summaryrefslogtreecommitdiff
path: root/src/mem/ruby/common/Set.cc
blob: 280fe71b4dfe6a9940c7bc9c3d13752bbb82abed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
/*
 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

// modified (rewritten) 05/20/05 by Dan Gibson to accomimdate FASTER
// >32 bit set sizes

#include <cassert>
#include <cstdio>

#include "base/misc.hh"
#include "mem/ruby/common/Set.hh"

Set::Set()
{
    m_p_nArray = NULL;
    m_nArrayLen = 0;
    m_nSize = 0;
}

Set::Set(const Set& obj)
{
    m_p_nArray = NULL;
    setSize(obj.m_nSize);

    // copy from the host to this array
    for (int i = 0; i < m_nArrayLen; i++)
        m_p_nArray[i] = obj.m_p_nArray[i];
}

Set::Set(int size)
{
    m_p_nArray = NULL;
    m_nArrayLen = 0;
    m_nSize = 0;
    if (size > 0)
        setSize(size);
}

Set::~Set()
{
    if (m_p_nArray && m_p_nArray != &m_p_nArray_Static[0])
        delete [] m_p_nArray;
    m_p_nArray = NULL;
}

void
Set::clearExcess()
{
    // now just ensure that no bits over the maximum size were set
#ifdef _LP64
    long mask = 0x7FFFFFFFFFFFFFFF;
#else
    long mask = 0x7FFFFFFF;
#endif

    // the number of populated spaces in the higest-order array slot
    // is: m_nSize % LONG_BITS, so the uppermost LONG_BITS -
    // m_nSize%64 bits should be cleared
    if ((m_nSize % LONG_BITS) != 0) {
        for (int j = 0; j < 64 - (m_nSize & INDEX_MASK); j++) {
            m_p_nArray[m_nArrayLen - 1] &= mask;
            mask = mask >> 1;
        }
    }
}


/*
 * This function should set all the bits in the current set that are
 * already set in the parameter set
 */
void
Set::addSet(const Set& set)
{
    assert(getSize()==set.getSize());
    for (int i = 0; i < m_nArrayLen; i++)
        m_p_nArray[i] |= set.m_p_nArray[i];
}

/*
 * This function clears bits that are =1 in the parameter set
 */
void
Set::removeSet(const Set& set)
{
    assert(m_nSize == set.m_nSize);
    for (int i = 0; i < m_nArrayLen; i++)
        m_p_nArray[i] &= ~set.m_p_nArray[i];
}

/*
 * this function sets all bits in the set
 */
void
Set::broadcast()
{
    for (int i = 0; i < m_nArrayLen; i++)
        m_p_nArray[i] = -1; // note that -1 corresponds to all 1's in 2's comp.

    clearExcess();
}

/*
 * This function returns the population count of 1's in the set
 */
int
Set::count() const
{
    int counter = 0;
    long mask;

    for (int i = 0; i < m_nArrayLen; i++) {
        mask = (long)0x01;

        for (int j = 0; j < LONG_BITS; j++) {
            // FIXME - significant performance loss when array
            // population << LONG_BITS
            if ((m_p_nArray[i] & mask) != 0) {
                counter++;
            }
            mask = mask << 1;
        }
    }

    return counter;
}

/*
 * This function checks for set equality
 */
bool
Set::isEqual(const Set& set) const
{
    assert(m_nSize == set.m_nSize);

    for (int i = 0; i < m_nArrayLen; i++)
        if (m_p_nArray[i] != set.m_p_nArray[i])
            return false;

    return true;
}

/*
 * This function returns the NodeID (int) of the least set bit
 */
NodeID
Set::smallestElement() const
{
    assert(count() > 0);
    long x;
    for (int i = 0; i < m_nArrayLen; i++) {
        if (m_p_nArray[i] != 0) {
            // the least-set bit must be in here
            x = m_p_nArray[i];

            for (int j = 0; j < LONG_BITS; j++) {
                if (x & (unsigned long)1) {
                    return LONG_BITS * i + j;
                }

