1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
|
/*
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <cassert>
#include "debug/RubyNetwork.hh"
#include "mem/protocol/MachineType.hh"
#include "mem/ruby/common/NetDest.hh"
#include "mem/ruby/network/BasicLink.hh"
#include "mem/ruby/network/Network.hh"
#include "mem/ruby/network/Topology.hh"
#include "mem/ruby/slicc_interface/AbstractController.hh"
using namespace std;
const int INFINITE_LATENCY = 10000; // Yes, this is a big hack
// Note: In this file, we use the first 2*m_nodes SwitchIDs to
// represent the input and output endpoint links. These really are
// not 'switches', as they will not have a Switch object allocated for
// them. The first m_nodes SwitchIDs are the links into the network,
// the second m_nodes set of SwitchIDs represent the the output queues
// of the network.
// Helper functions based on chapter 29 of Cormen et al.
void extend_shortest_path(Matrix& current_dist, Matrix& latencies,
Matrix& inter_switches);
Matrix shortest_path(const Matrix& weights, Matrix& latencies,
Matrix& inter_switches);
bool link_is_shortest_path_to_node(SwitchID src, SwitchID next,
SwitchID final, const Matrix& weights, const Matrix& dist);
NetDest shortest_path_to_node(SwitchID src, SwitchID next,
const Matrix& weights, const Matrix& dist);
Topology::Topology(const Params *p)
: SimObject(p)
{
m_print_config = p->print_config;
m_number_of_switches = p->routers.size();
// initialize component latencies record
m_component_latencies.resize(0);
m_component_inter_switches.resize(0);
// Total nodes/controllers in network
// Must make sure this is called after the State Machine constructors
m_nodes = MachineType_base_number(MachineType_NUM);
assert(m_nodes > 1);
if (m_nodes != params()->ext_links.size() &&
m_nodes != params()->ext_links.size()) {
fatal("m_nodes (%d) != ext_links vector length (%d)\n",
m_nodes, params()->ext_links.size());
}
// analyze both the internal and external links, create data structures
// Note that the python created links are bi-directional, but that the
// topology and networks utilize uni-directional links. Thus each
// BasicLink is converted to two calls to add link, on for each direction
for (vector<BasicExtLink*>::const_iterator i = params()->ext_links.begin();
i != params()->ext_links.end(); ++i) {
BasicExtLink *ext_link = (*i);
AbstractController *abs_cntrl = ext_link->params()->ext_node;
BasicRouter *router = ext_link->params()->int_node;
// Store the controller and ExtLink pointers for later
m_controller_vector.push_back(abs_cntrl);
m_ext_link_vector.push_back(ext_link);
int ext_idx1 = abs_cntrl->params()->cntrl_id;
int ext_idx2 = ext_idx1 + m_nodes;
int int_idx = router->params()->router_id + 2*m_nodes;
// create the internal uni-directional links in both directions
// the first direction is marked: In
addLink(ext_idx1, int_idx, ext_link, LinkDirection_In);
// the first direction is marked: Out
addLink(int_idx, ext_idx2, ext_link, LinkDirection_Out);
}
for (vector<BasicIntLink*>::const_iterator i = params()->int_links.begin();
i != params()->int_links.end(); ++i) {
BasicIntLink *int_link = (*i);
BasicRouter *router_a = int_link->params()->node_a;
BasicRouter *router_b = int_link->params()->node_b;
// Store the IntLink pointers for later
m_int_link_vector.push_back(int_link);
int a = router_a->params()->router_id + 2*m_nodes;
int b = router_b->params()->router_id + 2*m_nodes;
// create the internal uni-directional links in both directions
// the first direction is marked: In
addLink(a, b, int_link, LinkDirection_In);
// the second direction is marked: Out
addLink(b, a, int_link, LinkDirection_Out);
}
}
void
Topology::init()
{
}
void
Topology::initNetworkPtr(Network* net_ptr)
{
for (vector<BasicExtLink*>::const_iterator i = params()->ext_links.begin();
i != params()->ext_links.end(); ++i) {
BasicExtLink *ext_link = (*i);
AbstractController *abs_cntrl = ext_link->params()->ext_node;
abs_cntrl->initNetworkPtr(net_ptr);
}
}
void
Topology::createLinks(Network *net, bool isReconfiguration)
{
// Find maximum switchID
SwitchID max_switch_id = 0;
for (LinkMap::const_iterator i = m_link_map.begin();
i != m_link_map.end(); ++i) {
std::pair<int, int> src_dest = (*i).first;
max_switch_id = max(max_switch_id, src_dest.first);
max_switch_id = max(max_switch_id, src_dest.second);
}
// Initialize weight, latency, and inter switched vectors
Matrix topology_weights;
int num_switches = max_switch_id+1;
topology_weights.resize(num_switches);
m_component_latencies.resize(num_switches);
m_component_inter_switches.resize(num_switches);
for (int i = 0; i < topology_weights.size(); i++) {
topology_weights[i].resize(num_switches);
m_component_latencies[i].resize(num_switches);
m_component_inter_switches[i].resize(num_switches);
for (int j = 0; j < topology_weights[i].size(); j++) {
topology_weights[i][j] = INFINITE_LATENCY;
// initialize to invalid values
m_component_latencies[i][j] = -1;
// initially assume direct connections / no intermediate
// switches between components
m_component_inter_switches[i][j] = 0;
}
}
// Set identity weights to zero
