summaryrefslogtreecommitdiff
path: root/src/mem/protocol/MOESI_hammer-dir.sm
blob: 49efaffb684db508966ac0e9e0fd39858201e48a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
/*
 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
 * Copyright (c) 2009 Advanced Micro Devices, Inc.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * AMD's contributions to the MOESI hammer protocol do not constitute an 
 * endorsement of its similarity to any AMD products.
 *
 * Authors: Milo Martin
 *          Brad Beckmann
 */

machine(Directory, "AMD Hammer-like protocol") 
: int memory_controller_latency
{

  MessageBuffer forwardFromDir, network="To", virtual_network="2", ordered="false";
  MessageBuffer responseFromDir, network="To", virtual_network="1", ordered="false";
  //MessageBuffer dmaRequestFromDir, network="To", virtual_network="4", ordered="true";

  MessageBuffer requestToDir, network="From", virtual_network="3", ordered="false";
  MessageBuffer unblockToDir, network="From", virtual_network="0", ordered="false";
  //MessageBuffer dmaRequestToDir, network="From", virtual_network="5", ordered="true";

  // STATES
  enumeration(State, desc="Directory states", default="Directory_State_E") {
    // Base states
    NO,             desc="Not Owner";
    O,              desc="Owner";
    E,              desc="Exclusive Owner (we can provide the data in exclusive)";
    NO_B,  "NO^B",  desc="Not Owner, Blocked";
    O_B,   "O^B",   desc="Owner, Blocked";
    NO_B_W,         desc="Not Owner, Blocked, waiting for Dram";
    O_B_W,          desc="Owner, Blocked, waiting for Dram";
    NO_W,           desc="Not Owner, waiting for Dram";
    O_W,            desc="Owner, waiting for Dram";
    WB,             desc="Blocked on a writeback";
    WB_O_W,         desc="Blocked on memory write, will go to O";
    WB_E_W,         desc="Blocked on memory write, will go to E";
  }

  // Events
  enumeration(Event, desc="Directory events") {
    GETX,                      desc="A GETX arrives";
    GETS,                      desc="A GETS arrives";
    PUT,                       desc="A PUT arrives"; 
    Unblock,                   desc="An unblock message arrives";
    Writeback_Clean,           desc="The final part of a PutX (no data)";
    Writeback_Dirty,           desc="The final part of a PutX (data)";
    Writeback_Exclusive_Clean, desc="The final part of a PutX (no data, exclusive)";
    Writeback_Exclusive_Dirty, desc="The final part of a PutX (data, exclusive)";

    // Memory Controller
    Memory_Data, desc="Fetched data from memory arrives";
    Memory_Ack, desc="Writeback Ack from memory arrives";
  }

  // TYPES

  // DirectoryEntry
  structure(Entry, desc="...") {
    State DirectoryState,          desc="Directory state";
    DataBlock DataBlk,             desc="data for the block";
  }

  external_type(DirectoryMemory) {
    Entry lookup(Address);
    bool isPresent(Address);
  }

  external_type(MemoryControl, inport="yes", outport="yes") {

  }

  // TBE entries for DMA requests
  structure(TBE, desc="TBE entries for outstanding DMA requests") {
    Address PhysicalAddress, desc="physical address";
    State TBEState,        desc="Transient State";
    CoherenceResponseType ResponseType, desc="The type for the subsequent response message";
    DataBlock DataBlk,     desc="Data to be written (DMA write only)";
    int Len,               desc="...";
    MachineID DmaRequestor, desc="DMA requestor";
  }

  external_type(TBETable) {
    TBE lookup(Address);
    void allocate(Address);
    void deallocate(Address);
    bool isPresent(Address);
  }

  // ** OBJECTS **

  DirectoryMemory directory, factory='RubySystem::getDirectory(m_cfg["directory_name"])';

  MemoryControl memBuffer, factory='RubySystem::getMemoryControl(m_cfg["memory_controller_name"])';

  TBETable TBEs, template_hack="<Directory_TBE>";

  State getState(Address addr) {
    if (TBEs.isPresent(addr)) {
      return TBEs[addr].TBEState;
    } else {
      return directory[addr].DirectoryState;
    }
  }
  
  void setState(Address addr, State state) {
    if (TBEs.isPresent(addr)) {
      TBEs[addr].TBEState := state;
    }
    directory[addr].DirectoryState := state;
  }
  
  // ** OUT_PORTS **
  out_port(forwardNetwork_out, RequestMsg, forwardFromDir);
  out_port(responseNetwork_out, ResponseMsg, responseFromDir);
  out_port(requestQueue_out, ResponseMsg, requestToDir); // For recycling requests
  
  //
  // Memory buffer for memory controller to DIMM communication
  //
  out_port(memQueue_out, MemoryMsg, memBuffer);

