summaryrefslogtreecommitdiff
path: root/src/mem/ruby/common/OptBigSet.cc
blob: b4c4e47897c24e4d84000d34427442f136239c9d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576

/*
 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * Set.C
 *
 * Description: See Set.h
 *
 * $Id: BigSet.C 1.9 05/01/19 13:12:25-06:00 mikem@maya.cs.wisc.edu $
 *
 */

// modified (rewritten) 05/20/05 by Dan Gibson to accomimdate FASTER >32 bit
// set sizes

#include "mem/ruby/common/Set.hh"
#include "mem/ruby/config/RubyConfig.hh"

#if __amd64__ || __LP64__
#define __64BITS__
#else
#define __32BITS__
#endif

Set::Set()
{
  m_p_nArray = NULL;
  setSize(RubyConfig::numberOfProcessors());
}

// copy constructor
Set::Set(const Set& obj) {
  m_p_nArray = NULL;
  setSize(obj.m_nSize);

  // copy from the host to this array
  for(int i=0; i<m_nArrayLen; i++) {
    m_p_nArray[i] = obj.m_p_nArray[i];
  }

}

Set::Set(int size)
{
  m_p_nArray = NULL;
  assert(size>0);
  setSize(size);
}

Set::~Set() {
  if( (m_p_nArray != (&m_p_nArray_Static[0])) && (m_p_nArray != NULL))
    delete [] m_p_nArray;
  m_p_nArray = NULL;
}


// /*
//  * This function should set the bit corresponding to index
//  * to 1.
//  */

// void Set::add(NodeID index)
// {
//   assert(index<m_nSize && index >= 0);

// #ifdef __32BITS__
//   m_p_nArray[index>>5] |= (1 << (index & 0x01F));
// #else
//   m_p_nArray[index>>6] |= (((unsigned long) 1) << (index & 0x03F));
// #endif // __32BITS__

// }

/*
 * This function should set all the bits in the current set
 * that are already set in the parameter set
 */
void Set::addSet(const Set& set)
{
  assert(getSize()==set.getSize());
  for(int i=0; i<m_nArrayLen; i++) {
    m_p_nArray[i] |= set.m_p_nArray[i];
  }

}

/*
 * This function should randomly assign 1 to the bits in the set--
 * it should not clear the bits bits first, though?
 */
void Set::addRandom()
{

  for(int i=0; i<m_nArrayLen; i++) {
    m_p_nArray[i] |= random() ^ (random() << 4); // this ensures that all 32 bits are subject to random effects,
                                                 // as RAND_MAX typically = 0x7FFFFFFF
  }

  // now just ensure that no bits over the maximum size were set
#ifdef __32BITS__
  long mask = 0x7FFFFFFF;

  // the number of populated spaces in the higest-order array slot is:
  // m_nSize % 32, so the uppermost 32 - m_nSize%32 bits should be
  // cleared

  if((m_nSize % 32) != 0) {
    for(int j=0; j<32-(m_nSize&0x01F); j++) {
      m_p_nArray[m_nArrayLen-1] &= mask;
      mask = mask >> 1;
    }
  }
#else
  long mask = 0x7FFFFFFFFFFFFFFF;

  // the number of populated spaces in the higest-order array slot is:
  // m_nSize % 64, so the uppermost 64 - m_nSize%64 bits should be
  // cleared

  if((m_nSize % 64) != 0) {
    for(int j=0; j<64-(m_nSize&0x03F); j++) {
      m_p_nArray[m_nArrayLen-1] &= mask;
      mask = mask >> 1;
    }
  }
#endif // __32BITS__

}

// /*
//  * This function unsets the bit associated with index
//  */
// void Set::remove(NodeID index)
// {
//   assert(index<m_nSize && index>=0);

// #ifdef __32BITS__
//   m_p_nArray[index>>5] &= ~(0x00000001         << (index & 0x01F));
// #else
//   m_p_nArray[index>>6] &= ~(((unsigned long) 0x0000000000000001) << (index & 0x03F));
// #endif // __32BITS__

// }


/*
 * This function clears bits that are =1 in the parameter set
 */
void Set::removeSet(const Set& set)
{

  assert(m_nSize==set.m_nSize);
  for(int i=0; i<m_nArrayLen; i++) {
    m_p_nArray[i] &= ~(set.m_p_nArray[i]);
  }

}

// /*
//  * This function clears all bits in the set
//  */
// void Set::clear()
// {
//   for(int i=0; i<m_nArrayLen; i++) {
//     m_p_nArray[i] = 0;
//   }
// }

/*
 * this function sets all bits in the set
 */
void Set::broadcast()
{

  for(int i=0; i<m_nArrayLen; i++) {
    m_p_nArray[i] = -1; // note that -1 corresponds to all 1's in 2's comp.
  }

