summaryrefslogtreecommitdiff
path: root/src/mem/ruby/network/simple/Topology.cc
blob: 177bf3929f6d4ad04b4115c7e9ac57e8dd846ebd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

/*
 * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * Topology.C
 *
 * Description: See Topology.h
 *
 * $Id$
 *
 * */

#include "mem/ruby/network/simple/Topology.hh"
#include "mem/ruby/common/NetDest.hh"
#include "mem/ruby/network/Network.hh"
#include "mem/protocol/TopologyType.hh"
#include "mem/ruby/config/RubyConfig.hh"
#include "mem/gems_common/util.hh"
#include "mem/protocol/MachineType.hh"
#include "mem/protocol/Protocol.hh"
#include <string>

static const int INFINITE_LATENCY = 10000; // Yes, this is a big hack
static const int DEFAULT_BW_MULTIPLIER = 1;  // Just to be consistent with above :)

// Note: In this file, we use the first 2*m_nodes SwitchIDs to
// represent the input and output endpoint links.  These really are
// not 'switches', as they will not have a Switch object allocated for
// them. The first m_nodes SwitchIDs are the links into the network,
// the second m_nodes set of SwitchIDs represent the the output queues
// of the network.

// Helper functions based on chapter 29 of Cormen et al.
static void extend_shortest_path(Matrix& current_dist, Matrix& latencies, Matrix& inter_switches);
static Matrix shortest_path(const Matrix& weights, Matrix& latencies, Matrix& inter_switches);
static bool link_is_shortest_path_to_node(SwitchID src, SwitchID next, SwitchID final, const Matrix& weights, const Matrix& dist);
static NetDest shortest_path_to_node(SwitchID src, SwitchID next, const Matrix& weights, const Matrix& dist);


Topology::Topology(Network* network_ptr, int number_of_nodes)
{
  m_network_ptr = network_ptr;
  m_nodes = number_of_nodes;
  m_number_of_switches = 0;
  init();
}

void Topology::init()
{
  if (m_nodes == 1) {
    SwitchID id = newSwitchID();
    addLink(0, id, NETWORK_LINK_LATENCY);
    addLink(id, 1, NETWORK_LINK_LATENCY);
    return;
  }

  // topology-specific set-up
  TopologyType topology = string_to_TopologyType(g_NETWORK_TOPOLOGY);
  switch (topology) {
  case TopologyType_TORUS_2D:
    make2DTorus();
    break;
  case TopologyType_HIERARCHICAL_SWITCH:
    makeHierarchicalSwitch(FAN_OUT_DEGREE);
    break;
  case TopologyType_CROSSBAR:
    makeHierarchicalSwitch(1024);
    break;
  case TopologyType_PT_TO_PT:
    makePtToPt();
    break;
  case TopologyType_FILE_SPECIFIED:
    makeFileSpecified();
    break;
  default:
    ERROR_MSG("Unexpected typology type")
  }

  // initialize component latencies record
  m_component_latencies.setSize(0);
  m_component_inter_switches.setSize(0);
}

void Topology::makeSwitchesPerChip(Vector< Vector < SwitchID > > &nodePairs, Vector<int> &latencies, Vector<int> &bw_multis, int numberOfChipSwitches)
{

  Vector < SwitchID > nodes;  // temporary buffer
  nodes.setSize(2);

  Vector<bool> endpointConnectionExist;  // used to ensure all endpoints are connected to the network
  endpointConnectionExist.setSize(m_nodes);
  // initialize endpoint check vector
  for (int k = 0; k < endpointConnectionExist.size(); k++) {
    endpointConnectionExist[k] = false;
  }

  Vector<int> componentCount;
  componentCount.setSize(MachineType_NUM);
  for (MachineType mType = MachineType_FIRST; mType < MachineType_NUM; ++mType) {
    componentCount[mType] = 0;
  }