  // ** IN_PORTS **
  
  in_port(unblockNetwork_in, ResponseMsg, unblockToDir) {
    if (unblockNetwork_in.isReady()) {
      peek(unblockNetwork_in, ResponseMsg) {
        if (in_msg.Type == CoherenceResponseType:UNBLOCK) {
          trigger(Event:Unblock, in_msg.Address);
        } else if (in_msg.Type == CoherenceResponseType:WB_CLEAN) {
          trigger(Event:Writeback_Clean, in_msg.Address);
        } else if (in_msg.Type == CoherenceResponseType:WB_DIRTY) {
          trigger(Event:Writeback_Dirty, in_msg.Address);
        } else if (in_msg.Type == CoherenceResponseType:WB_EXCLUSIVE_CLEAN) {
          trigger(Event:Writeback_Exclusive_Clean, in_msg.Address);
        } else if (in_msg.Type == CoherenceResponseType:WB_EXCLUSIVE_DIRTY) {
          trigger(Event:Writeback_Exclusive_Dirty, in_msg.Address);
        } else {
          error("Invalid message");
        }
      }
    }
  }

  in_port(requestQueue_in, RequestMsg, requestToDir) {
    if (requestQueue_in.isReady()) {
      peek(requestQueue_in, RequestMsg) {
        if (in_msg.Type == CoherenceRequestType:GETS) {
          trigger(Event:GETS, in_msg.Address);
        } else if (in_msg.Type == CoherenceRequestType:GETX) {
          trigger(Event:GETX, in_msg.Address);
        } else if (in_msg.Type == CoherenceRequestType:PUT) {
          trigger(Event:PUT, in_msg.Address);
        } else {
          error("Invalid message");
        }
      }
    }
  }

  // off-chip memory request/response is done
  in_port(memQueue_in, MemoryMsg, memBuffer) {
    if (memQueue_in.isReady()) {
      peek(memQueue_in, MemoryMsg) {
        if (in_msg.Type == MemoryRequestType:MEMORY_READ) {
          trigger(Event:Memory_Data, in_msg.Address);
        } else if (in_msg.Type == MemoryRequestType:MEMORY_WB) {
          trigger(Event:Memory_Ack, in_msg.Address);
        } else {
          DEBUG_EXPR(in_msg.Type);
          error("Invalid message");
        }
      }
    }
  }

  // Actions
  
  action(a_sendWriteBackAck, "a", desc="Send writeback ack to requestor") {
    peek(requestQueue_in, RequestMsg) {
      enqueue(forwardNetwork_out, RequestMsg, latency=memory_controller_latency) {
        out_msg.Address := address;
        out_msg.Type := CoherenceRequestType:WB_ACK;
        out_msg.Requestor := in_msg.Requestor;
        out_msg.Destination.add(in_msg.Requestor);
        out_msg.MessageSize := MessageSizeType:Writeback_Control;
      }
    }
  }

  action(b_sendWriteBackNack, "b", desc="Send writeback nack to requestor") {
    peek(requestQueue_in, RequestMsg) {
      enqueue(forwardNetwork_out, RequestMsg, latency=memory_controller_latency) {
        out_msg.Address := address;
        out_msg.Type := CoherenceRequestType:WB_NACK;
        out_msg.Requestor := in_msg.Requestor;
        out_msg.Destination.add(in_msg.Requestor);
        out_msg.MessageSize := MessageSizeType:Writeback_Control;
      }
    }
  }

  action(v_allocateTBE, "v", desc="Allocate TBE") {
    peek(requestQueue_in, RequestMsg) {
      TBEs.allocate(address);
      TBEs[address].PhysicalAddress := address;
      TBEs[address].ResponseType := CoherenceResponseType:NULL;
    }
  }

  action(w_deallocateTBE, "w", desc="Deallocate TBE") {
    TBEs.deallocate(address);
  }

  action(d_sendData, "d", desc="Send data to requestor") {
    peek(memQueue_in, MemoryMsg) {
      enqueue(responseNetwork_out, ResponseMsg, latency="1") {
        out_msg.Address := address;
        out_msg.Type := TBEs[address].ResponseType;
        out_msg.Sender := machineID;
        out_msg.Destination.add(in_msg.OriginalRequestorMachId);
        out_msg.DataBlk := in_msg.DataBlk;
        out_msg.Dirty := false; // By definition, the block is now clean
        out_msg.Acks := 1;
        out_msg.MessageSize := MessageSizeType:Response_Data;
      }
    }
  }

  action(rx_recordExclusiveInTBE, "rx", desc="Record Exclusive in TBE") {
    peek(requestQueue_in, RequestMsg) {
      TBEs[address].ResponseType := CoherenceResponseType:DATA_EXCLUSIVE;
    }
  }

