entry, tbe);
        } else if (in_msg.Class == CoherenceClass:ACK) {
            trigger(Event:Ack, in_msg.Addr, cache_entry, tbe);
        } else if (in_msg.Class == CoherenceClass:WB_ACK) {
            trigger(Event:WB_Ack, in_msg.Addr, cache_entry, tbe);
        } else if (in_msg.Class == CoherenceClass:INV) {
          trigger(Event:Inv, in_msg.Addr, cache_entry, tbe);
        } else if (in_msg.Class == CoherenceClass:GETX ||
                   in_msg.Class == CoherenceClass:UPGRADE) {
          // upgrade transforms to GETX due to race
          trigger(Event:Fwd_GETX, in_msg.Addr, cache_entry, tbe);
        } else if (in_msg.Class == CoherenceClass:GETS) {
          trigger(Event:Fwd_GETS, in_msg.Addr, cache_entry, tbe);
        } else if (in_msg.Class == CoherenceClass:GET_INSTR) {
          trigger(Event:Fwd_GET_INSTR, in_msg.Addr, cache_entry, tbe);
        } else {
          error("Invalid forwarded request type");
        }
      }
    }
  }

  // Mandatory Queue betweens Node's CPU and it's L0 caches
  in_port(mandatoryQueue_in, RubyRequest, mandatoryQueue, desc="...", rank = 0) {
    if (mandatoryQueue_in.isReady()) {
      peek(mandatoryQueue_in, RubyRequest, block_on="LineAddress") {

        // Check for data access to blocks in I-cache and ifetchs to blocks in D-cache

        if (in_msg.Type == RubyRequestType:IFETCH) {
          // ** INSTRUCTION ACCESS ***

          Entry Icache_entry := getICacheEntry(in_msg.LineAddress);
          if (is_valid(Icache_entry)) {
            // The tag matches for the L0, so the L0 asks the L2 for it.
            trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.LineAddress,
                    Icache_entry, TBEs[in_msg.LineAddress]);
          } else {

            // Check to see if it is in the OTHER L0
            Entry Dcache_entry := getDCacheEntry(in_msg.LineAddress);
            if (is_valid(Dcache_entry)) {
              // The block is in the wrong L0, put the request on the queue to the shared L2
              trigger(Event:L0_Replacement, in_msg.LineAddress,
                      Dcache_entry, TBEs[in_msg.LineAddress]);
            }

            if (Icache.cacheAvail(in_msg.LineAddress)) {
              // L0 does't have the line, but we have space for it
              // in the L0 so let's see if the L2 has it
              trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.LineAddress,
                      Icache_entry, TBEs[in_msg.LineAddress]);
            } else {
              // No room in the L0, so we need to make room in the L0
              trigger(Event:L0_Replacement, Icache.cacheProbe(in_msg.LineAddress),
                      getICacheEntry(Icache.cacheProbe(in_msg.LineAddress)),
                      TBEs[Icache.cacheProbe(in_msg.LineAddress)]);
            }
          }
        } else {

          // *** DATA ACCESS ***
          Entry Dcache_entry := getDCacheEntry(in_msg.LineAddress);
          if (is_valid(Dcache_entry)) {
            // The tag matches for the L0, so the L0 ask the L1 for it
            trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.LineAddress,
                    Dcache_entry, TBEs[in_msg.LineAddress]);
          } else {

            // Check to see if it is in the OTHER L0
            Entry Icache_entry := getICacheEntry(in_msg.LineAddress);
            if (is_valid(Icache_entry)) {
              // The block is in the wrong L0, put the request on the queue to the private L1
              trigger(Event:L0_Replacement, in_msg.LineAddress,
                      Icache_entry, TBEs[in_msg.LineAddress]);
            }

            if (Dcache.cacheAvail(in_msg.LineAddress)) {
              // L1 does't have the line, but we have space for it
              // in the L0 let's see if the L1 has it
              trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.LineAddress,
                      Dcache_entry, TBEs[in_msg.LineAddress]);
            } else {
              // No room in the L1, so we need to make room in the L0
              trigger(Event:L0_Replacement, Dcache.cacheProbe(in_msg.LineAddress),
                      getDCacheEntry(Dcache.cacheProbe(in_msg.LineAddress)),
                      TBEs[Dcache.cacheProbe(in_msg.LineAddress)]);
            }
          }
        }
      }
    }
  }

