1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
|
/*
* Copyright (c) 2018 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Author: Matteo Andreozzi
*/
#include "debug/Drain.hh"
#include "debug/QOS.hh"
#include "mem_sink.hh"
#include "sim/system.hh"
namespace QoS {
MemSinkCtrl::MemSinkCtrl(const QoSMemSinkCtrlParams* p)
: MemCtrl(p), requestLatency(p->request_latency),
responseLatency(p->response_latency),
memoryPacketSize(p->memory_packet_size),
readBufferSize(p->read_buffer_size),
writeBufferSize(p->write_buffer_size), port(name() + ".port", *this),
retryRdReq(false), retryWrReq(false), nextRequest(0), nextReqEvent(this)
{
// Resize read and write queue to allocate space
// for configured QoS priorities
readQueue.resize(numPriorities());
writeQueue.resize(numPriorities());
}
MemSinkCtrl::~MemSinkCtrl()
{}
void
MemSinkCtrl::init()
{
MemCtrl::init();
// Allow unconnected memories as this is used in several ruby
// systems at the moment
if (port.isConnected()) {
port.sendRangeChange();
}
}
bool
MemSinkCtrl::readQueueFull(const uint64_t packets) const
{
return (totalReadQueueSize + packets > readBufferSize);
}
bool
MemSinkCtrl::writeQueueFull(const uint64_t packets) const
{
return (totalWriteQueueSize + packets > writeBufferSize);
}
Tick
MemSinkCtrl::recvAtomic(PacketPtr pkt)
{
panic_if(pkt->cacheResponding(),
"%s Should not see packets where cache is responding\n",
__func__);
access(pkt);
return responseLatency;
}
void
MemSinkCtrl::recvFunctional(PacketPtr pkt)
{
pkt->pushLabel(name());
functionalAccess(pkt);
pkt->popLabel();
}
BaseSlavePort &
MemSinkCtrl::getSlavePort(const std::string &interface, PortID idx)
{
if (interface != "port") {
return MemObject::getSlavePort(interface, idx);
} else {
return port;
}
}
bool
MemSinkCtrl::recvTimingReq(PacketPtr pkt)
{
// Request accepted
bool req_accepted = true;
panic_if(!(pkt->isRead() || pkt->isWrite()),
"%s. Should only see "
"read and writes at memory controller\n",
__func__);
panic_if(pkt->cacheResponding(),
"%s. Should not see packets where cache is responding\n",
__func__);
DPRINTF(QOS,
"%s: MASTER %s request %s addr %lld size %d\n",
__func__,
_system->getMasterName(pkt->req->masterId()),
pkt->cmdString(), pkt->getAddr(), pkt->getSize());
uint64_t required_entries = divCeil(pkt->getSize(), memoryPacketSize);
assert(required_entries);
// Schedule packet
uint8_t pkt_priority = qosSchedule({&readQueue, &writeQueue},
memoryPacketSize, pkt);
if (pkt->isRead()) {
if (readQueueFull(required_entries)) {
DPRINTF(QOS,
"%s Read queue full, not accepting\n", __func__);
// Remember that we have to retry this port
retryRdReq = true;
numReadRetries++;
req_accepted = false;
} else {
// Enqueue the incoming packet into corresponding
// QoS priority queue
readQueue.at(pkt_priority).push_back(pkt);
queuePolicy->enqueuePacket(pkt);
}
} else {
if (writeQueueFull(required_entries)) {
DPRINTF(QOS,
"%s Write queue full, not accepting\n", __func__);
// Remember that we have to retry this port
retryWrReq = true;
numWriteRetries++;
req_accepted = false;
} else {
// Enqueue the incoming packet into corresponding QoS
// priority queue
writeQueue.at(pkt_priority).push_back(pkt);
queuePolicy->enqueuePacket(pkt);
}
}
if (req_accepted) {
// The packet is accepted - log it
logRequest(pkt->isRead()? READ : WRITE,
pkt->req->masterId(),
pkt->qosValue(),
pkt->getAddr(),
required_entries);
}
// Check if we have to process next request event
if (!nextReqEvent.scheduled()) {
DPRINTF(QOS,
"%s scheduling next request at "
"time %d (next is %d)\n", __func__,
std::max(curTick(), nextRequest), nextRequest);
schedule(nextReqEvent, std::max(curTick(), nextRequest));
}
return req_accepted;
}
void
MemSinkCtrl::processNextReqEvent()
{
PacketPtr pkt = nullptr;
// Evaluate bus direction
busStateNext = selectNextBusState();
// Record turnaround stats and update current state direction
recordTurnaroundStats();
// Set current bus state
setCurrentBusState();
// Access current direction buffer
std::vector<PacketQueue>* queue_ptr = (busState == READ ? &readQueue :
&writeQueue);
DPRINTF(QOS,
