1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
|
/*
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <cassert>
#include "base/cprintf.hh"
#include "base/misc.hh"
#include "base/stl_helpers.hh"
#include "debug/RubyQueue.hh"
#include "mem/ruby/buffers/MessageBuffer.hh"
#include "mem/ruby/system/System.hh"
using namespace std;
using m5::stl_helpers::operator<<;
MessageBuffer::MessageBuffer(const string &name)
{
m_msg_counter = 0;
m_consumer_ptr = NULL;
m_ordering_set = false;
m_strict_fifo = true;
m_size = 0;
m_max_size = -1;
m_last_arrival_time = 0;
m_randomization = true;
m_size_last_time_size_checked = 0;
m_time_last_time_size_checked = 0;
m_time_last_time_enqueue = 0;
m_time_last_time_pop = 0;
m_size_at_cycle_start = 0;
m_msgs_this_cycle = 0;
m_not_avail_count = 0;
m_priority_rank = 0;
m_name = name;
m_stall_msg_map.clear();
m_input_link_id = 0;
m_vnet_id = 0;
}
int
MessageBuffer::getSize()
{
if (m_time_last_time_size_checked == g_system_ptr->getTime()) {
return m_size_last_time_size_checked;
} else {
m_time_last_time_size_checked = g_system_ptr->getTime();
m_size_last_time_size_checked = m_size;
return m_size;
}
}
bool
MessageBuffer::areNSlotsAvailable(int n)
{
// fast path when message buffers have infinite size
if (m_max_size == -1) {
return true;
}
// determine my correct size for the current cycle
// pop operations shouldn't effect the network's visible size
// until next cycle, but enqueue operations effect the visible
// size immediately
int current_size = max(m_size_at_cycle_start, m_size);
if (m_time_last_time_pop < g_system_ptr->getTime()) {
// no pops this cycle - m_size is correct
current_size = m_size;
} else {
if (m_time_last_time_enqueue < g_system_ptr->getTime()) {
// no enqueues this cycle - m_size_at_cycle_start is correct
current_size = m_size_at_cycle_start;
} else {
// both pops and enqueues occured this cycle - add new
// enqueued msgs to m_size_at_cycle_start
current_size = m_size_at_cycle_start+m_msgs_this_cycle;
}
}
// now compare the new size with our max size
if (current_size + n <= m_max_size) {
return true;
} else {
DPRINTF(RubyQueue, "n: %d, current_size: %d, m_size: %d, "
"m_max_size: %d\n",
n, current_size, m_size, m_max_size);
m_not_avail_count++;
return false;
}
}
const MsgPtr
MessageBuffer::getMsgPtrCopy() const
{
assert(isReady());
return m_prio_heap.front().m_msgptr->clone();
}
const Message*
MessageBuffer::peekAtHeadOfQueue() const
{
DPRINTF(RubyQueue, "Peeking at head of queue.\n");
assert(isReady());
const Message* msg_ptr = m_prio_heap.front().m_msgptr.get();
assert(msg_ptr);
DPRINTF(RubyQueue, "Message: %s\n", (*msg_ptr));
return msg_ptr;
}
// FIXME - move me somewhere else
int
random_time()
{
int time = 1;
time += random() & 0x3; // [0...3]
if ((random() & 0x7) == 0) { // 1 in 8 chance
time += 100 + (random() % 0xf); // 100 + [1...15]
}
return time;
}
void
MessageBuffer::enqueue(MsgPtr message, Time delta)
{
m_msg_counter++;
m_size++;
// record current time incase we have a pop that also adjusts my size
if (m_time_last_time_enqueue < g_system_ptr->getTime()) {
m_msgs_this_cycle = 0; // first msg this cycle
m_time_last_time_enqueue = g_system_ptr->getTime();
}
m_msgs_this_cycle++;
if (!m_ordering_set) {
panic("Ordering property of %s has not been set", m_name);
}
// Calculate the arrival time of the message, that is, the first
// cycle the message can be dequeued.