  action(r_recordDataInTBE, "r", desc="Record Data in TBE") {
    peek(requestQueue_in, RequestMsg) {
      TBEs[address].ResponseType := CoherenceResponseType:DATA;
    }
  }

  action(qf_queueMemoryFetchRequest, "qf", desc="Queue off-chip fetch request") {
    peek(requestQueue_in, RequestMsg) {
      enqueue(memQueue_out, MemoryMsg, latency="1") {
        out_msg.Address := address;
        out_msg.Type := MemoryRequestType:MEMORY_READ;
        out_msg.Sender := machineID;
        out_msg.OriginalRequestorMachId := in_msg.Requestor;
        out_msg.MessageSize := in_msg.MessageSize;
        out_msg.DataBlk := directory[in_msg.Address].DataBlk;
        DEBUG_EXPR(out_msg);
      }
    }
  }

//  action(qx_queueMemoryFetchExclusiveRequest, "xf", desc="Queue off-chip fetch request") {
//    peek(requestQueue_in, RequestMsg) {
//      enqueue(memQueue_out, MemoryMsg, latency=memory_request_latency) {
//        out_msg.Address := address;
//        out_msg.Type := MemoryRequestType:MEMORY_READ;
//        out_msg.ResponseType := CoherenceResponseType:DATA_EXCLUSIVE;
//        out_msg.Sender := machineID;
//        out_msg.OriginalRequestorMachId := in_msg.Requestor;
//        out_msg.MessageSize := in_msg.MessageSize;
//        out_msg.DataBlk := directory[in_msg.Address].DataBlk;
//        DEBUG_EXPR(out_msg);
//      }
//    }
//  }

//  action(d_sendData, "d", desc="Send data to requestor") {
//    peek(requestQueue_in, RequestMsg) {
//     enqueue(responseNetwork_out, ResponseMsg, latency=memory_latency) {
//        out_msg.Address := address;
//        out_msg.Type := CoherenceResponseType:DATA;
//        out_msg.Sender := machineID;
//        out_msg.Destination.add(in_msg.Requestor);
//        out_msg.DataBlk := directory[in_msg.Address].DataBlk;
//        out_msg.Dirty := false; // By definition, the block is now clean
//        out_msg.Acks := 1;
//        out_msg.MessageSize := MessageSizeType:Response_Data;
//      }
//    }
//  }

//  action(dd_sendExclusiveData, "\d", desc="Send exclusive data to requestor") {
//    peek(requestQueue_in, RequestMsg) {
//      enqueue(responseNetwork_out, ResponseMsg, latency=memory_latency) {
//        out_msg.Address := address;
//        out_msg.Type := CoherenceResponseType:DATA_EXCLUSIVE;
//        out_msg.Sender := machineID;
//        out_msg.Destination.add(in_msg.Requestor);
//        out_msg.DataBlk := directory[in_msg.Address].DataBlk;
//        out_msg.Dirty := false; // By definition, the block is now clean
//        out_msg.Acks := 1;
//        out_msg.MessageSize := MessageSizeType:Response_Data;
//      }
//    }
//  }

  action(f_forwardRequest, "f", desc="Forward requests") {
    if (getNumberOfLastLevelCaches() > 1) {
      peek(requestQueue_in, RequestMsg) {
        enqueue(forwardNetwork_out, RequestMsg, latency=memory_controller_latency) {
          out_msg.Address := address;
          out_msg.Type := in_msg.Type;
          out_msg.Requestor := in_msg.Requestor;
          out_msg.Destination.broadcast(MachineType:L1Cache); // Send to all L1 caches
          out_msg.Destination.remove(in_msg.Requestor); // Don't include the original requestor
          out_msg.MessageSize := MessageSizeType:Forwarded_Control;
        }
      }
    }
  }

  action(i_popIncomingRequestQueue, "i", desc="Pop incoming request queue") {
    requestQueue_in.dequeue();
  }

  action(j_popIncomingUnblockQueue, "j", desc="Pop incoming unblock queue") {
    unblockNetwork_in.dequeue();
  }

  action(l_popMemQueue, "q", desc="Pop off-chip request queue") {
    memQueue_in.dequeue();
  }

  action(l_writeDataToMemory, "l", desc="Write PUTX/PUTO data to memory") {
    peek(unblockNetwork_in, ResponseMsg) {
      assert(in_msg.Dirty);
      assert(in_msg.MessageSize == MessageSizeType:Writeback_Data);
      directory[in_msg.Address].DataBlk := in_msg.DataBlk;
      DEBUG_EXPR(in_msg.Address);
      DEBUG_EXPR(in_msg.DataBlk);
    }
  }

  action(l_queueMemoryWBRequest, "lq", desc="Write PUTX data to memory") {
    peek(unblockNetwork_in, ResponseMsg) {
      enqueue(memQueue_out, MemoryMsg, latency="1") {
        out_msg.Address := address;
        out_msg.Type := MemoryRequestType:MEMORY_WB;
        DEBUG_EXPR(out_msg);
      }
    }
  }

  action(ll_checkIncomingWriteback, "\l", desc="Check PUTX/PUTO response message") {
    peek(unblockNetwork_in, ResponseMsg) {
      assert(in_msg.Dirty == false);
      assert(in_msg.MessageSize == MessageSizeType:Writeback_Control);