  // now just ensure that no bits over the maximum size were set
#ifdef __32BITS__
  long mask = 0x7FFFFFFF;

  // the number of populated spaces in the higest-order array slot is:
  // m_nSize % 32, so the uppermost 32 - m_nSize%32 bits should be
  // cleared

  if((m_nSize % 32) != 0) {
    for(int j=0; j<32-(m_nSize&0x01F); j++) {
      m_p_nArray[m_nArrayLen-1] &= mask;
      mask = mask >> 1;
    }
  }
#else
  long mask = 0x7FFFFFFFFFFFFFFF;

  // the number of populated spaces in the higest-order array slot is:
  // m_nSize % 64, so the uppermost 64 - m_nSize%64 bits should be
  // cleared

  if((m_nSize % 64) != 0) {
    for(int j=0; j<64-(m_nSize&0x03F); j++) {
      m_p_nArray[m_nArrayLen-1] &= mask;
      mask = mask >> 1;
    }
  }
#endif // __32BITS__

}

/*
 * This function returns the population count of 1's in the set
 */
int Set::count() const
{
  int counter = 0;
  long mask;
  for( int i=0; i<m_nArrayLen; i++) {
    mask = (long) 0x01;

#ifdef __32BITS__
    for( int j=0; j<32; j++) {
      if(m_p_nArray[i] & mask) counter++;
      mask = mask << 1;
    }

#else

    for( int j=0; j<64; j++) {  // FIXME - significant performance loss when array population << 64
      if((m_p_nArray[i] & mask) != 0) {
              counter++;
      }
      mask = mask << 1;
    }

#endif // __32BITS__

  }

  return counter;
}

/*
 * This function checks for set equality
 */

bool Set::isEqual(const Set& set) const
{
  assert(m_nSize==set.m_nSize);

  for(int i=0;i<m_nArrayLen;i++) {
    if(m_p_nArray[i] != set.m_p_nArray[i]) {
      return false;
    }
  }

  return true;
}

/*
 * This function returns the NodeID (int) of the
 * least set bit
 */
NodeID Set::smallestElement() const
{
  assert(count() > 0);
  long x;
  for( int i=0; i<m_nArrayLen; i++) {
    if(m_p_nArray[i]!=0) {
      // the least-set bit must be in here
      x = m_p_nArray[i];

#ifdef __32BITS__
      for( int j=0; j<32; j++) {
        if(x & 0x00000001) {
          return 32*i+j;
        }

        x = x >> 1;
      }
#else
      for( int j=0; j<64; j++) {
        if(x & 0x0000000000000001) {
          return 64*i+j;
        }

        x = x >> 1;
      }
#endif // __32BITS__

      ERROR_MSG("No smallest element of an empty set.");
    }
  }

  ERROR_MSG("No smallest element of an empty set.");

  return 0;
}

/*
 * this function returns true iff all bits are set
 */
bool Set::isBroadcast() const
{
  // check the fully-loaded words by equal to 0xffffffff
  // only the last word may not be fully loaded, it is not
  // fully loaded iff m_nSize % 32 or 64 !=0 => fully loaded iff
  // m_nSize % 32 or 64 == 0

#ifdef __32BITS__
  for(int i=0; i< (((m_nSize % 32)==0) ? m_nArrayLen : m_nArrayLen-1); i++) {
    if(m_p_nArray[i]!=-1) {
      return false;
    }
  }

  // now check the last word, which may not be fully loaded
  long mask = 1;
  for(int j=0; j< (m_nSize % 32); j++) {
    if((mask & m_p_nArray[m_nArrayLen-1])==0) {
      return false;
    }
    mask = mask << 1;
  }
#else
  for(int i=0; i< (((m_nSize % 64)==0) ? m_nArrayLen : m_nArrayLen-1); i++) {
    if(m_p_nArray[i]!=-1) {
      return false;
    }
  }

  // now check the last word, which may not be fully loaded
  long mask = 1;
  for(int j=0; j< (m_nSize % 64); j++) {
    if((mask & m_p_nArray[m_nArrayLen-1])==0) {
      return false;
    }
    mask = mask << 1;
  }

#endif // __32BITS__

  return true;
}

/*
 * this function returns true iff no bits are set
 */
bool Set::isEmpty() const
{

  // here we can simply check if all = 0, since we ensure
  // that "extra slots" are all zero
  for(int i=0; i< m_nArrayLen ; i++) {
    if(m_p_nArray[i]!=0) {
            return false;
    }
  }

  return true;
}

// returns the logical OR of "this" set and orSet
Set Set::OR(const Set& orSet) const
{
  Set result(m_nSize);
  assert(m_nSize == orSet.m_nSize);
  for(int i=0; i< m_nArrayLen; i++) {
    result.m_p_nArray[i] = m_p_nArray[i] | orSet.m_p_nArray[i];
  }

  return result;