assert(delta>0);
Time current_time = g_system_ptr->getTime();
Time arrival_time = 0;
if (!RubySystem::getRandomization() || (m_randomization == false)) {
// No randomization
arrival_time = current_time + delta;
} else {
// Randomization - ignore delta
if (m_strict_fifo) {
if (m_last_arrival_time < current_time) {
m_last_arrival_time = current_time;
}
arrival_time = m_last_arrival_time + random_time();
} else {
arrival_time = current_time + random_time();
}
}
// Check the arrival time
assert(arrival_time > current_time);
if (m_strict_fifo) {
if (arrival_time < m_last_arrival_time) {
panic("FIFO ordering violated: %s name: %s current time: %d "
"delta: %d arrival_time: %d last arrival_time: %d\n",
*this, m_name,
current_time * g_system_ptr->clockPeriod(),
delta * g_system_ptr->clockPeriod(),
arrival_time * g_system_ptr->clockPeriod(),
m_last_arrival_time * g_system_ptr->clockPeriod());
}
}
// If running a cache trace, don't worry about the last arrival checks
if (!g_system_ptr->m_warmup_enabled) {
m_last_arrival_time = arrival_time;
}
// compute the delay cycles and set enqueue time
Message* msg_ptr = message.get();
assert(msg_ptr != NULL);
assert(g_system_ptr->getTime() >= msg_ptr->getLastEnqueueTime() &&
"ensure we aren't dequeued early");
msg_ptr->setDelayedCycles(g_system_ptr->getTime() -
msg_ptr->getLastEnqueueTime() +
msg_ptr->getDelayedCycles());
msg_ptr->setLastEnqueueTime(arrival_time);
// Insert the message into the priority heap
MessageBufferNode thisNode(arrival_time, m_msg_counter, message);
m_prio_heap.push_back(thisNode);
push_heap(m_prio_heap.begin(), m_prio_heap.end(),
greater<MessageBufferNode>());
DPRINTF(RubyQueue, "Enqueue with arrival_time %lld.\n",
arrival_time * g_system_ptr->clockPeriod());
DPRINTF(RubyQueue, "Enqueue Message: %s.\n", (*(message.get())));
// Schedule the wakeup
if (m_consumer_ptr != NULL) {
m_consumer_ptr->scheduleEventAbsolute(arrival_time);
m_consumer_ptr->storeEventInfo(m_vnet_id);
} else {
panic("No consumer: %s name: %s\n", *this, m_name);
}
}
int
MessageBuffer::dequeue_getDelayCycles(MsgPtr& message)
{
int delay_cycles = -1; // null value
dequeue(message);
// get the delay cycles
delay_cycles = setAndReturnDelayCycles(message);
assert(delay_cycles >= 0);
return delay_cycles;
}
void
MessageBuffer::dequeue(MsgPtr& message)
{
DPRINTF(RubyQueue, "Dequeueing\n");
message = m_prio_heap.front().m_msgptr;
pop();
DPRINTF(RubyQueue, "Enqueue message is %s\n", (*(message.get())));
}
int
MessageBuffer::dequeue_getDelayCycles()
{
int delay_cycles = -1; // null value
// get MsgPtr of the message about to be dequeued
MsgPtr message = m_prio_heap.front().m_msgptr;
// get the delay cycles
delay_cycles = setAndReturnDelayCycles(message);
dequeue();
assert(delay_cycles >= 0);
return delay_cycles;
}
void
MessageBuffer::pop()
{
DPRINTF(RubyQueue, "Popping\n");
assert(isReady());
pop_heap(m_prio_heap.begin(), m_prio_heap.end(),
greater<MessageBufferNode>());
m_prio_heap.pop_back();
// record previous size and time so the current buffer size isn't
// adjusted until next cycle
if (m_time_last_time_pop < g_system_ptr->getTime()) {
m_size_at_cycle_start = m_size;
m_time_last_time_pop = g_system_ptr->getTime();
}
m_size--;
}
void
MessageBuffer::clear()
{
m_prio_heap.clear();
m_msg_counter = 0;
m_size = 0;
m_time_last_time_enqueue = 0;
m_time_last_time_pop = 0;
m_size_at_cycle_start = 0;
m_msgs_this_cycle = 0;
}
void
MessageBuffer::recycle()
{
DPRINTF(RubyQueue, "Recycling.\n");
assert(isReady());
MessageBufferNode node = m_prio_heap.front();
pop_heap(m_prio_heap.begin(), m_prio_heap.end(),
greater<MessageBufferNode>());
node.m_time = g_system_ptr->getTime() + m_recycle_latency;
m_prio_heap.back() = node;
push_heap(m_prio_heap.begin(), m_prio_heap.end(),
greater<MessageBufferNode>());
m_consumer_ptr->scheduleEventAbsolute(g_system_ptr->getTime() +
m_recycle_latency);
}
void
MessageBuffer::reanalyzeMessages(const Address& addr)
{
DPRINTF(RubyQueue, "ReanalyzeMessages\n");
assert(m_stall_msg_map.count(addr) > 0);
//
// Put all stalled messages associated with this address back on the
// prio heap
//
