summaryrefslogtreecommitdiff
path: root/src/mem/protocol/MOESI_CMP_token-dir.sm
blob: c3a585b961c4ba84173b20e2194a4e3e5262556e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
/*
 * Copyright (c) 1999-2013 Mark D. Hill and David A. Wood
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

machine(MachineType:Directory, "Token protocol")
 : DirectoryMemory * directory;
   int l2_select_num_bits;
   Cycles directory_latency := 5;
   bool distributed_persistent := "True";
   Cycles fixed_timeout_latency := 100;
   Cycles reissue_wakeup_latency := 10;
   Cycles to_memory_controller_latency := 1;

   // Message Queues from dir to other controllers / network
   MessageBuffer * dmaResponseFromDir, network="To", virtual_network="5",
        vnet_type="response";

   MessageBuffer * responseFromDir, network="To", virtual_network="4",
        vnet_type="response";

   MessageBuffer * persistentFromDir, network="To", virtual_network="3",
        vnet_type="persistent";

   MessageBuffer * requestFromDir, network="To", virtual_network="1",
        vnet_type="request";
 
   // Message Queues to dir from other controllers / network
   MessageBuffer * responseToDir, network="From", virtual_network="4",
        vnet_type="response";

   MessageBuffer * persistentToDir, network="From", virtual_network="3",
        vnet_type="persistent";
   
   MessageBuffer * requestToDir, network="From", virtual_network="2",
        vnet_type="request";
   
   MessageBuffer * dmaRequestToDir, network="From", virtual_network="0",
        vnet_type="request";

   MessageBuffer * responseFromMemory;
{
  // STATES
  state_declaration(State, desc="Directory states", default="Directory_State_O") {
    // Base states
    O, AccessPermission:Read_Only, desc="Owner, memory has valid data, but not necessarily all the tokens";
    NO, AccessPermission:Maybe_Stale, desc="Not Owner";
    L, AccessPermission:Busy, desc="Locked";

    // Memory wait states - can block all messages including persistent requests
    O_W, AccessPermission:Busy, desc="transitioning to Owner, waiting for memory write";
    L_O_W, AccessPermission:Busy, desc="transitioning to Locked, waiting for memory read, could eventually return to O";
    L_NO_W, AccessPermission:Busy, desc="transitioning to Locked, waiting for memory read, eventually return to NO";
    DR_L_W, AccessPermission:Busy, desc="transitioning to Locked underneath a DMA read, waiting for memory data";
    DW_L_W, AccessPermission:Busy, desc="transitioning to Locked underneath a DMA write, waiting for memory ack";
    NO_W, AccessPermission:Busy, desc="transitioning to Not Owner, waiting for memory read";
    O_DW_W, AccessPermission:Busy, desc="transitioning to Owner, waiting for memory before DMA ack";
    O_DR_W, AccessPermission:Busy, desc="transitioning to Owner, waiting for memory before DMA data";

    // DMA request transient states - must respond to persistent requests
    O_DW, AccessPermission:Busy, desc="issued GETX for DMA write, waiting for all tokens";
    NO_DW, AccessPermission:Busy, desc="issued GETX for DMA write, waiting for all tokens";
    NO_DR, AccessPermission:Busy, desc="issued GETS for DMA read, waiting for data";

    // DMA request in progress - competing with a CPU persistent request
    DW_L, AccessPermission:Busy, desc="issued GETX for DMA write, CPU persistent request must complete first";
    DR_L, AccessPermission:Busy, desc="issued GETS for DMA read, CPU persistent request must complete first";

  }

  // Events
  enumeration(Event, desc="Directory events") {
    GETX, desc="A GETX arrives";
    GETS, desc="A GETS arrives";
    Lockdown, desc="A lockdown request arrives";
    Unlockdown, desc="An un-lockdown request arrives";
    Own_Lock_or_Unlock, desc="own lock or unlock";
    Own_Lock_or_Unlock_Tokens, desc="own lock or unlock with tokens";
    Data_Owner, desc="Data arrive";
    Data_All_Tokens, desc="Data and all tokens";
    Ack_Owner, desc="Owner token arrived without data because it was clean";
    Ack_Owner_All_Tokens, desc="All tokens including owner arrived without data because it was clean";
    Tokens, desc="Tokens arrive";
    Ack_All_Tokens, desc="All_Tokens arrive";
    Request_Timeout, desc="A DMA request has timed out";

    // Memory Controller
    Memory_Data, desc="Fetched data from memory arrives";
    Memory_Ack, desc="Writeback Ack from memory arrives";

    // DMA requests
    DMA_READ, desc="A DMA Read memory request";
    DMA_WRITE, desc="A DMA Write memory request";
    DMA_WRITE_All_Tokens, desc="A DMA Write memory request, directory has all tokens";
  }

  // TYPES

  // DirectoryEntry
  structure(Entry, desc="...", interface="AbstractEntry") {
    State DirectoryState,          desc="Directory state";
    int Tokens, default="max_tokens()", desc="Number of tokens for the line we're holding";

    // The following state is provided to allow for bandwidth
    // efficient directory-like operation.  However all of this state
    // is 'soft state' that does not need to be correct (as long as
    // you're eventually willing to resort to broadcast.)

    Set Owner,                     desc="Probable Owner of the line.  More accurately, the set of processors who need to see a GetS or GetO.  We use a Set for convenience, but only one bit is set at a time.";
    Set Sharers,                   desc="Probable sharers of the line.  More accurately, the set of processors who need to see a GetX";
  }

  structure(PersistentTable, external="yes") {
    void persistentRequestLock(Addr, MachineID, AccessType);
    void persistentRequestUnlock(Addr, MachineID);
    bool okToIssueStarving(Addr, MachineID);
    MachineID findSmallest(Addr);
    AccessType typeOfSmallest(Addr);
    void markEntries(Addr);
    bool isLocked(Addr);
    int countStarvingForAddress(Addr);
    int countReadStarvingForAddress(Addr);
  }