for (int i = 0; i < topology_weights.size(); i++) {
topology_weights[i][i] = 0;
}
// Fill in the topology weights and bandwidth multipliers
for (LinkMap::const_iterator i = m_link_map.begin();
i != m_link_map.end(); ++i) {
std::pair<int, int> src_dest = (*i).first;
BasicLink* link = (*i).second.link;
int src = src_dest.first;
int dst = src_dest.second;
m_component_latencies[src][dst] = link->m_latency;
topology_weights[src][dst] = link->m_weight;
}
// Walk topology and hookup the links
Matrix dist = shortest_path(topology_weights, m_component_latencies,
m_component_inter_switches);
for (int i = 0; i < topology_weights.size(); i++) {
for (int j = 0; j < topology_weights[i].size(); j++) {
int weight = topology_weights[i][j];
if (weight > 0 && weight != INFINITE_LATENCY) {
NetDest destination_set = shortest_path_to_node(i, j,
topology_weights, dist);
makeLink(net, i, j, destination_set, isReconfiguration);
}
}
}
}
void
Topology::addLink(SwitchID src, SwitchID dest, BasicLink* link,
LinkDirection dir)
{
assert(src <= m_number_of_switches+m_nodes+m_nodes);
assert(dest <= m_number_of_switches+m_nodes+m_nodes);
std::pair<int, int> src_dest_pair;
LinkEntry link_entry;
src_dest_pair.first = src;
src_dest_pair.second = dest;
link_entry.direction = dir;
link_entry.link = link;
m_link_map[src_dest_pair] = link_entry;
}
void
Topology::makeLink(Network *net, SwitchID src, SwitchID dest,
const NetDest& routing_table_entry, bool isReconfiguration)
{
// Make sure we're not trying to connect two end-point nodes
// directly together
assert(src >= 2 * m_nodes || dest >= 2 * m_nodes);
std::pair<int, int> src_dest;
LinkEntry link_entry;
if (src < m_nodes) {
src_dest.first = src;
src_dest.second = dest;
link_entry = m_link_map[src_dest];
net->makeInLink(src, dest - (2 * m_nodes), link_entry.link,
link_entry.direction,
routing_table_entry,
isReconfiguration);
} else if (dest < 2*m_nodes) {
assert(dest >= m_nodes);
NodeID node = dest - m_nodes;
src_dest.first = src;
src_dest.second = dest;
link_entry = m_link_map[src_dest];
net->makeOutLink(src - (2 * m_nodes), node, link_entry.link,
link_entry.direction,
routing_table_entry,
isReconfiguration);
} else {
assert((src >= 2 * m_nodes) && (dest >= 2 * m_nodes));
src_dest.first = src;
src_dest.second = dest;
link_entry = m_link_map[src_dest];
net->makeInternalLink(src - (2 * m_nodes), dest - (2 * m_nodes),
link_entry.link, link_entry.direction,
routing_table_entry, isReconfiguration);
}
}
void
Topology::printStats(std::ostream& out) const
{
for (int cntrl = 0; cntrl < m_controller_vector.size(); cntrl++) {
m_controller_vector[cntrl]->printStats(out);
}
}
void
Topology::clearStats()
{
for (int cntrl = 0; cntrl < m_controller_vector.size(); cntrl++) {
m_controller_vector[cntrl]->clearStats();
}
}
// The following all-pairs shortest path algorithm is based on the
// discussion from Cormen et al., Chapter 26.1.
void
extend_shortest_path(Matrix& current_dist, Matrix& latencies,
Matrix& inter_switches)
{
bool change = true;
int nodes = current_dist.size();
while (change) {
change = false;
for (int i = 0; i < nodes; i++) {
for (int j = 0; j < nodes; j++) {
int minimum = current_dist[i][j];
int previous_minimum = minimum;
int intermediate_switch = -1;
for (int k = 0; k < nodes; k++) {
minimum = min(minimum,
current_dist[i][k] + current_dist[k][j]);
if (previous_minimum != minimum) {
intermediate_switch = k;
inter_switches[i][j] =
inter_switches[i][k] +
inter_switches[k][j] + 1;
}
previous_minimum = minimum;
}
if (current_dist[i][j] != minimum) {
change = true;
current_dist[i][j] = minimum;
assert(intermediate_switch >= 0);
assert(intermediate_switch < latencies[i].size());
latencies[i][j] = latencies[i][intermediate_switch] +
latencies[intermediate_switch][j];
}
}
}
}
}
Matrix
shortest_path(const Matrix& weights, Matrix& latencies, Matrix& inter_switches)
{
Matrix dist = weights;
extend_shortest_path(dist, latencies, inter_switches);
return dist;
}
bool
link_is_shortest_path_to_node(SwitchID src, SwitchID next, SwitchID final,
const Matrix& weights, const Matrix& dist)
{
return weights[src][next] + dist[next][final] == dist[src][final];
}
NetDest
shortest_path_to_node(SwitchID src, SwitchID next, const Matrix& weights,
const Matrix& dist)
{
NetDest result;
int d = 0;
int machines;
int max_machines;
machines = MachineType_NUM;
max_machines = MachineType_base_number(MachineType_NUM);
for (int m = 0; m < machines; m++) {
for (int i = 0; i < MachineType_base_count((MachineType)m); i++) {
// we use "d+max_machines" below since the "destination"
// switches for the machines are numbered
// [MachineType_base_number(MachineType_NUM)...
// 2*MachineType_base_number(MachineType_NUM)-1] for the
// component network
if (link_is_shortest_path_to_node(src, next, d + max_machines,
weights, dist)) {
MachineID mach = {(MachineType)m, i};
result.add(mach);
}
d++;
}
}
DPRINTF(RubyNetwork, "Returning shortest path\n"
"(src-(2*max_machines)): %d, (next-(2*max_machines)): %d, "
"src: %d, next: %d, result: %s\n",
(src-(2*max_machines)), (next-(2*max_machines)),
src, next, result);
return result;
}
Topology *
TopologyParams::create()
{
return new Topology(this);
}
|