while(!m_stall_msg_map[addr].empty()) {
m_msg_counter++;
MessageBufferNode msgNode(g_system_ptr->getTime() + 1,
m_msg_counter,
m_stall_msg_map[addr].front());
m_prio_heap.push_back(msgNode);
push_heap(m_prio_heap.begin(), m_prio_heap.end(),
greater<MessageBufferNode>());
m_consumer_ptr->scheduleEventAbsolute(msgNode.m_time);
m_stall_msg_map[addr].pop_front();
}
m_stall_msg_map.erase(addr);
}
void
MessageBuffer::reanalyzeAllMessages()
{
DPRINTF(RubyQueue, "ReanalyzeAllMessages %s\n");
//
// Put all stalled messages associated with this address back on the
// prio heap
//
for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
map_iter != m_stall_msg_map.end();
++map_iter) {
while(!(map_iter->second).empty()) {
m_msg_counter++;
MessageBufferNode msgNode(g_system_ptr->getTime() + 1,
m_msg_counter,
(map_iter->second).front());
m_prio_heap.push_back(msgNode);
push_heap(m_prio_heap.begin(), m_prio_heap.end(),
greater<MessageBufferNode>());
m_consumer_ptr->scheduleEventAbsolute(msgNode.m_time);
(map_iter->second).pop_front();
}
}
m_stall_msg_map.clear();
}
void
MessageBuffer::stallMessage(const Address& addr)
{
DPRINTF(RubyQueue, "Stalling due to %s\n", addr);
assert(isReady());
assert(addr.getOffset() == 0);
MsgPtr message = m_prio_heap.front().m_msgptr;
pop();
//
// Note: no event is scheduled to analyze the map at a later time.
// Instead the controller is responsible to call reanalyzeMessages when
// these addresses change state.
//
(m_stall_msg_map[addr]).push_back(message);
}
int
MessageBuffer::setAndReturnDelayCycles(MsgPtr msg_ptr)
{
int delay_cycles = -1; // null value
// get the delay cycles of the message at the top of the queue
// this function should only be called on dequeue
// ensure the msg hasn't been enqueued
assert(msg_ptr->getLastEnqueueTime() <= g_system_ptr->getTime());
msg_ptr->setDelayedCycles(g_system_ptr->getTime() -
msg_ptr->getLastEnqueueTime() +
msg_ptr->getDelayedCycles());
delay_cycles = msg_ptr->getDelayedCycles();
assert(delay_cycles >= 0);
return delay_cycles;
}
void
MessageBuffer::print(ostream& out) const
{
ccprintf(out, "[MessageBuffer: ");
if (m_consumer_ptr != NULL) {
ccprintf(out, " consumer-yes ");
}
vector<MessageBufferNode> copy(m_prio_heap);
sort_heap(copy.begin(), copy.end(), greater<MessageBufferNode>());
ccprintf(out, "%s] %s", copy, m_name);
}
void
MessageBuffer::printStats(ostream& out)
{
out << "MessageBuffer: " << m_name << " stats - msgs:" << m_msg_counter
<< " full:" << m_not_avail_count << endl;
}
bool
MessageBuffer::isReady() const
{
return ((m_prio_heap.size() > 0) &&
(m_prio_heap.front().m_time <= g_system_ptr->getTime()));
}
bool
MessageBuffer::functionalRead(Packet *pkt)
{
// Check the priority heap and read any messages that may
// correspond to the address in the packet.
for (unsigned int i = 0; i < m_prio_heap.size(); ++i) {
Message *msg = m_prio_heap[i].m_msgptr.get();
if (msg->functionalRead(pkt)) return true;
}
// Read the messages in the stall queue that correspond
// to the address in the packet.
for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
map_iter != m_stall_msg_map.end();
++map_iter) {
for (std::list<MsgPtr>::iterator it = (map_iter->second).begin();
it != (map_iter->second).end(); ++it) {
Message *msg = (*it).get();
if (msg->functionalRead(pkt)) return true;
}
}
return false;
}
uint32_t
MessageBuffer::functionalWrite(Packet *pkt)
{
uint32_t num_functional_writes = 0;
// Check the priority heap and write any messages that may
// correspond to the address in the packet.
for (unsigned int i = 0; i < m_prio_heap.size(); ++i) {
Message *msg = m_prio_heap[i].m_msgptr.get();
if (msg->functionalWrite(pkt)) {
num_functional_writes++;
}
}
// Check the stall queue and write any messages that may
// correspond to the address in the packet.
for (StallMsgMapType::iterator map_iter = m_stall_msg_map.begin();
map_iter != m_stall_msg_map.end();
++map_iter) {
for (std::list<MsgPtr>::iterator it = (map_iter->second).begin();
it != (map_iter->second).end(); ++it) {
Message *msg = (*it).get();
if (msg->functionalWrite(pkt)) {
num_functional_writes++;
}
}
}
return num_functional_writes;
}
|