  // ACTIONS
  action(a_issueGETS, "a", desc="Issue GETS") {
    peek(mandatoryQueue_in, RubyRequest) {
      enqueue(requestNetwork_out, CoherenceMsg, request_latency) {
        out_msg.Addr := address;
        out_msg.Class := CoherenceClass:GETS;
        out_msg.Sender := machineID;
        out_msg.Dest := createMachineID(MachineType:L1Cache, version);
        DPRINTF(RubySlicc, "address: %s, destination: %s\n",
                address, out_msg.Dest);
        out_msg.MessageSize := MessageSizeType:Control;
        out_msg.AccessMode := in_msg.AccessMode;
      }
    }
  }

  action(b_issueGETX, "b", desc="Issue GETX") {
    peek(mandatoryQueue_in, RubyRequest) {
      enqueue(requestNetwork_out, CoherenceMsg, request_latency) {
        out_msg.Addr := address;
        out_msg.Class := CoherenceClass:GETX;
        out_msg.Sender := machineID;
        DPRINTF(RubySlicc, "%s\n", machineID);
        out_msg.Dest := createMachineID(MachineType:L1Cache, version);

        DPRINTF(RubySlicc, "address: %s, destination: %s\n",
                address, out_msg.Dest);
        out_msg.MessageSize := MessageSizeType:Control;
        out_msg.AccessMode := in_msg.AccessMode;
      }
    }
  }

  action(c_issueUPGRADE, "c", desc="Issue GETX") {
    peek(mandatoryQueue_in, RubyRequest) {
      enqueue(requestNetwork_out, CoherenceMsg, request_latency) {
        out_msg.Addr := address;
        out_msg.Class := CoherenceClass:UPGRADE;
        out_msg.Sender := machineID;
        out_msg.Dest := createMachineID(MachineType:L1Cache, version);

        DPRINTF(RubySlicc, "address: %s, destination: %s\n",
                address, out_msg.Dest);
        out_msg.MessageSize := MessageSizeType:Control;
        out_msg.AccessMode := in_msg.AccessMode;
      }
    }
  }

  action(f_sendDataToL1, "f", desc="send data to the L2 cache") {
    enqueue(requestNetwork_out, CoherenceMsg, response_latency) {
      assert(is_valid(cache_entry));
      out_msg.Addr := address;
      out_msg.Class := CoherenceClass:INV_DATA;
      out_msg.DataBlk := cache_entry.DataBlk;
      out_msg.Dirty := cache_entry.Dirty;
      out_msg.Sender := machineID;
      out_msg.Dest := createMachineID(MachineType:L1Cache, version);
      out_msg.MessageSize := MessageSizeType:Writeback_Data;
    }
    cache_entry.Dirty := false;
  }

  action(fi_sendInvAck, "fi", desc="send data to the L2 cache") {
    peek(messgeBuffer_in, CoherenceMsg) {
      enqueue(requestNetwork_out, CoherenceMsg, response_latency) {
        out_msg.Addr := address;
        out_msg.Class := CoherenceClass:INV_ACK;
        out_msg.Sender := machineID;
        out_msg.Dest := createMachineID(MachineType:L1Cache, version);
        out_msg.MessageSize := MessageSizeType:Response_Control;
      }
    }
  }

  action(forward_eviction_to_cpu, "\cc", desc="sends eviction information to the processor") {
    if (send_evictions) {
      DPRINTF(RubySlicc, "Sending invalidation for %s to the CPU\n", address);
      sequencer.evictionCallback(address);
    }
  }

  action(g_issuePUTX, "g", desc="send data to the L2 cache") {
    enqueue(requestNetwork_out, CoherenceMsg, response_latency) {
      assert(is_valid(cache_entry));
      out_msg.Addr := address;
      out_msg.Class := CoherenceClass:PUTX;
      out_msg.Dirty := cache_entry.Dirty;
      out_msg.Sender:= machineID;
      out_msg.Dest := createMachineID(MachineType:L1Cache, version);

      if (cache_entry.Dirty) {
        out_msg.MessageSize := MessageSizeType:Writeback_Data;
        out_msg.DataBlk := cache_entry.DataBlk;
      } else {
        out_msg.MessageSize := MessageSizeType:Writeback_Control;
      }
    }
  }