  // components to/from network links
  for (int chip = 0; chip < RubyConfig::numberOfChips(); chip++) {
    for (MachineType mType = MachineType_FIRST; mType < MachineType_NUM; ++mType) {
      for (int component = 0; component < MachineType_chip_count(mType, chip); component++) {

        int latency = -1;
        int bw_multiplier = -1;  // internal link bw multiplier of the global bandwidth
        if (mType != MachineType_Directory) {
          latency = ON_CHIP_LINK_LATENCY;  // internal link latency
          bw_multiplier = 10;  // internal link bw multiplier of the global bandwidth
        } else {
          latency = NETWORK_LINK_LATENCY;  // local memory latency
          bw_multiplier = 1;  // local memory link bw multiplier of the global bandwidth
        }
        nodes[0] = MachineType_base_number(mType)+componentCount[mType];
        nodes[1] = chip+m_nodes*2; // this is the chip's internal switch id #

        // insert link
        nodePairs.insertAtBottom(nodes);
        latencies.insertAtBottom(latency);
        //bw_multis.insertAtBottom(bw_multiplier);
        bw_multis.insertAtBottom(componentCount[mType]+MachineType_base_number((MachineType)mType));

        // opposite direction link
        Vector < SwitchID > otherDirectionNodes;
        otherDirectionNodes.setSize(2);
        otherDirectionNodes[0] = nodes[1];
        otherDirectionNodes[1] = nodes[0]+m_nodes;
        nodePairs.insertAtBottom(otherDirectionNodes);
        latencies.insertAtBottom(latency);
        bw_multis.insertAtBottom(bw_multiplier);

        assert(!endpointConnectionExist[nodes[0]]);
        endpointConnectionExist[nodes[0]] = true;
        componentCount[mType]++;
      }
    }
  }

  // make sure all enpoints are connected in the soon to be created network
  for (int k = 0; k < endpointConnectionExist.size(); k++) {
    if (endpointConnectionExist[k] == false) {
      cerr << "Error: Unconnected Endpoint: " << k << endl;
      exit(1);
    }
  }

  // secondary check to ensure we saw the correct machine counts
  for (MachineType mType = MachineType_FIRST; mType < MachineType_NUM; ++mType) {
    assert(componentCount[mType] == MachineType_base_count((MachineType)mType));
  }

}

// 2D torus topology

void Topology::make2DTorus()
{
  Vector< Vector < SwitchID > > nodePairs;  // node pairs extracted from the file
  Vector<int> latencies;  // link latencies for each link extracted
  Vector<int> bw_multis;  // bw multipliers for each link extracted

  Vector < SwitchID > nodes;  // temporary buffer
  nodes.setSize(2);

  // number of inter-chip switches
  int numberOfTorusSwitches = m_nodes/MachineType_base_level(MachineType_NUM);
  // one switch per machine node grouping
  Vector<SwitchID> torusSwitches;
  for(int i=0; i<numberOfTorusSwitches; i++){
    SwitchID new_switch = newSwitchID();
    torusSwitches.insertAtBottom(new_switch);
  }

  makeSwitchesPerChip(nodePairs, latencies, bw_multis, numberOfTorusSwitches);

  int lengthOfSide = (int)sqrt((double)numberOfTorusSwitches);

  // Now connect the inter-chip torus links

  int latency = NETWORK_LINK_LATENCY;  // external link latency
  int bw_multiplier = 1;  // external link bw multiplier of the global bandwidth

  for(int i=0; i<numberOfTorusSwitches; i++){
    nodes[0] = torusSwitches[i];  // current switch

    // left
    if(nodes[0]%lengthOfSide == 0){ // determine left neighbor
      nodes[1] = nodes[0] - 1 + lengthOfSide;
    } else {
      nodes[1] = nodes[0] - 1;
    }
    nodePairs.insertAtBottom(nodes);
    latencies.insertAtBottom(latency);
    bw_multis.insertAtBottom(bw_multiplier);

    // right
    if((nodes[0] + 1)%lengthOfSide == 0){ // determine right neighbor
      nodes[1] = nodes[0] + 1 - lengthOfSide;
    } else {
      nodes[1] = nodes[0] + 1;
    }
    nodePairs.insertAtBottom(nodes);
    latencies.insertAtBottom(latency);
    bw_multis.insertAtBottom(bw_multiplier);