}

// returns the logical AND of "this" set and andSet
Set Set::AND(const Set& andSet) const
{
  Set result(m_nSize);
  assert(m_nSize == andSet.m_nSize);

  for(int i=0; i< m_nArrayLen; i++) {
    result.m_p_nArray[i] = m_p_nArray[i] & andSet.m_p_nArray[i];
  }

  return result;
}

// // Returns true if the intersection of the two sets is non-empty
// bool Set::intersectionIsNotEmpty(const Set& other_set) const
// {
//   assert(m_nSize == other_set.m_nSize);
//   for(int i=0; i< m_nArrayLen; i++) {
//     if(m_p_nArray[i] & other_set.m_p_nArray[i]) {
//       return true;
//     }
//   }

//   return false;

// }

// // Returns true if the intersection of the two sets is empty
// bool Set::intersectionIsEmpty(const Set& other_set) const
// {
//   assert(m_nSize == other_set.m_nSize);
//   for(int i=0; i< m_nArrayLen; i++) {
//     if(m_p_nArray[i] & other_set.m_p_nArray[i]) {
//       return false;
//     }
//   }

//   return true;

// }

/*
 * Returns false if a bit is set in the parameter set that is
 * NOT set in this set
 */
bool Set::isSuperset(const Set& test) const
{
  assert(m_nSize == test.m_nSize);

  for(int i=0;i<m_nArrayLen;i++) {
    if(((test.m_p_nArray[i] & m_p_nArray[i]) | ~test.m_p_nArray[i]) != -1) {
      return false;
    }
  }

  return true;
}

// /*
//  * Returns true iff this bit is set
//  */
// bool Set::isElement(NodeID element) const
// {
//   bool result;

// #ifdef __32BITS__
//   result = ((m_p_nArray[element>>5] & (0x00000001         << (element & 0x01F)))!=0);
// #else
//   result = ((m_p_nArray[element>>6] & (((unsigned long) 0x0000000000000001) << (element & 0x03F)))!=0);
// #endif // __32BITS__

//   return result;
// }

/*
 * "Supposed" to return the node id of the (n+1)th set
 * bit, IE n=0 => returns nodeid of first set bit, BUT
 * since BigSet.C behaves strangely, this implementation
 * will behave strangely just for reverse compatability.
 *
 * Was originally implemented for the flight data recorder
 * FDR
 */

// NodeID Set::elementAt(int n) const
// {
//   if(isElement(n)) return (NodeID) true;
//   else return 0;

// /*
//   int match = -1;
//   for(int i=0;i<m_nSize;i++) {
//     if(isElement(i)) match++;
//     if(match==n) {
//       return i;
//     }
//   }

//   return -1;
//   */
// }

void Set::setSize(int size)
{
  m_nSize = size;

#ifdef __32BITS__
  m_nArrayLen = m_nSize/32 + ((m_nSize%32==0) ? 0 : 1 );
#else
  m_nArrayLen = m_nSize/64 + ((m_nSize%64==0) ? 0 : 1 );
#endif // __32BITS__

  // decide whether to use dynamic or static alloction
  if(m_nArrayLen<=NUMBER_WORDS_PER_SET) { // constant defined in RubyConfig.h
    // its OK to use the static allocation, and it will
    // probably be faster (as m_nArrayLen is already in the
    // cache and they will probably share the same cache line)

    // if switching from dyanamic to static allocation (which
    // is probably rare, but why not be complete?), must delete
    // the dynamically allocated space
    if((m_p_nArray != NULL) && (m_p_nArray != &m_p_nArray_Static[0]))
      delete [] m_p_nArray;

    m_p_nArray = & m_p_nArray_Static[0];
  } else {

    // can't use static allocation...simply not enough room
    // so dynamically allocate some space
    if((m_p_nArray != NULL) && (m_p_nArray != &m_p_nArray_Static[0]))
      delete [] m_p_nArray;

    m_p_nArray = new long[m_nArrayLen];
  }

  clear();
}

Set& Set::operator=(const Set& obj) {
  if(this == &obj) {
    // do nothing
  } else {

    // resize this item
    setSize(obj.getSize());

    // copy the elements from obj to this
    for(int i=0; i<m_nArrayLen; i++) {
      m_p_nArray[i] = obj.m_p_nArray[i];
    }
  }

  return *this;
}

void Set::print(ostream& out) const
{
  if(m_p_nArray==NULL) {
    out << "[Set {Empty}]";
    return;
  }
  char buff[24];
  out << "[Set 0x ";
  for (int i=m_nArrayLen-1; i>=0; i--) {
#ifdef __32BITS__
    sprintf(buff,"%08X ",m_p_nArray[i]);
#else
    sprintf(buff,"0x %016llX ",m_p_nArray[i]);
#endif // __32BITS__
    out << buff;
  }
  out << " ]";

}