1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
|
/*
* Copyright (c) 1999-2013 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
machine(Directory, "MESI Two Level directory protocol")
: DirectoryMemory * directory;
Cycles to_mem_ctrl_latency := 1;
Cycles directory_latency := 6;
MessageBuffer * requestToDir, network="From", virtual_network="0",
vnet_type="request";
MessageBuffer * responseToDir, network="From", virtual_network="1",
vnet_type="response";
MessageBuffer * responseFromDir, network="To", virtual_network="1",
vnet_type="response";
MessageBuffer * responseFromMemory;
{
// STATES
state_declaration(State, desc="Directory states", default="Directory_State_I") {
// Base states
I, AccessPermission:Read_Write, desc="dir is the owner and memory is up-to-date, all other copies are Invalid";
ID, AccessPermission:Busy, desc="Intermediate state for DMA_READ when in I";
ID_W, AccessPermission:Busy, desc="Intermediate state for DMA_WRITE when in I";
M, AccessPermission:Maybe_Stale, desc="memory copy may be stale, i.e. other modified copies may exist";
IM, AccessPermission:Busy, desc="Intermediate State I>M";
MI, AccessPermission:Busy, desc="Intermediate State M>I";
M_DRD, AccessPermission:Busy, desc="Intermediate State when there is a dma read";
M_DRDI, AccessPermission:Busy, desc="Intermediate State when there is a dma read";
M_DWR, AccessPermission:Busy, desc="Intermediate State when there is a dma write";
M_DWRI, AccessPermission:Busy, desc="Intermediate State when there is a dma write";
}
// Events
enumeration(Event, desc="Directory events") {
Fetch, desc="A memory fetch arrives";
Data, desc="writeback data arrives";
Memory_Data, desc="Fetched data from memory arrives";
Memory_Ack, desc="Writeback Ack from memory arrives";
//added by SS for dma
DMA_READ, desc="A DMA Read memory request";
DMA_WRITE, desc="A DMA Write memory request";
CleanReplacement, desc="Clean Replacement in L2 cache";
}
// TYPES
// DirectoryEntry
structure(Entry, desc="...", interface="AbstractEntry") {
State DirectoryState, desc="Directory state";
MachineID Owner;
}
// TBE entries for DMA requests
structure(TBE, desc="TBE entries for outstanding DMA requests") {
Addr PhysicalAddress, desc="physical address";
State TBEState, desc="Transient State";
DataBlock DataBlk, desc="Data to be written (DMA write only)";
int Len, desc="...";
}
structure(TBETable, external="yes") {
TBE lookup(Addr);
void allocate(Addr);
void deallocate(Addr);
bool isPresent(Addr);
bool functionalRead(Packet *pkt);
int functionalWrite(Packet *pkt);
}
// ** OBJECTS **
TBETable TBEs, template="<Directory_TBE>", constructor="m_number_of_TBEs";
Tick clockEdge();
Tick cyclesToTicks(Cycles c);
void set_tbe(TBE tbe);
void unset_tbe();
void wakeUpBuffers(Addr a);
Entry getDirectoryEntry(Addr addr), return_by_pointer="yes" {
Entry dir_entry := static_cast(Entry, "pointer", directory[addr]);
if (is_valid(dir_entry)) {
return dir_entry;
}
dir_entry := static_cast(Entry, "pointer",
directory.allocate(addr, new Entry));
return dir_entry;
}
State getState(TBE tbe, Addr addr) {
if (is_valid(tbe)) {
return tbe.TBEState;
} else if (directory.isPresent(addr)) {
return getDirectoryEntry(addr).DirectoryState;
} else {
return State:I;
}
}
void setState(TBE tbe, Addr addr, State state) {
if (is_valid(tbe)) {