  // TBE entries for DMA requests
  structure(TBE, desc="TBE entries for outstanding DMA requests") {
    Addr PhysicalAddress, desc="physical address";
    State TBEState,        desc="Transient State";
    DataBlock DataBlk,     desc="Current view of the associated address range";
    int Len,               desc="...";
    MachineID DmaRequestor, desc="DMA requestor";
    bool WentPersistent,   desc="Did the DMA request require a persistent request";
  }

  structure(TBETable, external="yes") {
    TBE lookup(Addr);
    void allocate(Addr);
    void deallocate(Addr);
    bool isPresent(Addr);
  }

  // ** OBJECTS **

  PersistentTable persistentTable;
  TimerTable reissueTimerTable;

  TBETable TBEs, template="<Directory_TBE>", constructor="m_number_of_TBEs";

  bool starving, default="false";
  int l2_select_low_bit, default="RubySystem::getBlockSizeBits()";

  Tick clockEdge();
  Tick cyclesToTicks(Cycles c);
  void set_tbe(TBE b);
  void unset_tbe();

  Entry getDirectoryEntry(Addr addr), return_by_pointer="yes" {
    Entry dir_entry := static_cast(Entry, "pointer", directory[addr]);

    if (is_valid(dir_entry)) {
      return dir_entry;
    }

    dir_entry :=  static_cast(Entry, "pointer",
                              directory.allocate(addr, new Entry));
    return dir_entry;
  }

  State getState(TBE tbe, Addr addr) {
    if (is_valid(tbe)) {
      return tbe.TBEState;
    } else {
      return getDirectoryEntry(addr).DirectoryState;
    }
  }

  void setState(TBE tbe, Addr addr, State state) {
    if (is_valid(tbe)) {
      tbe.TBEState := state;
    }
    getDirectoryEntry(addr).DirectoryState := state;

    if (state == State:L || state == State:DW_L || state == State:DR_L) {
      assert(getDirectoryEntry(addr).Tokens == 0);
    }

    // We have one or zero owners
    assert((getDirectoryEntry(addr).Owner.count() == 0) || (getDirectoryEntry(addr).Owner.count() == 1));

    // Make sure the token count is in range
    assert(getDirectoryEntry(addr).Tokens >= 0);
    assert(getDirectoryEntry(addr).Tokens <= max_tokens());

    if (state == State:O || state == State:O_W || state == State:O_DW) {
      assert(getDirectoryEntry(addr).Tokens >= 1); // Must have at least one token
      // assert(getDirectoryEntry(addr).Tokens >= (max_tokens() / 2)); // Only mostly true; this might not always hold
    }
  }

  AccessPermission getAccessPermission(Addr addr) {
    TBE tbe := TBEs[addr];
    if(is_valid(tbe)) {
      return Directory_State_to_permission(tbe.TBEState);
    }

    if (directory.isPresent(addr)) {
      DPRINTF(RubySlicc, "%s\n", Directory_State_to_permission(getDirectoryEntry(addr).DirectoryState));
      return Directory_State_to_permission(getDirectoryEntry(addr).DirectoryState);
    }

    DPRINTF(RubySlicc, "AccessPermission_NotPresent\n");
    return AccessPermission:NotPresent;
  }

  void setAccessPermission(Addr addr, State state) {
    getDirectoryEntry(addr).changePermission(Directory_State_to_permission(state));
  }

  bool okToIssueStarving(Addr addr, MachineID machinID) {
    return persistentTable.okToIssueStarving(addr, machineID);
  }

  void markPersistentEntries(Addr addr) {
    persistentTable.markEntries(addr);
  }

  void functionalRead(Addr addr, Packet *pkt) {
    TBE tbe := TBEs[addr];
    if(is_valid(tbe)) {
      testAndRead(addr, tbe.DataBlk, pkt);
    } else {
      functionalMemoryRead(pkt);
    }
  }

  int functionalWrite(Addr addr, Packet *pkt) {
    int num_functional_writes := 0;

    TBE tbe := TBEs[addr];
    if(is_valid(tbe)) {
      num_functional_writes := num_functional_writes +
            testAndWrite(addr, tbe.DataBlk, pkt);
    }

    num_functional_writes := num_functional_writes + functionalMemoryWrite(pkt);
    return num_functional_writes;
  }

  // ** OUT_PORTS **
  out_port(responseNetwork_out, ResponseMsg, responseFromDir);
  out_port(persistentNetwork_out, PersistentMsg, persistentFromDir);
  out_port(requestNetwork_out, RequestMsg, requestFromDir);
  out_port(dmaResponseNetwork_out, DMAResponseMsg, dmaResponseFromDir);

  // ** IN_PORTS **
  // off-chip memory request/response is done
  in_port(memQueue_in, MemoryMsg, responseFromMemory) {
    if (memQueue_in.isReady(clockEdge())) {
      peek(memQueue_in, MemoryMsg) {
        if (in_msg.Type == MemoryRequestType:MEMORY_READ) {
          trigger(Event:Memory_Data, in_msg.addr, TBEs[in_msg.addr]);
        } else if (in_msg.Type == MemoryRequestType:MEMORY_WB) {
          trigger(Event:Memory_Ack, in_msg.addr, TBEs[in_msg.addr]);
        } else {
          DPRINTF(RubySlicc, "%s\n", in_msg.Type);
          error("Invalid message");
        }
      }
    }
  }

  // Reissue Timer
  in_port(reissueTimerTable_in, Addr, reissueTimerTable) {
    Tick current_time := clockEdge();
    if (reissueTimerTable_in.isReady(current_time)) {
      Addr addr := reissueTimerTable.nextAddress();
      trigger(Event:Request_Timeout, addr, TBEs.lookup(addr));
    }
  }