    // top
    if(nodes[0] - lengthOfSide < 2*m_nodes){ // determine if node is on the top
      nodes[1] = nodes[0] - lengthOfSide + (lengthOfSide*lengthOfSide);
    } else {
      nodes[1] = nodes[0] - lengthOfSide;
    }
    nodePairs.insertAtBottom(nodes);
    latencies.insertAtBottom(latency);
    bw_multis.insertAtBottom(bw_multiplier);

    // bottom
    if(nodes[0] + lengthOfSide >= 2*m_nodes+numberOfTorusSwitches){ // determine if node is on the bottom
      // sorin: bad bug if this is a > instead of a >=
      nodes[1] = nodes[0] + lengthOfSide - (lengthOfSide*lengthOfSide);
    } else {
      nodes[1] = nodes[0] + lengthOfSide;
    }
    nodePairs.insertAtBottom(nodes);
    latencies.insertAtBottom(latency);
    bw_multis.insertAtBottom(bw_multiplier);

  }

  // add links
  ASSERT(nodePairs.size() == latencies.size() && latencies.size() == bw_multis.size())
  for (int k = 0; k < nodePairs.size(); k++) {
    ASSERT(nodePairs[k].size() == 2);
    addLink(nodePairs[k][0], nodePairs[k][1], latencies[k], bw_multis[k]);
  }

}

// hierarchical switch topology
void Topology::makeHierarchicalSwitch(int fan_out_degree)
{
  // Make a row of switches with only one input.  This extra row makes
  // sure the links out of the nodes have latency and limited
  // bandwidth.

  // number of inter-chip switches, i.e. the last row of switches
  Vector<SwitchID> last_level;
  for (int i=0; i<m_nodes; i++) {
    SwitchID new_switch = newSwitchID();  // internal switch id #
    addLink(i, new_switch, NETWORK_LINK_LATENCY);
    last_level.insertAtBottom(new_switch);
  }

  // Create Hierarchical Switches

  // start from the bottom level and work up to root
  Vector<SwitchID> next_level;
  while(last_level.size() > 1) {
    for (int i=0; i<last_level.size(); i++) {
      if ((i % fan_out_degree) == 0) {
        next_level.insertAtBottom(newSwitchID());
      }
      // Add this link to the last switch we created
      addLink(last_level[i], next_level[next_level.size()-1], NETWORK_LINK_LATENCY);
    }

    // Make the current level the last level to get ready for next
    // iteration
    last_level = next_level;
    next_level.clear();
  }

  SwitchID root_switch = last_level[0];

  Vector<SwitchID> out_level;
  for (int i=0; i<m_nodes; i++) {
    out_level.insertAtBottom(m_nodes+i);
  }

  // Build the down network from the endpoints to the root
  while(out_level.size() != 1) {

    // A level of switches
    for (int i=0; i<out_level.size(); i++) {
      if ((i % fan_out_degree) == 0) {
        if (out_level.size() > fan_out_degree) {
          next_level.insertAtBottom(newSwitchID());
        } else {
          next_level.insertAtBottom(root_switch);
        }
      }
      // Add this link to the last switch we created
      addLink(next_level[next_level.size()-1], out_level[i], NETWORK_LINK_LATENCY);
    }

    // Make the current level the last level to get ready for next
    // iteration
    out_level = next_level;
    next_level.clear();
  }
}

// one internal node per chip, point to point links between chips
void Topology::makePtToPt()
{
  Vector< Vector < SwitchID > > nodePairs;  // node pairs extracted from the file
  Vector<int> latencies;  // link latencies for each link extracted
  Vector<int> bw_multis;  // bw multipliers for each link extracted

  Vector < SwitchID > nodes;
  nodes.setSize(2);