tbe.TBEState := state;
}
if (directory.isPresent(addr)) {
getDirectoryEntry(addr).DirectoryState := state;
}
}
AccessPermission getAccessPermission(Addr addr) {
TBE tbe := TBEs[addr];
if(is_valid(tbe)) {
DPRINTF(RubySlicc, "%s\n", Directory_State_to_permission(tbe.TBEState));
return Directory_State_to_permission(tbe.TBEState);
}
if(directory.isPresent(addr)) {
DPRINTF(RubySlicc, "%s\n", Directory_State_to_permission(getDirectoryEntry(addr).DirectoryState));
return Directory_State_to_permission(getDirectoryEntry(addr).DirectoryState);
}
DPRINTF(RubySlicc, "%s\n", AccessPermission:NotPresent);
return AccessPermission:NotPresent;
}
void functionalRead(Addr addr, Packet *pkt) {
TBE tbe := TBEs[addr];
if(is_valid(tbe)) {
testAndRead(addr, tbe.DataBlk, pkt);
} else {
functionalMemoryRead(pkt);
}
}
int functionalWrite(Addr addr, Packet *pkt) {
int num_functional_writes := 0;
TBE tbe := TBEs[addr];
if(is_valid(tbe)) {
num_functional_writes := num_functional_writes +
testAndWrite(addr, tbe.DataBlk, pkt);
}
num_functional_writes := num_functional_writes + functionalMemoryWrite(pkt);
return num_functional_writes;
}
void setAccessPermission(Addr addr, State state) {
if (directory.isPresent(addr)) {
getDirectoryEntry(addr).changePermission(Directory_State_to_permission(state));
}
}
bool isGETRequest(CoherenceRequestType type) {
return (type == CoherenceRequestType:GETS) ||
(type == CoherenceRequestType:GET_INSTR) ||
(type == CoherenceRequestType:GETX);
}
// ** OUT_PORTS **
out_port(responseNetwork_out, ResponseMsg, responseFromDir);
// ** IN_PORTS **
in_port(requestNetwork_in, RequestMsg, requestToDir, rank = 0) {
if (requestNetwork_in.isReady(clockEdge())) {
peek(requestNetwork_in, RequestMsg) {
assert(in_msg.Destination.isElement(machineID));
if (isGETRequest(in_msg.Type)) {
trigger(Event:Fetch, in_msg.addr, TBEs[in_msg.addr]);
} else if (in_msg.Type == CoherenceRequestType:DMA_READ) {
trigger(Event:DMA_READ, makeLineAddress(in_msg.addr),
TBEs[makeLineAddress(in_msg.addr)]);
} else if (in_msg.Type == CoherenceRequestType:DMA_WRITE) {
trigger(Event:DMA_WRITE, makeLineAddress(in_msg.addr),
TBEs[makeLineAddress(in_msg.addr)]);
} else {
DPRINTF(RubySlicc, "%s\n", in_msg);
error("Invalid message");
}
}
}
}
in_port(responseNetwork_in, ResponseMsg, responseToDir, rank = 1) {
if (responseNetwork_in.isReady(clockEdge())) {
peek(responseNetwork_in, ResponseMsg) {
assert(in_msg.Destination.isElement(machineID));
if (in_msg.Type == CoherenceResponseType:MEMORY_DATA) {
trigger(Event:Data, in_msg.addr, TBEs[in_msg.addr]);
} else if (in_msg.Type == CoherenceResponseType:ACK) {
trigger(Event:CleanReplacement, in_msg.addr, TBEs[in_msg.addr]);
} else {
DPRINTF(RubySlicc, "%s\n", in_msg.Type);
error("Invalid message");
}
}
}
}
// off-chip memory request/response is done
in_port(memQueue_in, MemoryMsg, responseFromMemory, rank = 2) {
if (memQueue_in.isReady(clockEdge())) {
peek(memQueue_in, MemoryMsg) {
if (in_msg.Type == MemoryRequestType:MEMORY_READ) {
trigger(Event:Memory_Data, in_msg.addr, TBEs[in_msg.addr]);
} else if (in_msg.Type == MemoryRequestType:MEMORY_WB) {
trigger(Event:Memory_Ack, in_msg.addr, TBEs[in_msg.addr]);
} else {
DPRINTF(RubySlicc, "%s\n", in_msg.Type);
error("Invalid message");
}
}
}
}
// Actions
action(a_sendAck, "a", desc="Send ack to L2") {