  in_port(responseNetwork_in, ResponseMsg, responseToDir) {
    if (responseNetwork_in.isReady(clockEdge())) {
      peek(responseNetwork_in, ResponseMsg) {
        assert(in_msg.Destination.isElement(machineID));
        if (getDirectoryEntry(in_msg.addr).Tokens + in_msg.Tokens == max_tokens()) {
          if ((in_msg.Type == CoherenceResponseType:DATA_OWNER) ||
              (in_msg.Type == CoherenceResponseType:DATA_SHARED)) {
            trigger(Event:Data_All_Tokens, in_msg.addr,
                    TBEs[in_msg.addr]);
          } else if (in_msg.Type == CoherenceResponseType:ACK_OWNER) {
            trigger(Event:Ack_Owner_All_Tokens, in_msg.addr,
                    TBEs[in_msg.addr]);
          } else if (in_msg.Type == CoherenceResponseType:ACK) {
            trigger(Event:Ack_All_Tokens, in_msg.addr,
                    TBEs[in_msg.addr]);
          } else {
            DPRINTF(RubySlicc, "%s\n", in_msg.Type);
            error("Invalid message");
          }
        } else {
          if (in_msg.Type == CoherenceResponseType:DATA_OWNER) {
            trigger(Event:Data_Owner, in_msg.addr,
                    TBEs[in_msg.addr]);
          } else if ((in_msg.Type == CoherenceResponseType:ACK) ||
                     (in_msg.Type == CoherenceResponseType:DATA_SHARED)) {
            trigger(Event:Tokens, in_msg.addr,
                    TBEs[in_msg.addr]);
          } else if (in_msg.Type == CoherenceResponseType:ACK_OWNER) {
            trigger(Event:Ack_Owner, in_msg.addr,
                    TBEs[in_msg.addr]);
          } else {
            DPRINTF(RubySlicc, "%s\n", in_msg.Type);
            error("Invalid message");
          }
        }
      }
    }
  }

  in_port(persistentNetwork_in, PersistentMsg, persistentToDir) {
    if (persistentNetwork_in.isReady(clockEdge())) {
      peek(persistentNetwork_in, PersistentMsg) {
        assert(in_msg.Destination.isElement(machineID));

        if (distributed_persistent) {
          // Apply the lockdown or unlockdown message to the table
          if (in_msg.Type == PersistentRequestType:GETX_PERSISTENT) {
            persistentTable.persistentRequestLock(in_msg.addr, in_msg.Requestor, AccessType:Write);
          } else if (in_msg.Type == PersistentRequestType:GETS_PERSISTENT) {
            persistentTable.persistentRequestLock(in_msg.addr, in_msg.Requestor, AccessType:Read);
          } else if (in_msg.Type == PersistentRequestType:DEACTIVATE_PERSISTENT) {
            persistentTable.persistentRequestUnlock(in_msg.addr, in_msg.Requestor);
          } else {
            error("Invalid message");
          }

          // React to the message based on the current state of the table
          if (persistentTable.isLocked(in_msg.addr)) {
            if (persistentTable.findSmallest(in_msg.addr) == machineID) {
              if (getDirectoryEntry(in_msg.addr).Tokens > 0) {
                trigger(Event:Own_Lock_or_Unlock_Tokens, in_msg.addr,
                        TBEs[in_msg.addr]);
              } else {
                trigger(Event:Own_Lock_or_Unlock, in_msg.addr,
                        TBEs[in_msg.addr]);
              }
            } else {
              // locked
              trigger(Event:Lockdown, in_msg.addr, TBEs[in_msg.addr]);
            }
          } else {
            // unlocked
            trigger(Event:Unlockdown, in_msg.addr, TBEs[in_msg.addr]);
          }
        }
        else {
          if (persistentTable.findSmallest(in_msg.addr) == machineID) {
              if (getDirectoryEntry(in_msg.addr).Tokens > 0) {
                trigger(Event:Own_Lock_or_Unlock_Tokens, in_msg.addr,
                        TBEs[in_msg.addr]);
              } else {
                trigger(Event:Own_Lock_or_Unlock, in_msg.addr,
                        TBEs[in_msg.addr]);
              }
          } else if (in_msg.Type == PersistentRequestType:GETX_PERSISTENT) {
            // locked
            trigger(Event:Lockdown, in_msg.addr, TBEs[in_msg.addr]);
          } else if (in_msg.Type == PersistentRequestType:GETS_PERSISTENT) {
            // locked
            trigger(Event:Lockdown, in_msg.addr, TBEs[in_msg.addr]);
          } else if (in_msg.Type == PersistentRequestType:DEACTIVATE_PERSISTENT) {
            // unlocked
            trigger(Event:Unlockdown, in_msg.addr, TBEs[in_msg.addr]);
          } else {
            error("Invalid message");
          }
        }
      }
    }
  }

  in_port(requestNetwork_in, RequestMsg, requestToDir) {
    if (requestNetwork_in.isReady(clockEdge())) {
      peek(requestNetwork_in, RequestMsg) {
        assert(in_msg.Destination.isElement(machineID));
        if (in_msg.Type == CoherenceRequestType:GETS) {
          trigger(Event:GETS, in_msg.addr, TBEs[in_msg.addr]);
        } else if (in_msg.Type == CoherenceRequestType:GETX) {
          trigger(Event:GETX, in_msg.addr, TBEs[in_msg.addr]);
        } else {
          error("Invalid message");
        }
      }
    }
  }

  in_port(dmaRequestQueue_in, DMARequestMsg, dmaRequestToDir) {
    if (dmaRequestQueue_in.isReady(clockEdge())) {
      peek(dmaRequestQueue_in, DMARequestMsg) {
        if (in_msg.Type == DMARequestType:READ) {
          trigger(Event:DMA_READ, in_msg.LineAddress, TBEs[in_msg.LineAddress]);
        } else if (in_msg.Type == DMARequestType:WRITE) {
          if (getDirectoryEntry(in_msg.LineAddress).Tokens == max_tokens()) {
            trigger(Event:DMA_WRITE_All_Tokens, in_msg.LineAddress,
                    TBEs[in_msg.LineAddress]);
          } else {
            trigger(Event:DMA_WRITE, in_msg.LineAddress,
                    TBEs[in_msg.LineAddress]);
          }
        } else {
          error("Invalid message");
        }
      }
    }
  }