  // number of inter-chip switches
  int numberOfChipSwitches = m_nodes/MachineType_base_level(MachineType_NUM);
  // two switches per machine node grouping
  // one intra-chip switch and one inter-chip switch per chip
  for(int i=0; i<numberOfChipSwitches; i++){
    SwitchID new_switch = newSwitchID();
    new_switch = newSwitchID();
  }

  makeSwitchesPerChip(nodePairs, latencies, bw_multis, numberOfChipSwitches);

  // connect intra-chip switch to inter-chip switch
  for (int chip = 0; chip < RubyConfig::numberOfChips(); chip++) {

    int latency = ON_CHIP_LINK_LATENCY;  // internal link latency
    int bw_multiplier = 10;  // external link bw multiplier of the global bandwidth

    nodes[0] = chip+m_nodes*2;
    nodes[1] = chip+m_nodes*2+RubyConfig::numberOfChips();

    // insert link
    nodePairs.insertAtBottom(nodes);
    latencies.insertAtBottom(latency);
    bw_multis.insertAtBottom(bw_multiplier);

    // opposite direction link
    Vector < SwitchID > otherDirectionNodes;
    otherDirectionNodes.setSize(2);
    otherDirectionNodes[0] = nodes[1];
    otherDirectionNodes[1] = nodes[0];
    nodePairs.insertAtBottom(otherDirectionNodes);
    latencies.insertAtBottom(latency);
    bw_multis.insertAtBottom(bw_multiplier);
  }

  // point-to-point network between chips
  for (int chip = 0; chip < RubyConfig::numberOfChips(); chip++) {
    for (int other_chip = chip+1; other_chip < RubyConfig::numberOfChips(); other_chip++) {

      int latency = NETWORK_LINK_LATENCY;  // external link latency
      int bw_multiplier = 1;  // external link bw multiplier of the global bandwidth

      nodes[0] = chip+m_nodes*2+RubyConfig::numberOfChips();
      nodes[1] = other_chip+m_nodes*2+RubyConfig::numberOfChips();

      // insert link
      nodePairs.insertAtBottom(nodes);
      latencies.insertAtBottom(latency);
      bw_multis.insertAtBottom(bw_multiplier);

      // opposite direction link
      Vector < SwitchID > otherDirectionNodes;
      otherDirectionNodes.setSize(2);
      otherDirectionNodes[0] = nodes[1];
      otherDirectionNodes[1] = nodes[0];
      nodePairs.insertAtBottom(otherDirectionNodes);
      latencies.insertAtBottom(latency);
      bw_multis.insertAtBottom(bw_multiplier);
    }
  }

  // add links
  ASSERT(nodePairs.size() == latencies.size() && latencies.size() == bw_multis.size())
  for (int k = 0; k < nodePairs.size(); k++) {
    ASSERT(nodePairs[k].size() == 2);
    addLink(nodePairs[k][0], nodePairs[k][1], latencies[k], bw_multis[k]);
  }
}

// make a network as described by the networkFile
void Topology::makeFileSpecified()
{

  Vector< Vector < SwitchID > > nodePairs;  // node pairs extracted from the file
  Vector<int> latencies;  // link latencies for each link extracted
  Vector<int> bw_multis;  // bw multipliers for each link extracted
  Vector<int> weights;  // link weights used to enfore e-cube deadlock free routing
  Vector< SwitchID > int_network_switches;  // internal switches extracted from the file
  Vector<bool> endpointConnectionExist;  // used to ensure all endpoints are connected to the network

  endpointConnectionExist.setSize(m_nodes);