  action(h_load_hit, "h", desc="If not prefetch, notify sequencer the load completed.") {
    assert(is_valid(cache_entry));
    DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk);
    sequencer.readCallback(address, cache_entry.DataBlk);
  }

  action(hx_load_hit, "hx", desc="If not prefetch, notify sequencer the load completed.") {
    assert(is_valid(cache_entry));
    DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk);
    sequencer.readCallback(address, cache_entry.DataBlk, true);
  }

  action(hh_store_hit, "\h", desc="If not prefetch, notify sequencer that store completed.") {
    assert(is_valid(cache_entry));
    DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk);
    sequencer.writeCallback(address, cache_entry.DataBlk);
    cache_entry.Dirty := true;
  }

  action(hhx_store_hit, "\hx", desc="If not prefetch, notify sequencer that store completed.") {
    assert(is_valid(cache_entry));
    DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk);
    sequencer.writeCallback(address, cache_entry.DataBlk, true);
    cache_entry.Dirty := true;
  }

  action(i_allocateTBE, "i", desc="Allocate TBE (number of invalidates=0)") {
    check_allocate(TBEs);
    assert(is_valid(cache_entry));
    TBEs.allocate(address);
    set_tbe(TBEs[address]);
    tbe.Dirty := cache_entry.Dirty;
    tbe.DataBlk := cache_entry.DataBlk;
  }

  action(k_popMandatoryQueue, "k", desc="Pop mandatory queue.") {
    mandatoryQueue_in.dequeue();
  }

  action(l_popRequestQueue, "l",
         desc="Pop incoming request queue and profile the delay within this virtual network") {
    profileMsgDelay(2, messgeBuffer_in.dequeue());
  }

  action(o_popIncomingResponseQueue, "o",
         desc="Pop Incoming Response queue and profile the delay within this virtual network") {
    profileMsgDelay(1, messgeBuffer_in.dequeue());
  }

  action(s_deallocateTBE, "s", desc="Deallocate TBE") {
    TBEs.deallocate(address);
    unset_tbe();
  }

  action(u_writeDataToCache, "u", desc="Write data to cache") {
    peek(messgeBuffer_in, CoherenceMsg) {
      assert(is_valid(cache_entry));
      cache_entry.DataBlk := in_msg.DataBlk;
    }
  }

  action(u_writeInstToCache, "ui", desc="Write data to cache") {
    peek(messgeBuffer_in, CoherenceMsg) {
      assert(is_valid(cache_entry));
      cache_entry.DataBlk := in_msg.DataBlk;
    }
  }

  action(ff_deallocateCacheBlock, "\f",
         desc="Deallocate L1 cache block.") {
    if (Dcache.isTagPresent(address)) {
      Dcache.deallocate(address);
    } else {
      Icache.deallocate(address);
    }
    unset_cache_entry();
  }

  action(oo_allocateDCacheBlock, "\o", desc="Set L1 D-cache tag equal to tag of block B.") {
    if (is_invalid(cache_entry)) {
      set_cache_entry(Dcache.allocate(address, new Entry));
    }
  }

  action(pp_allocateICacheBlock, "\p", desc="Set L1 I-cache tag equal to tag of block B.") {
    if (is_invalid(cache_entry)) {
      set_cache_entry(Icache.allocate(address, new Entry));
    }
  }

  action(z_stallAndWaitMandatoryQueue, "\z", desc="recycle cpu request queue") {
    stall_and_wait(mandatoryQueue_in, address);
  }

  action(kd_wakeUpDependents, "kd", desc="wake-up dependents") {
    wakeUpAllBuffers(address);
  }

  action(uu_profileInstMiss, "\ui", desc="Profile the demand miss") {
        ++Icache.demand_misses;
  }

  action(uu_profileInstHit, "\uih", desc="Profile the demand miss") {
        ++Icache.demand_hits;
  }

  action(uu_profileDataMiss, "\ud", desc="Profile the demand miss") {
        ++Dcache.demand_misses;
  }

  action(uu_profileDataHit, "\udh", desc="Profile the demand miss") {
        ++Dcache.demand_hits;
  }

  //*****************************************************
  // TRANSITIONS
  //*****************************************************