      // NOTE: The following check would not be valid in a real
      // implementation.  We include the data in the "dataless"
      // message so we can assert the clean data matches the datablock
      // in memory
      assert(directory[in_msg.Address].DataBlk == in_msg.DataBlk);
    }
  }

  //  action(z_stall, "z", desc="Cannot be handled right now.") {
    // Special name recognized as do nothing case
  //  }

  action(zz_recycleRequest, "\z", desc="Recycle the request queue") {
    requestQueue_in.recycle();
  }

  // TRANSITIONS

  transition(E, GETX, NO_B_W) {
    v_allocateTBE;
    rx_recordExclusiveInTBE;
    qf_queueMemoryFetchRequest;
    f_forwardRequest;
    i_popIncomingRequestQueue;
  }

  transition(E, GETS, NO_B_W) {
    v_allocateTBE;
    rx_recordExclusiveInTBE;
    qf_queueMemoryFetchRequest;
    f_forwardRequest;
    i_popIncomingRequestQueue;
  }

  // 
  transition(O, GETX, NO_B_W) {
    v_allocateTBE;
    r_recordDataInTBE;
    qf_queueMemoryFetchRequest;
    f_forwardRequest;
    i_popIncomingRequestQueue;
  }

  transition(O, GETS, O_B_W) {
    v_allocateTBE;
    r_recordDataInTBE;
    qf_queueMemoryFetchRequest;
    f_forwardRequest;
    i_popIncomingRequestQueue;
  }

  //
  transition(NO, GETX, NO_B) {
    f_forwardRequest;
    i_popIncomingRequestQueue;
  }

  transition(NO, GETS, NO_B) {
    f_forwardRequest;
    i_popIncomingRequestQueue;
  }

  transition(NO, PUT, WB) {
    a_sendWriteBackAck;
    i_popIncomingRequestQueue;
  }

  transition({O, E}, PUT) {
    b_sendWriteBackNack;
    i_popIncomingRequestQueue;
  }

  // Blocked states
  transition({NO_B, O_B, NO_B_W, O_B_W, NO_W, O_W, WB, WB_E_W, WB_O_W}, {GETS, GETX, PUT}) {
    zz_recycleRequest;
  }

  transition(NO_B, Unblock, NO) {
    j_popIncomingUnblockQueue;
  }

  transition(O_B, Unblock, O) {
    j_popIncomingUnblockQueue;
  }

  transition(NO_B_W, Memory_Data, NO_B) {
    d_sendData;
    w_deallocateTBE;
    l_popMemQueue;
  }

  transition(O_B_W, Memory_Data, O_B) {
    d_sendData;
    w_deallocateTBE;
    l_popMemQueue;
  }

  transition(NO_B_W, Unblock, NO_W) {
    j_popIncomingUnblockQueue;
  }

  transition(O_B_W, Unblock, O_W) {
    j_popIncomingUnblockQueue;
  }

  transition(NO_W, Memory_Data, NO) {
    w_deallocateTBE;
    l_popMemQueue;
  }

  transition(O_W, Memory_Data, O) {
    w_deallocateTBE;
    l_popMemQueue;
  }

  // WB
  transition(WB, Writeback_Dirty, WB_E_W) {
    l_writeDataToMemory;
    l_queueMemoryWBRequest;
    j_popIncomingUnblockQueue;
  }

  transition(WB, Writeback_Exclusive_Dirty, WB_O_W) {
    l_writeDataToMemory;
    l_queueMemoryWBRequest;
    j_popIncomingUnblockQueue;
  }

  transition(WB_E_W, Memory_Ack, E) {
    l_popMemQueue;
  }

  transition(WB_O_W, Memory_Ack, O) {
    l_popMemQueue;
  }

  transition(WB, Writeback_Clean, O) {
    ll_checkIncomingWriteback;
    j_popIncomingUnblockQueue;
  }

  transition(WB, Writeback_Exclusive_Clean, E) {
    ll_checkIncomingWriteback;
    j_popIncomingUnblockQueue;
  }

  transition(WB, Unblock, NO) {
    j_popIncomingUnblockQueue;
  }
}