  // Actions

  action(a_sendTokens, "a", desc="Send tokens to requestor") {
    // Only send a message if we have tokens to send
    if (getDirectoryEntry(address).Tokens > 0) {
      peek(requestNetwork_in, RequestMsg) {
        enqueue(responseNetwork_out, ResponseMsg, directory_latency) {// FIXME?
          out_msg.addr := address;
          out_msg.Type := CoherenceResponseType:ACK;
          out_msg.Sender := machineID;
          out_msg.Destination.add(in_msg.Requestor);
          out_msg.Tokens := getDirectoryEntry(in_msg.addr).Tokens;
          out_msg.MessageSize := MessageSizeType:Response_Control;
        }
      }
      getDirectoryEntry(address).Tokens := 0;
    }
  }

  action(px_tryIssuingPersistentGETXRequest, "px", desc="...") {
    if (okToIssueStarving(address, machineID) && (starving == false)) {
      enqueue(persistentNetwork_out, PersistentMsg, 1) {
        out_msg.addr := address;
        out_msg.Type := PersistentRequestType:GETX_PERSISTENT;
        out_msg.Requestor := machineID;
        out_msg.Destination.broadcast(MachineType:L1Cache);

        //
        // Currently the configuration system limits the system to only one
        // chip.  Therefore, if we assume one shared L2 cache, then only one
        // pertinent L2 cache exist.
        //
        //out_msg.Destination.addNetDest(getAllPertinentL2Banks(address));

        out_msg.Destination.add(mapAddressToRange(address,
                                  MachineType:L2Cache, l2_select_low_bit,
                                  l2_select_num_bits, intToID(0)));

        out_msg.Destination.add(map_Address_to_Directory(address));
        out_msg.MessageSize := MessageSizeType:Persistent_Control;
        out_msg.Prefetch := PrefetchBit:No;
        out_msg.AccessMode := RubyAccessMode:Supervisor;
      }
      markPersistentEntries(address);
      starving := true;

      tbe.WentPersistent := true;

      // Do not schedule a wakeup, a persistent requests will always complete
    } else {

      // We'd like to issue a persistent request, but are not allowed
      // to issue a P.R. right now.  This, we do not increment the
      // IssueCount.

      // Set a wakeup timer
      reissueTimerTable.set(address, cyclesToTicks(reissue_wakeup_latency));
    }
  }

  action(bw_broadcastWrite, "bw", desc="Broadcast GETX if we need tokens") {
    peek(dmaRequestQueue_in, DMARequestMsg) {
      //
      // Assser that we only send message if we don't already have all the tokens
      //
      assert(getDirectoryEntry(address).Tokens != max_tokens());
      enqueue(requestNetwork_out, RequestMsg, 1) {
        out_msg.addr := address;
        out_msg.Type := CoherenceRequestType:GETX;
        out_msg.Requestor := machineID;

        //
        // Since only one chip, assuming all L1 caches are local
        //
        out_msg.Destination.broadcast(MachineType:L1Cache);
        out_msg.Destination.add(mapAddressToRange(address,
                                  MachineType:L2Cache, l2_select_low_bit,
                                  l2_select_num_bits, intToID(0)));

        out_msg.RetryNum := 0;
        out_msg.MessageSize := MessageSizeType:Broadcast_Control;
        out_msg.Prefetch := PrefetchBit:No;
        out_msg.AccessMode := RubyAccessMode:Supervisor;
      }
    }
  }

  action(ps_tryIssuingPersistentGETSRequest, "ps", desc="...") {
    if (okToIssueStarving(address, machineID) && (starving == false)) {
      enqueue(persistentNetwork_out, PersistentMsg, 1) {
        out_msg.addr := address;
        out_msg.Type := PersistentRequestType:GETS_PERSISTENT;
        out_msg.Requestor := machineID;
        out_msg.Destination.broadcast(MachineType:L1Cache);

        //
        // Currently the configuration system limits the system to only one
        // chip.  Therefore, if we assume one shared L2 cache, then only one
        // pertinent L2 cache exist.
        //
        //out_msg.Destination.addNetDest(getAllPertinentL2Banks(address));

        out_msg.Destination.add(mapAddressToRange(address,
                                  MachineType:L2Cache, l2_select_low_bit,
                                  l2_select_num_bits, intToID(0)));

        out_msg.Destination.add(map_Address_to_Directory(address));
        out_msg.MessageSize := MessageSizeType:Persistent_Control;
        out_msg.Prefetch := PrefetchBit:No;
        out_msg.AccessMode := RubyAccessMode:Supervisor;
      }
      markPersistentEntries(address);
      starving := true;

      tbe.WentPersistent := true;

      // Do not schedule a wakeup, a persistent requests will always complete
    } else {

      // We'd like to issue a persistent request, but are not allowed
      // to issue a P.R. right now.  This, we do not increment the
      // IssueCount.

      // Set a wakeup timer
      reissueTimerTable.set(address, cyclesToTicks(reissue_wakeup_latency));
    }
  }

  action(br_broadcastRead, "br", desc="Broadcast GETS for data") {
    peek(dmaRequestQueue_in, DMARequestMsg) {
      enqueue(requestNetwork_out, RequestMsg, 1) {
        out_msg.addr := address;
        out_msg.Type := CoherenceRequestType:GETS;
        out_msg.Requestor := machineID;

        //
        // Since only one chip, assuming all L1 caches are local
        //
        out_msg.Destination.broadcast(MachineType:L1Cache);
        out_msg.Destination.add(mapAddressToRange(address,
                                  MachineType:L2Cache, l2_select_low_bit,
                                  l2_select_num_bits, intToID(0)));

        out_msg.RetryNum := 0;
        out_msg.MessageSize := MessageSizeType:Broadcast_Control;
        out_msg.Prefetch := PrefetchBit:No;
        out_msg.AccessMode := RubyAccessMode:Supervisor;
      }
    }
  }

  action(aa_sendTokensToStarver, "\a", desc="Send tokens to starver") {
    // Only send a message if we have tokens to send
    if (getDirectoryEntry(address).Tokens > 0) {
      enqueue(responseNetwork_out, ResponseMsg, directory_latency) {// FIXME?
        out_msg.addr := address;
        out_msg.Type := CoherenceResponseType:ACK;
        out_msg.Sender := machineID;
        out_msg.Destination.add(persistentTable.findSmallest(address));
        out_msg.Tokens := getDirectoryEntry(address).Tokens;
        out_msg.MessageSize := MessageSizeType:Response_Control;
      }
      getDirectoryEntry(address).Tokens := 0;
    }
  }

