summaryrefslogtreecommitdiff
path: root/src/mem/ruby/protocol/GPU_RfO-SQC.sm
blob: c28642661b5468fd4f7dd3182e8afa56dd0fd180 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
/*
 * Copyright (c) 2011-2015 Advanced Micro Devices, Inc.
 * All rights reserved.
 *
 * For use for simulation and test purposes only
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * 3. Neither the name of the copyright holder nor the names of its
 * contributors may be used to endorse or promote products derived from this
 * software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Lisa Hsu
 */

machine(MachineType:SQC, "GPU SQC (L1 I Cache)")
 : Sequencer* sequencer;
   CacheMemory * L1cache;
   int TCC_select_num_bits;
   Cycles issue_latency := 80;  // time to send data down to TCC
   Cycles l2_hit_latency := 18;

  MessageBuffer * requestFromSQC, network="To", virtual_network="1", vnet_type="request";
  MessageBuffer * responseFromSQC, network="To", virtual_network="3", vnet_type="response";
  MessageBuffer * unblockFromCore, network="To", virtual_network="5", vnet_type="unblock";

  MessageBuffer * probeToSQC, network="From", virtual_network="1", vnet_type="request";
  MessageBuffer * responseToSQC, network="From", virtual_network="3", vnet_type="response";

  MessageBuffer * mandatoryQueue;
{
  state_declaration(State, desc="SQC Cache States", default="SQC_State_I") {
    I, AccessPermission:Invalid, desc="Invalid";
    S, AccessPermission:Read_Only, desc="Shared";

    I_S, AccessPermission:Busy, desc="Invalid, issued RdBlkS, have not seen response yet";
    S_I, AccessPermission:Read_Only, desc="L1 replacement, waiting for clean WB ack";
    I_C, AccessPermission:Invalid, desc="Invalid, waiting for WBAck from TCCdir for canceled WB";
  }

  enumeration(Event, desc="SQC Events") {
    // Core initiated
    Fetch,          desc="Fetch";

    //TCC initiated
    TCC_AckS,        desc="TCC Ack to Core Request";
    TCC_AckWB,       desc="TCC Ack for WB";
    TCC_NackWB,       desc="TCC Nack for WB";

    // Mem sys initiated
    Repl,           desc="Replacing block from cache";

    // Probe Events
    PrbInvData,         desc="probe, return M data";
    PrbInv,             desc="probe, no need for data";
    PrbShrData,         desc="probe downgrade, return data";
  }

  enumeration(RequestType, desc="To communicate stats from transitions to recordStats") {
    DataArrayRead,    desc="Read the data array";
    DataArrayWrite,   desc="Write the data array";
    TagArrayRead,     desc="Read the data array";
    TagArrayWrite,    desc="Write the data array";
  }


  structure(Entry, desc="...", interface="AbstractCacheEntry") {
    State CacheState,           desc="cache state";
    bool Dirty,                 desc="Is the data dirty (diff than memory)?";
    DataBlock DataBlk,          desc="data for the block";
    bool FromL2, default="false", desc="block just moved from L2";
  }

  structure(TBE, desc="...") {
    State TBEState,             desc="Transient state";
    DataBlock DataBlk,       desc="data for the block, required for concurrent writebacks";
    bool Dirty,              desc="Is the data dirty (different than memory)?";
    int NumPendingMsgs,      desc="Number of acks/data messages that this processor is waiting for";
    bool Shared,             desc="Victim hit by shared probe";
   }

  structure(TBETable, external="yes") {
    TBE lookup(Addr);
    void allocate(Addr);
    void deallocate(Addr);
    bool isPresent(Addr);
  }

  TBETable TBEs, template="<SQC_TBE>", constructor="m_number_of_TBEs";
  int TCC_select_low_bit, default="RubySystem::getBlockSizeBits()";

  Tick clockEdge();
  Tick cyclesToTicks(Cycles c);

  void set_cache_entry(AbstractCacheEntry b);
  void unset_cache_entry();
  void set_tbe(TBE b);
  void unset_tbe();
  void wakeUpAllBuffers();
  void wakeUpBuffers(Addr a);
  Cycles curCycle();

  // Internal functions
  Entry getCacheEntry(Addr address), return_by_pointer="yes" {
    Entry cache_entry := static_cast(Entry, "pointer", L1cache.lookup(address));
    return cache_entry;
  }