  // initialize endpoint check vector
  for (int k = 0; k < endpointConnectionExist.size(); k++) {
    endpointConnectionExist[k] = false;
  }

  string filename = "network/simple/Network_Files/";
  filename = filename+g_CACHE_DESIGN
    +"_Procs-"+int_to_string(RubyConfig::numberOfProcessors())
    +"_ProcsPerChip-"+int_to_string(RubyConfig::numberOfProcsPerChip())
    +"_L2Banks-"+int_to_string(RubyConfig::numberOfL2Cache())
    +"_Memories-"+int_to_string(RubyConfig::numberOfMemories())
    +".txt";

  ifstream networkFile( filename.c_str() , ios::in);
  if (!networkFile.is_open()) {
    cerr << "Error: Could not open network file: " << filename << endl;
    cerr << "Probably no network file exists for " << RubyConfig::numberOfProcessors()
         << " processors and " << RubyConfig::numberOfProcsPerChip() << " procs per chip " << endl;
    exit(1);
  }

  string line = "";

  while (!networkFile.eof()) {

    Vector < SwitchID > nodes;
    nodes.setSize(2);
    int latency = -1;  // null latency
    int weight = -1;  // null weight
    int bw_multiplier = DEFAULT_BW_MULTIPLIER;  // default multiplier incase the network file doesn't define it
    int i = 0;  // node pair index
    int varsFound = 0;  // number of varsFound on the line
    int internalNodes = 0;  // used to determine if the link is between 2 internal nodes
    std::getline(networkFile, line, '\n');
    string varStr = string_split(line, ' ');

    // parse the current line in the file
    while (varStr != "") {
      string label = string_split(varStr, ':');

      // valid node labels
      if (label == "ext_node" || label == "int_node") {
        ASSERT(i < 2); // one link between 2 switches per line
        varsFound++;
        bool isNewIntSwitch = true;
        if (label == "ext_node") { // input link to node
          MachineType machine = string_to_MachineType(string_split(varStr, ':'));
          string nodeStr = string_split(varStr, ':');
          if (string_split(varStr, ':') == "bank") {
            nodes[i] = MachineType_base_number(machine)
              + atoi(nodeStr.c_str())
              + atoi((string_split(varStr, ':')).c_str())*RubyConfig::numberOfChips();
          } else {
            nodes[i] = MachineType_base_number(machine)
              + atoi(nodeStr.c_str());
          }
          // in nodes should be numbered 0 to m_nodes-1
          ASSERT(nodes[i] >= 0 && nodes[i] < m_nodes);
          isNewIntSwitch = false;
          endpointConnectionExist[nodes[i]] = true;
        }
        if (label == "int_node") { // interior node
          nodes[i] = atoi((string_split(varStr, ':')).c_str())+m_nodes*2;
          // in nodes should be numbered >= m_nodes*2
          ASSERT(nodes[i] >= m_nodes*2);
          for (int k = 0; k < int_network_switches.size(); k++) {
            if (int_network_switches[k] == nodes[i]) {
              isNewIntSwitch = false;
            }
          }
          if (isNewIntSwitch) {  // if internal switch
            m_number_of_switches++;
            int_network_switches.insertAtBottom(nodes[i]);
          }
          internalNodes++;
        }
        i++;
      } else if (label == "link_latency") {
        latency = atoi((string_split(varStr, ':')).c_str());
        varsFound++;
      } else if (label == "bw_multiplier") {  // not necessary, defaults to DEFAULT_BW_MULTIPLIER
        bw_multiplier = atoi((string_split(varStr, ':')).c_str());
      } else if (label == "link_weight") {  // not necessary, defaults to link_latency
        weight = atoi((string_split(varStr, ':')).c_str());
      } else if (label == "processors") {
        ASSERT(atoi((string_split(varStr, ':')).c_str()) == RubyConfig::numberOfProcessors());
      } else if (label == "bw_unit") {
        ASSERT(atoi((string_split(varStr, ':')).c_str()) == g_endpoint_bandwidth);
      } else if (label == "procs_per_chip") {
        ASSERT(atoi((string_split(varStr, ':')).c_str()) == RubyConfig::numberOfProcsPerChip());
      } else if (label == "L2banks") {
        ASSERT(atoi((string_split(varStr, ':')).c_str()) == RubyConfig::numberOfL2Cache());
      } else if (label == "memories") {
        ASSERT(atoi((string_split(varStr, ':')).c_str()) == RubyConfig::numberOfMemories());
      } else {
        cerr << "Error: Unexpected Identifier: " << label << endl;
        exit(1);
      }
      varStr = string_split(line, ' ');
    }
    if (varsFound == 3) { // all three necessary link variables where found so add the link
      nodePairs.insertAtBottom(nodes);
      latencies.insertAtBottom(latency);
      if (weight != -1) {
        weights.insertAtBottom(weight);
      } else {
        weights.insertAtBottom(latency);
      }
      bw_multis.insertAtBottom(bw_multiplier);
      Vector < SwitchID > otherDirectionNodes;
      otherDirectionNodes.setSize(2);
      otherDirectionNodes[0] = nodes[1];
      if (internalNodes == 2) {  // this is an internal link
        otherDirectionNodes[1] = nodes[0];
      } else {
        otherDirectionNodes[1] = nodes[0]+m_nodes;
      }
      nodePairs.insertAtBottom(otherDirectionNodes);
      latencies.insertAtBottom(latency);
      if (weight != -1) {
        weights.insertAtBottom(weight);
      } else {
        weights.insertAtBottom(latency);
      }
      bw_multis.insertAtBottom(bw_multiplier);
    } else {
      if (varsFound != 0) {  // if this is not a valid link, then no vars should have been found
        cerr << "Error in line: " << line << endl;
        exit(1);
      }
    }
  } // end of file