                x = x >> 1;
            }

            panic("No smallest element of an empty set.");
        }
    }

    panic("No smallest element of an empty set.");
}

/*
 * this function returns true iff all bits are set
 */
bool
Set::isBroadcast() const
{
    // check the fully-loaded words by equal to 0xffffffff
    // only the last word may not be fully loaded, it is not
    // fully loaded iff m_nSize % 32 or 64 !=0 => fully loaded iff
    // m_nSize % 32 or 64 == 0

    int max = (m_nSize % LONG_BITS) == 0 ? m_nArrayLen : m_nArrayLen - 1;
    for (int i = 0; i < max; i++) {
        if (m_p_nArray[i] != -1) {
            return false;
        }
    }

    // now check the last word, which may not be fully loaded
    long mask = 1;
    for (int j = 0; j < (m_nSize % LONG_BITS); j++) {
        if ((mask & m_p_nArray[m_nArrayLen-1]) == 0) {
            return false;
        }
        mask = mask << 1;
    }

    return true;
}

/*
 * this function returns true iff no bits are set
 */
bool
Set::isEmpty() const
{
    // here we can simply check if all = 0, since we ensure
    // that "extra slots" are all zero
    for (int i = 0; i < m_nArrayLen ; i++)
        if (m_p_nArray[i])
            return false;

    return true;
}

// returns the logical OR of "this" set and orSet
Set
Set::OR(const Set& orSet) const
{
    Set result(m_nSize);
    assert(m_nSize == orSet.m_nSize);
    for (int i = 0; i < m_nArrayLen; i++)
        result.m_p_nArray[i] = m_p_nArray[i] | orSet.m_p_nArray[i];

    return result;
}

// returns the logical AND of "this" set and andSet
Set
Set::AND(const Set& andSet) const
{
    Set result(m_nSize);
    assert(m_nSize == andSet.m_nSize);

    for (int i = 0; i < m_nArrayLen; i++) {
        result.m_p_nArray[i] = m_p_nArray[i] & andSet.m_p_nArray[i];
    }

    return result;
}

/*
 * Returns false if a bit is set in the parameter set that is NOT set
 * in this set
 */
bool
Set::isSuperset(const Set& test) const
{
    assert(m_nSize == test.m_nSize);

    for (int i = 0; i < m_nArrayLen; i++)
        if (((test.m_p_nArray[i] & m_p_nArray[i]) | ~test.m_p_nArray[i]) != -1)
            return false;

    return true;
}

void
Set::setSize(int size)
{
    m_nSize = size;
    m_nArrayLen = (m_nSize + LONG_BITS - 1) / LONG_BITS;

    // decide whether to use dynamic or static alloction
    if (m_nArrayLen <= NUMBER_WORDS_PER_SET) {
        // constant defined in RubySystem.hh
        // its OK to use the static allocation, and it will
        // probably be faster (as m_nArrayLen is already in the
        // cache and they will probably share the same cache line)

        // if switching from dyanamic to static allocation (which
        // is probably rare, but why not be complete?), must delete
        // the dynamically allocated space
        if (m_p_nArray && m_p_nArray != &m_p_nArray_Static[0])
            delete [] m_p_nArray;

        m_p_nArray = &m_p_nArray_Static[0];
    } else {
        // can't use static allocation...simply not enough room
        // so dynamically allocate some space
        if (m_p_nArray && m_p_nArray != &m_p_nArray_Static[0])
            delete [] m_p_nArray;

        m_p_nArray = new long[m_nArrayLen];
    }

    clear();
}

Set&
Set::operator=(const Set& obj)
{
    if (this != &obj) {
        // resize this item
        setSize(obj.getSize());

        // copy the elements from obj to this
        for (int i = 0; i < m_nArrayLen; i++)
            m_p_nArray[i] = obj.m_p_nArray[i];
    }

    return *this;
}

void
Set::print(std::ostream& out) const
{
    if (!m_p_nArray) {
        out << "[Set {Empty}]";
        return;
    }

    out << "[Set (" << m_nSize << ")";
    for (int i = m_nArrayLen - 1; i >= 0; i--) {
        out << csprintf(" 0x%08X", m_p_nArray[i]);
    }
    out << " ]";
}