  action(d_sendMemoryDataWithAllTokens, "d", desc="Send data and tokens to requestor") {
    peek(memQueue_in, MemoryMsg) {
      enqueue(responseNetwork_out, ResponseMsg, 1) {
        out_msg.addr := address;
        out_msg.Type := CoherenceResponseType:DATA_OWNER;
        out_msg.Sender := machineID;
        out_msg.Destination.add(in_msg.OriginalRequestorMachId);
        assert(getDirectoryEntry(address).Tokens > 0);
        out_msg.Tokens := getDirectoryEntry(in_msg.addr).Tokens;
        out_msg.DataBlk := in_msg.DataBlk;
        out_msg.Dirty := false;
        out_msg.MessageSize := MessageSizeType:Response_Data;
      }
    }
    getDirectoryEntry(address).Tokens := 0;
  }

  action(dd_sendMemDataToStarver, "\d", desc="Send data and tokens to starver") {
    peek(memQueue_in, MemoryMsg) {
      enqueue(responseNetwork_out, ResponseMsg, 1) {
        out_msg.addr := address;
        out_msg.Type := CoherenceResponseType:DATA_OWNER;
        out_msg.Sender := machineID;
        out_msg.Destination.add(persistentTable.findSmallest(address));
        assert(getDirectoryEntry(address).Tokens > 0);
        out_msg.Tokens := getDirectoryEntry(address).Tokens;
        out_msg.DataBlk := in_msg.DataBlk;
        out_msg.Dirty := false;
        out_msg.MessageSize := MessageSizeType:Response_Data;
      }
    }
    getDirectoryEntry(address).Tokens := 0;
  }

  action(de_sendTbeDataToStarver, "de", desc="Send data and tokens to starver") {
    enqueue(responseNetwork_out, ResponseMsg, 1) {
      out_msg.addr := address;
      out_msg.Type := CoherenceResponseType:DATA_OWNER;
      out_msg.Sender := machineID;
      out_msg.Destination.add(persistentTable.findSmallest(address));
      assert(getDirectoryEntry(address).Tokens > 0);
      out_msg.Tokens := getDirectoryEntry(address).Tokens;
      out_msg.DataBlk := tbe.DataBlk;
      out_msg.Dirty := false;
      out_msg.MessageSize := MessageSizeType:Response_Data;
    }
    getDirectoryEntry(address).Tokens := 0;
  }

  action(qf_queueMemoryFetchRequest, "qf", desc="Queue off-chip fetch request") {
    peek(requestNetwork_in, RequestMsg) {
      queueMemoryRead(in_msg.Requestor, address, to_memory_controller_latency);
    }
  }

  action(qp_queueMemoryForPersistent, "qp", desc="Queue off-chip fetch request") {
    queueMemoryRead(persistentTable.findSmallest(address), address,
                    to_memory_controller_latency);
  }

  action(fd_memoryDma, "fd", desc="Queue off-chip fetch request") {
    peek(dmaRequestQueue_in, DMARequestMsg) {
      queueMemoryRead(in_msg.Requestor, address, to_memory_controller_latency);
    }
  }

  action(lq_queueMemoryWbRequest, "lq", desc="Write data to memory") {
    peek(responseNetwork_in, ResponseMsg) {
      queueMemoryWrite(in_msg.Sender, address, to_memory_controller_latency,
                       in_msg.DataBlk);
    }
  }

  action(ld_queueMemoryDmaWriteFromTbe, "ld", desc="Write DMA data to memory") {
    queueMemoryWritePartial(tbe.DmaRequestor, address,
                            to_memory_controller_latency, tbe.DataBlk,
                            tbe.Len);
  }

  action(lr_queueMemoryDmaReadWriteback, "lr",
         desc="Write DMA data from read to memory") {
    peek(responseNetwork_in, ResponseMsg) {
      queueMemoryWrite(machineID, address, to_memory_controller_latency,
                       in_msg.DataBlk);
    }
  }

  action(vd_allocateDmaRequestInTBE, "vd", desc="Record Data in TBE") {
    peek(dmaRequestQueue_in, DMARequestMsg) {
      TBEs.allocate(address);
      set_tbe(TBEs[address]);
      tbe.DataBlk := in_msg.DataBlk;
      tbe.PhysicalAddress := in_msg.PhysicalAddress;
      tbe.Len := in_msg.Len;
      tbe.DmaRequestor := in_msg.Requestor;
      tbe.WentPersistent := false;
    }
  }

  action(s_deallocateTBE, "s", desc="Deallocate TBE") {

    if (tbe.WentPersistent) {
      assert(starving);

      enqueue(persistentNetwork_out, PersistentMsg, 1) {
        out_msg.addr := address;
        out_msg.Type := PersistentRequestType:DEACTIVATE_PERSISTENT;
        out_msg.Requestor := machineID;
        out_msg.Destination.broadcast(MachineType:L1Cache);

        //
        // Currently the configuration system limits the system to only one
        // chip.  Therefore, if we assume one shared L2 cache, then only one
        // pertinent L2 cache exist.
        //
        //out_msg.Destination.addNetDest(getAllPertinentL2Banks(address));

        out_msg.Destination.add(mapAddressToRange(address,
                                  MachineType:L2Cache, l2_select_low_bit,
                                  l2_select_num_bits, intToID(0)));

        out_msg.Destination.add(map_Address_to_Directory(address));
        out_msg.MessageSize := MessageSizeType:Persistent_Control;
      }
      starving := false;
    }