  // Transitions for Load/Store/Replacement/WriteBack from transient states
  transition({Inst_IS, IS, IM, SM}, {Load, Ifetch, Store, L0_Replacement}) {
    z_stallAndWaitMandatoryQueue;
  }

  // Transitions from Idle
  transition(I, Load, IS) {
    oo_allocateDCacheBlock;
    i_allocateTBE;
    a_issueGETS;
    uu_profileDataMiss;
    k_popMandatoryQueue;
  }

  transition(I, Ifetch, Inst_IS) {
    pp_allocateICacheBlock;
    i_allocateTBE;
    a_issueGETS;
    uu_profileInstMiss;
    k_popMandatoryQueue;
  }

  transition(I, Store, IM) {
    oo_allocateDCacheBlock;
    i_allocateTBE;
    b_issueGETX;
    uu_profileDataMiss;
    k_popMandatoryQueue;
  }

  transition({I, IS, IM, Inst_IS}, Inv) {
    fi_sendInvAck;
    l_popRequestQueue;
  }

  transition(SM, Inv, IM) {
    fi_sendInvAck;
    l_popRequestQueue;
  }

  // Transitions from Shared
  transition({S,E,M}, Load) {
    h_load_hit;
    uu_profileDataHit;
    k_popMandatoryQueue;
  }

  transition({S,E,M}, Ifetch) {
    h_load_hit;
    uu_profileInstHit;
    k_popMandatoryQueue;
  }

  transition(S, Store, SM) {
    i_allocateTBE;
    c_issueUPGRADE;
    uu_profileDataMiss;
    k_popMandatoryQueue;
  }

  transition(S, L0_Replacement, I) {
    forward_eviction_to_cpu;
    ff_deallocateCacheBlock;
  }

  transition(S, Inv, I) {
    forward_eviction_to_cpu;
    fi_sendInvAck;
    ff_deallocateCacheBlock;
    l_popRequestQueue;
  }

  // Transitions from Exclusive
  transition({E,M}, Store, M) {
    hh_store_hit;
    uu_profileDataHit;
    k_popMandatoryQueue;
  }

  transition(E, L0_Replacement, I) {
    forward_eviction_to_cpu;
    g_issuePUTX;
    ff_deallocateCacheBlock;
  }

  transition(E, {Inv, Fwd_GETX}, I) {
    // don't send data
    forward_eviction_to_cpu;
    fi_sendInvAck;
    ff_deallocateCacheBlock;
    l_popRequestQueue;
  }

  transition(E, {Fwd_GETS, Fwd_GET_INSTR}, S) {
    f_sendDataToL1;
    l_popRequestQueue;
  }

  // Transitions from Modified
  transition(M, L0_Replacement, I) {
    forward_eviction_to_cpu;
    g_issuePUTX;
    ff_deallocateCacheBlock;
  }

  transition(M, {Inv, Fwd_GETX}, I) {
    forward_eviction_to_cpu;
    f_sendDataToL1;
    ff_deallocateCacheBlock;
    l_popRequestQueue;
  }

  transition(M, {Fwd_GETS, Fwd_GET_INSTR}, S) {
    f_sendDataToL1;
    l_popRequestQueue;
  }

  transition(IS, Data, S) {
    u_writeDataToCache;
    hx_load_hit;
    s_deallocateTBE;
    o_popIncomingResponseQueue;
    kd_wakeUpDependents;
  }

  transition(IS, Data_Exclusive, E) {
    u_writeDataToCache;
    hx_load_hit;
    s_deallocateTBE;
    o_popIncomingResponseQueue;
    kd_wakeUpDependents;
  }

  transition(Inst_IS, Data, S) {
    u_writeInstToCache;
    hx_load_hit;
    s_deallocateTBE;
    o_popIncomingResponseQueue;
    kd_wakeUpDependents;
  }

  transition(Inst_IS, Data_Exclusive, E) {
    u_writeInstToCache;
    hx_load_hit;
    s_deallocateTBE;
    o_popIncomingResponseQueue;
    kd_wakeUpDependents;
  }

  transition({IM,SM}, Data_Exclusive, M) {
    u_writeDataToCache;
    hhx_store_hit;
    s_deallocateTBE;
    o_popIncomingResponseQueue;
    kd_wakeUpDependents;
  }
}