peek(responseNetwork_in, ResponseMsg) {
enqueue(responseNetwork_out, ResponseMsg, to_mem_ctrl_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:MEMORY_ACK;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Sender);
out_msg.MessageSize := MessageSizeType:Response_Control;
}
}
}
action(d_sendData, "d", desc="Send data to requestor") {
peek(memQueue_in, MemoryMsg) {
enqueue(responseNetwork_out, ResponseMsg, to_mem_ctrl_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:MEMORY_DATA;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.OriginalRequestorMachId);
out_msg.DataBlk := in_msg.DataBlk;
out_msg.Dirty := false;
out_msg.MessageSize := MessageSizeType:Response_Data;
Entry e := getDirectoryEntry(in_msg.addr);
e.Owner := in_msg.OriginalRequestorMachId;
}
}
}
// Actions
action(aa_sendAck, "aa", desc="Send ack to L2") {
peek(memQueue_in, MemoryMsg) {
enqueue(responseNetwork_out, ResponseMsg, to_mem_ctrl_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:MEMORY_ACK;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.OriginalRequestorMachId);
out_msg.MessageSize := MessageSizeType:Response_Control;
}
}
}
action(j_popIncomingRequestQueue, "j", desc="Pop incoming request queue") {
requestNetwork_in.dequeue(clockEdge());
}
action(k_popIncomingResponseQueue, "k", desc="Pop incoming request queue") {
responseNetwork_in.dequeue(clockEdge());
}
action(l_popMemQueue, "q", desc="Pop off-chip request queue") {
memQueue_in.dequeue(clockEdge());
}
action(kd_wakeUpDependents, "kd", desc="wake-up dependents") {
wakeUpBuffers(address);
}
action(qf_queueMemoryFetchRequest, "qf", desc="Queue off-chip fetch request") {
peek(requestNetwork_in, RequestMsg) {
queueMemoryRead(in_msg.Requestor, address, to_mem_ctrl_latency);
}
}
action(qw_queueMemoryWBRequest, "qw", desc="Queue off-chip writeback request") {
peek(responseNetwork_in, ResponseMsg) {
queueMemoryWrite(in_msg.Sender, address, to_mem_ctrl_latency,
in_msg.DataBlk);
}
}
//added by SS for dma
action(qf_queueMemoryFetchRequestDMA, "qfd", desc="Queue off-chip fetch request") {
peek(requestNetwork_in, RequestMsg) {
queueMemoryRead(in_msg.Requestor, address, to_mem_ctrl_latency);
}
}
action(p_popIncomingDMARequestQueue, "p", desc="Pop incoming DMA queue") {
requestNetwork_in.dequeue(clockEdge());
}
action(dr_sendDMAData, "dr", desc="Send Data to DMA controller from directory") {
peek(memQueue_in, MemoryMsg) {
enqueue(responseNetwork_out, ResponseMsg, to_mem_ctrl_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.DataBlk := in_msg.DataBlk; // we send the entire data block and rely on the dma controller to split it up if need be
out_msg.Destination.add(map_Address_to_DMA(address));
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
}
action(qw_queueMemoryWBRequest_partial, "qwp",
desc="Queue off-chip writeback request") {
peek(requestNetwork_in, RequestMsg) {
queueMemoryWritePartial(machineID, address, to_mem_ctrl_latency,
in_msg.DataBlk, in_msg.Len);
}
}
action(da_sendDMAAck, "da", desc="Send Ack to DMA controller") {
enqueue(responseNetwork_out, ResponseMsg, to_mem_ctrl_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:ACK;
out_msg.Destination.add(map_Address_to_DMA(address));
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
action(z_stallAndWaitRequest, "z", desc="recycle request queue") {