    TBEs.deallocate(address);
    unset_tbe();
  }

  action(rd_recordDataInTbe, "rd", desc="Record data in TBE") {
    peek(responseNetwork_in, ResponseMsg) {
      DataBlock DataBlk := tbe.DataBlk;
      tbe.DataBlk := in_msg.DataBlk;
      tbe.DataBlk.copyPartial(DataBlk, getOffset(tbe.PhysicalAddress),
                              tbe.Len);
    }
  }

  action(f_incrementTokens, "f", desc="Increment the number of tokens we're tracking") {
    peek(responseNetwork_in, ResponseMsg) {
      assert(in_msg.Tokens >= 1);
      getDirectoryEntry(address).Tokens := getDirectoryEntry(address).Tokens + in_msg.Tokens;
    }
  }

  action(aat_assertAllTokens, "aat", desc="assert that we have all tokens") {
    assert(getDirectoryEntry(address).Tokens == max_tokens());
  }

  action(j_popIncomingRequestQueue, "j", desc="Pop incoming request queue") {
    requestNetwork_in.dequeue(clockEdge());
  }

  action(z_recycleRequest, "z", desc="Recycle the request queue") {
    requestNetwork_in.recycle(clockEdge(), cyclesToTicks(recycle_latency));
  }

  action(k_popIncomingResponseQueue, "k", desc="Pop incoming response queue") {
    responseNetwork_in.dequeue(clockEdge());
  }

  action(kz_recycleResponse, "kz", desc="Recycle incoming response queue") {
    responseNetwork_in.recycle(clockEdge(), cyclesToTicks(recycle_latency));
  }

  action(l_popIncomingPersistentQueue, "l", desc="Pop incoming persistent queue") {
    persistentNetwork_in.dequeue(clockEdge());
  }

  action(p_popDmaRequestQueue, "pd", desc="pop dma request queue") {
    dmaRequestQueue_in.dequeue(clockEdge());
  }

  action(y_recycleDmaRequestQueue, "y", desc="recycle dma request queue") {
    dmaRequestQueue_in.recycle(clockEdge(), cyclesToTicks(recycle_latency));
  }

  action(l_popMemQueue, "q", desc="Pop off-chip request queue") {
    memQueue_in.dequeue(clockEdge());
  }

  action(r_bounceResponse, "r", desc="Bounce response to starving processor") {
    peek(responseNetwork_in, ResponseMsg) {
      enqueue(responseNetwork_out, ResponseMsg, 1) {
        out_msg.addr := address;
        out_msg.Type := in_msg.Type;
        out_msg.Sender := machineID;
        out_msg.Destination.add(persistentTable.findSmallest(address));
        out_msg.Tokens := in_msg.Tokens;
        out_msg.MessageSize := in_msg.MessageSize;
        out_msg.DataBlk := in_msg.DataBlk;
        out_msg.Dirty := in_msg.Dirty;
      }
    }
  }

  action(rs_resetScheduleTimeout, "rs", desc="Reschedule Schedule Timeout") {
    //
    // currently only support a fixed timeout latency
    //
    if (reissueTimerTable.isSet(address)) {
      reissueTimerTable.unset(address);
      reissueTimerTable.set(address, cyclesToTicks(fixed_timeout_latency));
    }
  }

  action(st_scheduleTimeout, "st", desc="Schedule Timeout") {
    //
    // currently only support a fixed timeout latency
    //
    reissueTimerTable.set(address, cyclesToTicks(fixed_timeout_latency));
  }

  action(ut_unsetReissueTimer, "ut", desc="Unset reissue timer.") {
    if (reissueTimerTable.isSet(address)) {
      reissueTimerTable.unset(address);
    }
  }

  action(bd_bounceDatalessOwnerToken, "bd", desc="Bounce clean owner token to starving processor") {
    peek(responseNetwork_in, ResponseMsg) {
      assert(in_msg.Type == CoherenceResponseType:ACK_OWNER);
      assert(in_msg.Dirty == false);
      assert(in_msg.MessageSize == MessageSizeType:Writeback_Control);

      // Bounce the message, but "re-associate" the data and the owner
      // token.  In essence we're converting an ACK_OWNER message to a
      // DATA_OWNER message, keeping the number of tokens the same.
      enqueue(responseNetwork_out, ResponseMsg, 1) {
        out_msg.addr := address;
        out_msg.Type := CoherenceResponseType:DATA_OWNER;
        out_msg.Sender := machineID;
        out_msg.Destination.add(persistentTable.findSmallest(address));
        out_msg.Tokens := in_msg.Tokens;
        out_msg.Dirty := in_msg.Dirty;
        out_msg.MessageSize := MessageSizeType:Response_Data;
      }
    }
  }

  action(da_sendDmaAck, "da", desc="Send Ack to DMA controller") {
    enqueue(dmaResponseNetwork_out, DMAResponseMsg, 1) {
      out_msg.PhysicalAddress := address;
      out_msg.LineAddress := address;
      out_msg.Type := DMAResponseType:ACK;
      out_msg.Destination.add(tbe.DmaRequestor);
      out_msg.MessageSize := MessageSizeType:Writeback_Control;
    }
  }

  action(dm_sendMemoryDataToDma, "dm", desc="Send Data to DMA controller from memory") {
    peek(memQueue_in, MemoryMsg) {
      enqueue(dmaResponseNetwork_out, DMAResponseMsg, 1) {
        out_msg.PhysicalAddress := address;
        out_msg.LineAddress := address;
        out_msg.Type := DMAResponseType:DATA;
        //
        // we send the entire data block and rely on the dma controller to
        // split it up if need be
        //
        out_msg.DataBlk := in_msg.DataBlk;
        out_msg.Destination.add(tbe.DmaRequestor);
        out_msg.MessageSize := MessageSizeType:Response_Data;
      }
    }
  }

  action(dd_sendDmaData, "dd", desc="Send Data to DMA controller") {
    peek(responseNetwork_in, ResponseMsg) {
      enqueue(dmaResponseNetwork_out, DMAResponseMsg, 1) {
        out_msg.PhysicalAddress := address;
        out_msg.LineAddress := address;
        out_msg.Type := DMAResponseType:DATA;
        //
        // we send the entire data block and rely on the dma controller to
        // split it up if need be
        //
        out_msg.DataBlk := in_msg.DataBlk;
        out_msg.Destination.add(tbe.DmaRequestor);
        out_msg.MessageSize := MessageSizeType:Response_Data;
      }
    }
  }