  // makes sure all enpoints are connected in the soon to be created network
  for (int k = 0; k < endpointConnectionExist.size(); k++) {
    if (endpointConnectionExist[k] == false) {
      cerr << "Error: Unconnected Endpoint: " << k << endl;
      exit(1);
    }
  }

  ASSERT(nodePairs.size() == latencies.size() && latencies.size() == bw_multis.size() && latencies.size() == weights.size())
  for (int k = 0; k < nodePairs.size(); k++) {
    ASSERT(nodePairs[k].size() == 2);
    addLink(nodePairs[k][0], nodePairs[k][1], latencies[k], bw_multis[k], weights[k]);
  }

  networkFile.close();
}

void Topology::createLinks(bool isReconfiguration)
{
  // Find maximum switchID

  SwitchID max_switch_id = 0;
  for (int i=0; i<m_links_src_vector.size(); i++) {
    max_switch_id = max(max_switch_id, m_links_src_vector[i]);
    max_switch_id = max(max_switch_id, m_links_dest_vector[i]);
  }

  // Initialize weight vector
  Matrix topology_weights;
  Matrix topology_latency;
  Matrix topology_bw_multis;
  int num_switches = max_switch_id+1;
  topology_weights.setSize(num_switches);
  topology_latency.setSize(num_switches);
  topology_bw_multis.setSize(num_switches);
  m_component_latencies.setSize(num_switches);  // FIXME setting the size of a member variable here is a HACK!
  m_component_inter_switches.setSize(num_switches);  // FIXME setting the size of a member variable here is a HACK!
  for(int i=0; i<topology_weights.size(); i++) {
    topology_weights[i].setSize(num_switches);
    topology_latency[i].setSize(num_switches);
    topology_bw_multis[i].setSize(num_switches);
    m_component_latencies[i].setSize(num_switches);
    m_component_inter_switches[i].setSize(num_switches);  // FIXME setting the size of a member variable here is a HACK!
    for(int j=0; j<topology_weights[i].size(); j++) {
      topology_weights[i][j] = INFINITE_LATENCY;
      topology_latency[i][j] = -1;  // initialize to an invalid value
      topology_bw_multis[i][j] = -1;  // initialize to an invalid value
      m_component_latencies[i][j] = -1; // initialize to an invalid value
      m_component_inter_switches[i][j] = 0;  // initially assume direct connections / no intermediate switches between components
    }
  }

  // Set identity weights to zero
  for(int i=0; i<topology_weights.size(); i++) {
    topology_weights[i][i] = 0;
  }