  DataBlock getDataBlock(Addr addr), return_by_ref="yes" {
    TBE tbe := TBEs.lookup(addr);
    if(is_valid(tbe)) {
      return tbe.DataBlk;
    } else {
      return getCacheEntry(addr).DataBlk;
    }
  }

  State getState(TBE tbe, Entry cache_entry, Addr addr) {
    if(is_valid(tbe)) {
      return tbe.TBEState;
    } else if (is_valid(cache_entry)) {
      return cache_entry.CacheState;
    }
    return State:I;
  }

  void setState(TBE tbe, Entry cache_entry, Addr addr, State state) {
    if (is_valid(tbe)) {
      tbe.TBEState := state;
    }

    if (is_valid(cache_entry)) {
      cache_entry.CacheState := state;
    }
  }

  AccessPermission getAccessPermission(Addr addr) {
    TBE tbe := TBEs.lookup(addr);
    if(is_valid(tbe)) {
      return SQC_State_to_permission(tbe.TBEState);
    }

    Entry cache_entry := getCacheEntry(addr);
    if(is_valid(cache_entry)) {
      return SQC_State_to_permission(cache_entry.CacheState);
    }

    return AccessPermission:NotPresent;
  }

  void setAccessPermission(Entry cache_entry, Addr addr, State state) {
    if (is_valid(cache_entry)) {
      cache_entry.changePermission(SQC_State_to_permission(state));
    }
  }

  void functionalRead(Addr addr, Packet *pkt) {
    TBE tbe := TBEs.lookup(addr);
    if(is_valid(tbe)) {
      testAndRead(addr, tbe.DataBlk, pkt);
    } else {
      functionalMemoryRead(pkt);
    }
  }

  int functionalWrite(Addr addr, Packet *pkt) {
    int num_functional_writes := 0;

    TBE tbe := TBEs.lookup(addr);
    if(is_valid(tbe)) {
      num_functional_writes := num_functional_writes +
            testAndWrite(addr, tbe.DataBlk, pkt);
    }

    num_functional_writes := num_functional_writes + functionalMemoryWrite(pkt);
    return num_functional_writes;
  }

  void recordRequestType(RequestType request_type, Addr addr) {
    if (request_type == RequestType:DataArrayRead) {
        L1cache.recordRequestType(CacheRequestType:DataArrayRead, addr);
    } else if (request_type == RequestType:DataArrayWrite) {
        L1cache.recordRequestType(CacheRequestType:DataArrayWrite, addr);
    } else if (request_type == RequestType:TagArrayRead) {
        L1cache.recordRequestType(CacheRequestType:TagArrayRead, addr);
    } else if (request_type == RequestType:TagArrayWrite) {
        L1cache.recordRequestType(CacheRequestType:TagArrayWrite, addr);
    }
  }

  bool checkResourceAvailable(RequestType request_type, Addr addr) {
    if (request_type == RequestType:DataArrayRead) {
      return L1cache.checkResourceAvailable(CacheResourceType:DataArray, addr);
    } else if (request_type == RequestType:DataArrayWrite) {
      return L1cache.checkResourceAvailable(CacheResourceType:DataArray, addr);
    } else if (request_type == RequestType:TagArrayRead) {
      return L1cache.checkResourceAvailable(CacheResourceType:TagArray, addr);
    } else if (request_type == RequestType:TagArrayWrite) {
      return L1cache.checkResourceAvailable(CacheResourceType:TagArray, addr);
    } else {
      error("Invalid RequestType type in checkResourceAvailable");
      return true;
    }
  }

  // Out Ports

  out_port(requestNetwork_out, CPURequestMsg, requestFromSQC);
  out_port(responseNetwork_out, ResponseMsg, responseFromSQC);
  out_port(unblockNetwork_out, UnblockMsg, unblockFromCore);

  // In Ports

  in_port(probeNetwork_in, TDProbeRequestMsg, probeToSQC) {
    if (probeNetwork_in.isReady(clockEdge())) {
      peek(probeNetwork_in, TDProbeRequestMsg, block_on="addr") {
        Entry cache_entry := getCacheEntry(in_msg.addr);
        TBE tbe := TBEs.lookup(in_msg.addr);

        if (in_msg.Type == ProbeRequestType:PrbInv) {
          if (in_msg.ReturnData) {
            trigger(Event:PrbInvData, in_msg.addr, cache_entry, tbe);
          } else {
            trigger(Event:PrbInv, in_msg.addr, cache_entry, tbe);
          }
        } else if (in_msg.Type == ProbeRequestType:PrbDowngrade) {
          assert(in_msg.ReturnData);
          trigger(Event:PrbShrData, in_msg.addr, cache_entry, tbe);
        }
      }
    }
  }

  in_port(responseToSQC_in, ResponseMsg, responseToSQC) {
    if (responseToSQC_in.isReady(clockEdge())) {
      peek(responseToSQC_in, ResponseMsg, block_on="addr") {