  // TRANSITIONS

  //
  // Trans. from base state O
  // the directory has valid data
  //
  transition(O, GETX, NO_W) {
    qf_queueMemoryFetchRequest;
    j_popIncomingRequestQueue;
  }

  transition(O, DMA_WRITE, O_DW) {
    vd_allocateDmaRequestInTBE;
    bw_broadcastWrite;
    st_scheduleTimeout;
    p_popDmaRequestQueue;
  }

  transition(O, DMA_WRITE_All_Tokens, O_DW_W) {
    vd_allocateDmaRequestInTBE;
    ld_queueMemoryDmaWriteFromTbe;
    p_popDmaRequestQueue;
  }

  transition(O, GETS, NO_W) {
    qf_queueMemoryFetchRequest;
    j_popIncomingRequestQueue;
  }

  transition(O, DMA_READ, O_DR_W) {
    vd_allocateDmaRequestInTBE;
    fd_memoryDma;
    st_scheduleTimeout;
    p_popDmaRequestQueue;
  }

  transition(O, Lockdown, L_O_W) {
    qp_queueMemoryForPersistent;
    l_popIncomingPersistentQueue;
  }

  transition(O, {Tokens, Ack_All_Tokens}) {
    f_incrementTokens;
    k_popIncomingResponseQueue;
  }

  transition(O, {Data_Owner, Data_All_Tokens}) {
    f_incrementTokens;
    k_popIncomingResponseQueue;
  }

  transition({O, NO}, Unlockdown) {
    l_popIncomingPersistentQueue;
  }

  //
  // transitioning to Owner, waiting for memory before DMA ack
  // All other events should recycle/stall
  //
  transition(O_DR_W, Memory_Data, O) {
    dm_sendMemoryDataToDma;
    ut_unsetReissueTimer;
    s_deallocateTBE;
    l_popMemQueue;
  }

  //
  // issued GETX for DMA write, waiting for all tokens
  //
  transition(O_DW, Request_Timeout) {
    ut_unsetReissueTimer;
    px_tryIssuingPersistentGETXRequest;
  }

  transition(O_DW, Tokens) {
    f_incrementTokens;
    k_popIncomingResponseQueue;
  }

  transition(O_DW, Data_Owner) {
    f_incrementTokens;
    rd_recordDataInTbe;
    k_popIncomingResponseQueue;
  }

  transition(O_DW, Ack_Owner) {
    f_incrementTokens;
    k_popIncomingResponseQueue;
  }

  transition(O_DW, Lockdown, DW_L) {
    de_sendTbeDataToStarver;
    l_popIncomingPersistentQueue;
  }

  transition({NO_DW, O_DW}, Data_All_Tokens, O_DW_W) {
    f_incrementTokens;
    rd_recordDataInTbe;
    ld_queueMemoryDmaWriteFromTbe;
    ut_unsetReissueTimer;
    k_popIncomingResponseQueue;
  }

  transition(O_DW, Ack_All_Tokens, O_DW_W) {
    f_incrementTokens;
    ld_queueMemoryDmaWriteFromTbe;
    ut_unsetReissueTimer;
    k_popIncomingResponseQueue;
  }

  transition(O_DW, Ack_Owner_All_Tokens, O_DW_W) {
    f_incrementTokens;
    ld_queueMemoryDmaWriteFromTbe;
    ut_unsetReissueTimer;
    k_popIncomingResponseQueue;
  }

  transition(O_DW_W, Memory_Ack, O) {
    da_sendDmaAck;
    s_deallocateTBE;
    l_popMemQueue;
  }

  //
  // Trans. from NO
  // The direcotry does not have valid data, but may have some tokens
  //
  transition(NO, GETX) {
    a_sendTokens;
    j_popIncomingRequestQueue;
  }

  transition(NO, DMA_WRITE, NO_DW) {
    vd_allocateDmaRequestInTBE;
    bw_broadcastWrite;
    st_scheduleTimeout;
    p_popDmaRequestQueue;
  }

  transition(NO, GETS) {
    j_popIncomingRequestQueue;
  }

  transition(NO, DMA_READ, NO_DR) {
    vd_allocateDmaRequestInTBE;
    br_broadcastRead;
    st_scheduleTimeout;
    p_popDmaRequestQueue;
  }

  transition(NO, Lockdown, L) {
    aa_sendTokensToStarver;
    l_popIncomingPersistentQueue;
  }

  transition(NO, {Data_Owner, Data_All_Tokens}, O_W) {
    f_incrementTokens;
    lq_queueMemoryWbRequest;
    k_popIncomingResponseQueue;
  }

  transition(NO, {Ack_Owner, Ack_Owner_All_Tokens}, O) {
    f_incrementTokens;
    k_popIncomingResponseQueue;
  }

  transition(NO, Tokens) {
    f_incrementTokens;
    k_popIncomingResponseQueue;
  }

  transition(NO_W, Memory_Data, NO) {
    d_sendMemoryDataWithAllTokens;
    l_popMemQueue;
  }

  // Trans. from NO_DW
  transition(NO_DW, Request_Timeout) {
    ut_unsetReissueTimer;
    px_tryIssuingPersistentGETXRequest;
  }

  transition(NO_DW, Lockdown, DW_L) {
    aa_sendTokensToStarver;
    l_popIncomingPersistentQueue;
  }

  // Note: NO_DW, Data_All_Tokens transition is combined with O_DW
  // Note: NO_DW should not receive the action Ack_All_Tokens because the
  // directory does not have valid data

  transition(NO_DW, Data_Owner, O_DW) {
    f_incrementTokens;
    rd_recordDataInTbe;
    k_popIncomingResponseQueue;
  }

  transition({NO_DW, NO_DR}, Tokens) {
    f_incrementTokens;
    k_popIncomingResponseQueue;
  }

  // Trans. from NO_DR
  transition(NO_DR, Request_Timeout) {
    ut_unsetReissueTimer;
    ps_tryIssuingPersistentGETSRequest;
  }

  transition(NO_DR, Lockdown, DR_L) {
    aa_sendTokensToStarver;
    l_popIncomingPersistentQueue;
  }

  transition(NO_DR, {Data_Owner, Data_All_Tokens}, O_W) {
    f_incrementTokens;
    dd_sendDmaData;
    lr_queueMemoryDmaReadWriteback;
    ut_unsetReissueTimer;
    s_deallocateTBE;
    k_popIncomingResponseQueue;
  }