  // Fill in the topology weights and bandwidth multipliers
  for (int i=0; i<m_links_src_vector.size(); i++) {
    topology_weights[m_links_src_vector[i]][m_links_dest_vector[i]] = m_links_weight_vector[i];
    topology_latency[m_links_src_vector[i]][m_links_dest_vector[i]] = m_links_latency_vector[i];
    m_component_latencies[m_links_src_vector[i]][m_links_dest_vector[i]] = m_links_latency_vector[i];  // initialize to latency vector
    topology_bw_multis[m_links_src_vector[i]][m_links_dest_vector[i]] = m_bw_multiplier_vector[i];
  }

  // Walk topology and hookup the links
  Matrix dist = shortest_path(topology_weights, m_component_latencies, m_component_inter_switches);
  for(int i=0; i<topology_weights.size(); i++) {
    for(int j=0; j<topology_weights[i].size(); j++) {
      int weight = topology_weights[i][j];
      int bw_multiplier = topology_bw_multis[i][j];
      int latency = topology_latency[i][j];
      if (weight > 0 && weight != INFINITE_LATENCY) {
        NetDest destination_set = shortest_path_to_node(i, j, topology_weights, dist);
        assert(latency != -1);
        makeLink(i, j, destination_set, latency, weight, bw_multiplier, isReconfiguration);
      }
    }
  }
}

SwitchID Topology::newSwitchID()
{
  m_number_of_switches++;
  return m_number_of_switches-1+m_nodes+m_nodes;
}

void Topology::addLink(SwitchID src, SwitchID dest, int link_latency)
{
  addLink(src, dest, link_latency, DEFAULT_BW_MULTIPLIER, link_latency);
}

void Topology::addLink(SwitchID src, SwitchID dest, int link_latency, int bw_multiplier)
{
  addLink(src, dest, link_latency, bw_multiplier, link_latency);
}

void Topology::addLink(SwitchID src, SwitchID dest, int link_latency, int bw_multiplier, int link_weight)
{
  ASSERT(src <= m_number_of_switches+m_nodes+m_nodes);
  ASSERT(dest <= m_number_of_switches+m_nodes+m_nodes);
  m_links_src_vector.insertAtBottom(src);
  m_links_dest_vector.insertAtBottom(dest);
  m_links_latency_vector.insertAtBottom(link_latency);
  m_links_weight_vector.insertAtBottom(link_weight);
  m_bw_multiplier_vector.insertAtBottom(bw_multiplier);
}

void Topology::makeLink(SwitchID src, SwitchID dest, const NetDest& routing_table_entry, int link_latency, int link_weight, int bw_multiplier, bool isReconfiguration)
{
  // Make sure we're not trying to connect two end-point nodes directly together
  assert((src >= 2*m_nodes) || (dest >= 2*m_nodes));

  if (src < m_nodes) {
    m_network_ptr->makeInLink(src, dest-(2*m_nodes), routing_table_entry, link_latency, bw_multiplier, isReconfiguration);
  } else if (dest < 2*m_nodes) {
    assert(dest >= m_nodes);
    NodeID node = dest-m_nodes;
    m_network_ptr->makeOutLink(src-(2*m_nodes), node, routing_table_entry, link_latency, link_weight, bw_multiplier, isReconfiguration);
  } else {
    assert((src >= 2*m_nodes) && (dest >= 2*m_nodes));
    m_network_ptr->makeInternalLink(src-(2*m_nodes), dest-(2*m_nodes), routing_table_entry, link_latency, link_weight, bw_multiplier, isReconfiguration);
  }
}

void Topology::printConfig(ostream& out) const
{
  assert(m_component_latencies.size() > 0);