"%s DUMPING %s queues status\n", __func__,
(busState == WRITE ? "WRITE" : "READ"));
if (DTRACE(QOS)) {
for (uint8_t i = 0; i < numPriorities(); ++i) {
std::string plist = "";
for (auto& e : (busState == WRITE ? writeQueue[i]: readQueue[i])) {
plist += (std::to_string(e->req->masterId())) + " ";
}
DPRINTF(QOS,
"%s priority Queue [%i] contains %i elements, "
"packets are: [%s]\n", __func__, i,
busState == WRITE ? writeQueueSizes[i] :
readQueueSizes[i],
plist);
}
}
uint8_t curr_prio = numPriorities();
for (auto queue = (*queue_ptr).rbegin();
queue != (*queue_ptr).rend(); ++queue) {
curr_prio--;
DPRINTF(QOS,
"%s checking %s queue [%d] priority [%d packets]\n",
__func__, (busState == READ? "READ" : "WRITE"),
curr_prio, queue->size());
if (!queue->empty()) {
// Call the queue policy to select packet from priority queue
auto p_it = queuePolicy->selectPacket(&(*queue));
pkt = *p_it;
queue->erase(p_it);
DPRINTF(QOS,
"%s scheduling packet address %d for master %s from "
"priority queue %d\n", __func__, pkt->getAddr(),
_system->getMasterName(pkt->req->masterId()),
curr_prio);
break;
}
}
assert(pkt);
// Setup next request service time - do it here as retry request
// hands over control to the port
nextRequest = curTick() + requestLatency;
uint64_t removed_entries = divCeil(pkt->getSize(), memoryPacketSize);
DPRINTF(QOS,
"%s scheduled packet address %d for master %s size is %d, "
"corresponds to %d memory packets\n", __func__, pkt->getAddr(),
_system->getMasterName(pkt->req->masterId()),
pkt->getSize(), removed_entries);
// Schedule response
panic_if(!pkt->needsResponse(),
"%s response not required\n", __func__);
// Do the actual memory access which also turns the packet
// into a response
access(pkt);
// Log the response
logResponse(pkt->isRead()? READ : WRITE,
pkt->req->masterId(),
pkt->qosValue(),
pkt->getAddr(),
removed_entries, responseLatency);
// Schedule the response
port.schedTimingResp(pkt, curTick() + responseLatency);
DPRINTF(QOS,
"%s response scheduled at time %d\n",
__func__, curTick() + responseLatency);
// Finally - handle retry requests - this handles control
// to the port, so do it last
if (busState == READ && retryRdReq) {
retryRdReq = false;
port.sendRetryReq();
} else if (busState == WRITE && retryWrReq) {
retryWrReq = false;
port.sendRetryReq();
}
// Check if we have to schedule another request event
if ((totalReadQueueSize || totalWriteQueueSize) &&
!nextReqEvent.scheduled()) {
schedule(nextReqEvent, curTick() + requestLatency);
DPRINTF(QOS,
"%s scheduling next request event at tick %d\n",
__func__, curTick() + requestLatency);
}
}
DrainState
MemSinkCtrl::drain()
{
if (totalReadQueueSize || totalWriteQueueSize) {
DPRINTF(Drain,
"%s queues have requests, waiting to drain\n",
__func__);
return DrainState::Draining;
} else {
return DrainState::Drained;
}
}
void
MemSinkCtrl::regStats()
{
MemCtrl::regStats();
// Initialize all the stats
using namespace Stats;
numReadRetries.name(name() + ".numReadRetries")
.desc("Number of read retries");
numWriteRetries.name(name() + ".numWriteRetries")
.desc("Number of write retries");
}
MemSinkCtrl::MemoryPort::MemoryPort(const std::string& n,
MemSinkCtrl& m)
: QueuedSlavePort(n, &m, queue, true), memory(m), queue(memory, *this, true)
{}
AddrRangeList
MemSinkCtrl::MemoryPort::getAddrRanges() const
{
AddrRangeList ranges;
ranges.push_back(memory.getAddrRange());
return ranges;
}
Tick
MemSinkCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
{
return memory.recvAtomic(pkt);
}
void
MemSinkCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
{
pkt->pushLabel(memory.name());
if (!queue.trySatisfyFunctional(pkt)) {
// Default implementation of SimpleTimingPort::recvFunctional()
// calls recvAtomic() and throws away the latency; we can save a
// little here by just not calculating the latency.
memory.recvFunctional(pkt);
}
pkt->popLabel();
}
bool
MemSinkCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
{
return memory.recvTimingReq(pkt);
}
} // namespace QoS
QoS::MemSinkCtrl*
QoSMemSinkCtrlParams::create()
{
return new QoS::MemSinkCtrl(this);
}
|