  // Trans. from L
  transition({L, DW_L, DR_L}, {GETX, GETS}) {
    j_popIncomingRequestQueue;
  }

  transition({L, DW_L, DR_L, L_O_W, L_NO_W, DR_L_W, DW_L_W}, Lockdown) {
    l_popIncomingPersistentQueue;
  }

  //
  // Received data for lockdown blocks
  // For blocks with outstanding dma requests to them
  // ...we could change this to write the data to memory and send it cleanly
  // ...we could also proactively complete our DMA requests
  // However, to keep my mind from spinning out-of-control, we won't for now :)
  //
  transition({DW_L, DR_L, L}, {Data_Owner, Data_All_Tokens}) {
    r_bounceResponse;
    k_popIncomingResponseQueue;
  }

  transition({DW_L, DR_L, L}, Tokens) {
    r_bounceResponse;
    k_popIncomingResponseQueue;
  }

  transition({DW_L, DR_L}, {Ack_Owner_All_Tokens, Ack_Owner}) {
    bd_bounceDatalessOwnerToken;
    k_popIncomingResponseQueue;
  }

  transition(L, {Ack_Owner_All_Tokens, Ack_Owner}, L_O_W) {
    f_incrementTokens;
    qp_queueMemoryForPersistent;
    k_popIncomingResponseQueue;
  }

  transition(L, {Unlockdown, Own_Lock_or_Unlock}, NO) {
    l_popIncomingPersistentQueue;
  }

  transition(L, Own_Lock_or_Unlock_Tokens, O) {
    l_popIncomingPersistentQueue;
  }

  transition({L_NO_W, L_O_W}, Memory_Data, L) {
    dd_sendMemDataToStarver;
    l_popMemQueue;
  }

  transition(L_O_W, Memory_Ack) {
    qp_queueMemoryForPersistent;
    l_popMemQueue;
  }

  transition(L_O_W, {Unlockdown, Own_Lock_or_Unlock, Own_Lock_or_Unlock_Tokens}, O_W) {
    l_popIncomingPersistentQueue;
  }

  transition(L_NO_W, {Unlockdown, Own_Lock_or_Unlock, Own_Lock_or_Unlock_Tokens}, NO_W) {
    l_popIncomingPersistentQueue;
  }

  transition(DR_L_W, Memory_Data, DR_L) {
    dd_sendMemDataToStarver;
    l_popMemQueue;
  }

  transition(DW_L_W, Memory_Ack, L) {
    aat_assertAllTokens;
    da_sendDmaAck;
    s_deallocateTBE;
    dd_sendMemDataToStarver;
    l_popMemQueue;
  }

  transition(DW_L, {Unlockdown, Own_Lock_or_Unlock, Own_Lock_or_Unlock_Tokens}, NO_DW) {
    l_popIncomingPersistentQueue;
  }

  transition(DR_L_W, {Unlockdown, Own_Lock_or_Unlock, Own_Lock_or_Unlock_Tokens}, O_DR_W) {
    l_popIncomingPersistentQueue;
  }

  transition(DW_L_W, {Unlockdown, Own_Lock_or_Unlock, Own_Lock_or_Unlock_Tokens}, O_DW_W) {
    l_popIncomingPersistentQueue;
  }

  transition({DW_L, DR_L_W, DW_L_W}, Request_Timeout) {
    ut_unsetReissueTimer;
    px_tryIssuingPersistentGETXRequest;
  }

  transition(DR_L, {Unlockdown, Own_Lock_or_Unlock, Own_Lock_or_Unlock_Tokens}, NO_DR) {
    l_popIncomingPersistentQueue;
  }

  transition(DR_L, Request_Timeout) {
    ut_unsetReissueTimer;
    ps_tryIssuingPersistentGETSRequest;
  }

  //
  // The O_W + Memory_Data > O transistion is confusing, but it can happen if a
  // presistent request is issued and resolve before memory returns with data
  //
  transition(O_W, {Memory_Ack, Memory_Data}, O) {
    l_popMemQueue;
  }

  transition({O, NO}, {Own_Lock_or_Unlock, Own_Lock_or_Unlock_Tokens}) {
    l_popIncomingPersistentQueue;
  }

  // Blocked states
  transition({NO_W, O_W, L_O_W, L_NO_W, DR_L_W, DW_L_W, O_DW_W, O_DR_W, O_DW, NO_DW, NO_DR}, {GETX, GETS}) {
    z_recycleRequest;
  }

  transition({NO_W, O_W, L_O_W, L_NO_W, DR_L_W, DW_L_W, O_DW_W, O_DR_W, O_DW, NO_DW, NO_DR, L, DW_L, DR_L}, {DMA_READ, DMA_WRITE, DMA_WRITE_All_Tokens}) {
    y_recycleDmaRequestQueue;
  }

  transition({NO_W, O_W, L_O_W, L_NO_W, DR_L_W, DW_L_W, O_DW_W, O_DR_W}, {Data_Owner, Ack_Owner, Tokens, Data_All_Tokens, Ack_All_Tokens}) {
    kz_recycleResponse;
  }

  //
  // If we receive a request timeout while waiting for memory, it is likely that
  // the request will be satisfied and issuing a presistent request will do us
  // no good.  Just wait.
  //
  transition({O_DW_W, O_DR_W}, Request_Timeout) {
    rs_resetScheduleTimeout;
  }

  transition(NO_W, Lockdown, L_NO_W) {
    l_popIncomingPersistentQueue;
  }

  transition(O_W, Lockdown, L_O_W) {
    l_popIncomingPersistentQueue;
  }

  transition(O_DR_W, Lockdown, DR_L_W) {
    l_popIncomingPersistentQueue;
  }

  transition(O_DW_W, Lockdown, DW_L_W) {
    l_popIncomingPersistentQueue;
  }

  transition({NO_W, O_W, O_DR_W, O_DW_W, O_DW, NO_DR, NO_DW}, {Unlockdown, Own_Lock_or_Unlock, Own_Lock_or_Unlock_Tokens}) {
    l_popIncomingPersistentQueue;
  }
}