  out << "--- Begin Topology Print ---" << endl;
  out << endl;
  out << "Topology print ONLY indicates the _NETWORK_ latency between two machines" << endl;
  out << "It does NOT include the latency within the machines" << endl;
  out << endl;
  for (int m=0; m<MachineType_NUM; m++) {
    for (int i=0; i<MachineType_base_count((MachineType)m); i++) {
      MachineID cur_mach = {(MachineType)m, i};
      out << cur_mach << " Network Latencies" << endl;
      for (int n=0; n<MachineType_NUM; n++) {
        for (int j=0; j<MachineType_base_count((MachineType)n); j++) {
          MachineID dest_mach = {(MachineType)n, j};
          if (cur_mach != dest_mach) {
            int link_latency = m_component_latencies[MachineType_base_number((MachineType)m)+i][MachineType_base_number(MachineType_NUM)+MachineType_base_number((MachineType)n)+j];
            int intermediate_switches = m_component_inter_switches[MachineType_base_number((MachineType)m)+i][MachineType_base_number(MachineType_NUM)+MachineType_base_number((MachineType)n)+j];
            out << "  " << cur_mach << " -> " << dest_mach << " net_lat: "
                << link_latency+intermediate_switches << endl;  // NOTE switches are assumed to have single cycle latency
          }
        }
      }
      out << endl;
    }
  }

  out << "--- End Topology Print ---" << endl;
}

/**************************************************************************/

// The following all-pairs shortest path algorithm is based on the
// discussion from Cormen et al., Chapter 26.1.

static void extend_shortest_path(Matrix& current_dist, Matrix& latencies, Matrix& inter_switches)
{
  bool change = true;
  int nodes = current_dist.size();

  while (change) {
    change = false;
    for (int i=0; i<nodes; i++) {
      for (int j=0; j<nodes; j++) {
        int minimum = current_dist[i][j];
        int previous_minimum = minimum;
        int intermediate_switch = -1;
        for (int k=0; k<nodes; k++) {
          minimum = min(minimum, current_dist[i][k] + current_dist[k][j]);
          if (previous_minimum != minimum) {
            intermediate_switch = k;
            inter_switches[i][j] = inter_switches[i][k] + inter_switches[k][j] + 1;
          }
          previous_minimum = minimum;
        }
        if (current_dist[i][j] != minimum) {
          change = true;
          current_dist[i][j] = minimum;
          assert(intermediate_switch >= 0);
          assert(intermediate_switch < latencies[i].size());
          latencies[i][j] = latencies[i][intermediate_switch] + latencies[intermediate_switch][j];
        }
      }
    }
  }
}

static Matrix shortest_path(const Matrix& weights, Matrix& latencies, Matrix& inter_switches)
{
  Matrix dist = weights;
  extend_shortest_path(dist, latencies, inter_switches);
  return dist;
}

static bool link_is_shortest_path_to_node(SwitchID src, SwitchID next, SwitchID final,
                                          const Matrix& weights, const Matrix& dist)
{
  return (weights[src][next] + dist[next][final] == dist[src][final]);
}

static NetDest shortest_path_to_node(SwitchID src, SwitchID next,
                                     const Matrix& weights, const Matrix& dist)
{
  NetDest result;
  int d = 0;
  int machines;
  int max_machines;

  machines = MachineType_NUM;
  max_machines = MachineType_base_number(MachineType_NUM);

  for (int m=0; m<machines; m++) {
    for (int i=0; i<MachineType_base_count((MachineType)m); i++) {
      // we use "d+max_machines" below since the "destination" switches for the machines are numbered
      // [MachineType_base_number(MachineType_NUM)...2*MachineType_base_number(MachineType_NUM)-1]
      // for the component network
      if (link_is_shortest_path_to_node(src, next,
                                        d+max_machines,
                                        weights, dist)) {
        MachineID mach = {(MachineType)m, i};
        result.add(mach);
      }
      d++;
    }
  }

  DEBUG_MSG(NETWORK_COMP, MedPrio, "returning shortest path");
  DEBUG_EXPR(NETWORK_COMP, MedPrio, (src-(2*max_machines)));
  DEBUG_EXPR(NETWORK_COMP, MedPrio, (next-(2*max_machines)));
  DEBUG_EXPR(NETWORK_COMP, MedPrio, src);
  DEBUG_EXPR(NETWORK_COMP, MedPrio, next);
  DEBUG_EXPR(NETWORK_COMP, MedPrio, result);
  DEBUG_NEWLINE(NETWORK_COMP, MedPrio);

  return result;
}