stall_and_wait(requestNetwork_in, address);
}
action(zz_recycleDMAQueue, "zz", desc="recycle DMA queue") {
requestNetwork_in.recycle(clockEdge(), cyclesToTicks(recycle_latency));
}
action(inv_sendCacheInvalidate, "inv", desc="Invalidate a cache block") {
peek(requestNetwork_in, RequestMsg) {
enqueue(responseNetwork_out, ResponseMsg, directory_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:INV;
out_msg.Sender := machineID;
out_msg.Destination.add(getDirectoryEntry(address).Owner);
out_msg.MessageSize := MessageSizeType:Response_Control;
}
}
}
action(drp_sendDMAData, "drp", desc="Send Data to DMA controller from incoming PUTX") {
peek(responseNetwork_in, ResponseMsg) {
enqueue(responseNetwork_out, ResponseMsg, to_mem_ctrl_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.DataBlk := in_msg.DataBlk; // we send the entire data block and rely on the dma controller to split it up if need be
out_msg.Destination.add(map_Address_to_DMA(address));
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
}
action(v_allocateTBE, "v", desc="Allocate TBE") {
peek(requestNetwork_in, RequestMsg) {
TBEs.allocate(address);
set_tbe(TBEs[address]);
tbe.DataBlk := in_msg.DataBlk;
tbe.PhysicalAddress := in_msg.addr;
tbe.Len := in_msg.Len;
}
}
action(qw_queueMemoryWBRequest_partialTBE, "qwt",
desc="Queue off-chip writeback request") {
peek(responseNetwork_in, ResponseMsg) {
queueMemoryWritePartial(in_msg.Sender, tbe.PhysicalAddress,
to_mem_ctrl_latency, tbe.DataBlk, tbe.Len);
}
}
action(w_deallocateTBE, "w", desc="Deallocate TBE") {
TBEs.deallocate(address);
unset_tbe();
}
// TRANSITIONS
transition(I, Fetch, IM) {
qf_queueMemoryFetchRequest;
j_popIncomingRequestQueue;
}
transition(M, Fetch) {
inv_sendCacheInvalidate;
z_stallAndWaitRequest;
}
transition(IM, Memory_Data, M) {
d_sendData;
l_popMemQueue;
kd_wakeUpDependents;
}
//added by SS
transition(M, CleanReplacement, I) {
a_sendAck;
k_popIncomingResponseQueue;
kd_wakeUpDependents;
}
transition(M, Data, MI) {
qw_queueMemoryWBRequest;
k_popIncomingResponseQueue;
}
transition(MI, Memory_Ack, I) {
aa_sendAck;
l_popMemQueue;
kd_wakeUpDependents;
}
//added by SS for dma support
transition(I, DMA_READ, ID) {
qf_queueMemoryFetchRequestDMA;
j_popIncomingRequestQueue;
}
transition(ID, Memory_Data, I) {
dr_sendDMAData;
l_popMemQueue;
kd_wakeUpDependents;
}
transition(I, DMA_WRITE, ID_W) {
qw_queueMemoryWBRequest_partial;
j_popIncomingRequestQueue;
}
transition(ID_W, Memory_Ack, I) {
da_sendDMAAck;
l_popMemQueue;
kd_wakeUpDependents;
}
transition({ID, ID_W, M_DRDI, M_DWRI, IM, MI}, {Fetch, Data} ) {
z_stallAndWaitRequest;
}
transition({ID, ID_W, M_DRD, M_DRDI, M_DWR, M_DWRI, IM, MI}, {DMA_WRITE, DMA_READ} ) {
zz_recycleDMAQueue;
}
transition(M, DMA_READ, M_DRD) {
inv_sendCacheInvalidate;
j_popIncomingRequestQueue;
}
transition(M_DRD, Data, M_DRDI) {
drp_sendDMAData;
qw_queueMemoryWBRequest;
k_popIncomingResponseQueue;
}
transition(M_DRDI, Memory_Ack, I) {
aa_sendAck;
l_popMemQueue;
kd_wakeUpDependents;
}
transition(M, DMA_WRITE, M_DWR) {
v_allocateTBE;
inv_sendCacheInvalidate;
j_popIncomingRequestQueue;
}
transition(M_DWR, Data, M_DWRI) {
qw_queueMemoryWBRequest_partialTBE;
k_popIncomingResponseQueue;
}
transition(M_DWRI, Memory_Ack, I) {
aa_sendAck;
da_sendDMAAck;
w_deallocateTBE;
l_popMemQueue;
kd_wakeUpDependents;
}
}
|