        Entry cache_entry := getCacheEntry(in_msg.addr);
        TBE tbe := TBEs.lookup(in_msg.addr);

        if (in_msg.Type == CoherenceResponseType:TDSysResp) {
          if (in_msg.State == CoherenceState:Shared) {
            trigger(Event:TCC_AckS, in_msg.addr, cache_entry, tbe);
          } else {
            error("SQC should not receive TDSysResp other than CoherenceState:Shared");
          }
        } else if (in_msg.Type == CoherenceResponseType:TDSysWBAck) {
          trigger(Event:TCC_AckWB, in_msg.addr, cache_entry, tbe);
        } else if (in_msg.Type == CoherenceResponseType:TDSysWBNack) {
          trigger(Event:TCC_NackWB, in_msg.addr, cache_entry, tbe);
        } else {
          error("Unexpected Response Message to Core");
        }
      }
    }
  }

  in_port(mandatoryQueue_in, RubyRequest, mandatoryQueue, desc="...") {
    if (mandatoryQueue_in.isReady(clockEdge())) {
      peek(mandatoryQueue_in, RubyRequest, block_on="LineAddress") {
        Entry cache_entry := getCacheEntry(in_msg.LineAddress);
        TBE tbe := TBEs.lookup(in_msg.LineAddress);

        assert(in_msg.Type == RubyRequestType:IFETCH);
        if (is_valid(cache_entry) || L1cache.cacheAvail(in_msg.LineAddress)) {
          trigger(Event:Fetch, in_msg.LineAddress, cache_entry, tbe);
        } else {
          Addr victim := L1cache.cacheProbe(in_msg.LineAddress);
          trigger(Event:Repl, victim, getCacheEntry(victim), TBEs.lookup(victim));
        }
      }
    }
  }

  // Actions

  action(ic_invCache, "ic", desc="invalidate cache") {
    if(is_valid(cache_entry)) {
      L1cache.deallocate(address);
    }
    unset_cache_entry();
  }

  action(nS_issueRdBlkS, "nS", desc="Issue RdBlkS") {
    enqueue(requestNetwork_out, CPURequestMsg, issue_latency) {
      out_msg.addr := address;
      out_msg.Type := CoherenceRequestType:RdBlkS;
      out_msg.Requestor := machineID;
      out_msg.Destination.add(mapAddressToRange(address,MachineType:TCCdir,
                              TCC_select_low_bit, TCC_select_num_bits));
      out_msg.MessageSize := MessageSizeType:Request_Control;
      out_msg.InitialRequestTime := curCycle();
    }
  }

  action(vc_victim, "vc", desc="Victimize E/S Data") {
    enqueue(requestNetwork_out, CPURequestMsg, issue_latency) {
      out_msg.addr := address;
      out_msg.Requestor := machineID;
      out_msg.Destination.add(mapAddressToRange(address,MachineType:TCCdir,
                              TCC_select_low_bit, TCC_select_num_bits));
      out_msg.MessageSize := MessageSizeType:Request_Control;
      out_msg.Type := CoherenceRequestType:VicClean;
      out_msg.InitialRequestTime := curCycle();
      if (cache_entry.CacheState == State:S) {
        out_msg.Shared := true;
      } else {
        out_msg.Shared := false;
      }
      out_msg.InitialRequestTime := curCycle();
    }
  }

  action(a_allocate, "a", desc="allocate block") {
    if (is_invalid(cache_entry)) {
      set_cache_entry(L1cache.allocate(address, new Entry));
    }
  }

  action(t_allocateTBE, "t", desc="allocate TBE Entry") {
    check_allocate(TBEs);
    assert(is_valid(cache_entry));
    TBEs.allocate(address);
    set_tbe(TBEs.lookup(address));
    tbe.DataBlk := cache_entry.DataBlk;  // Data only used for WBs
    tbe.Dirty := cache_entry.Dirty;
    tbe.Shared := false;
  }

  action(d_deallocateTBE, "d", desc="Deallocate TBE") {
    TBEs.deallocate(address);
    unset_tbe();
  }

  action(p_popMandatoryQueue, "pm", desc="Pop Mandatory Queue") {
    mandatoryQueue_in.dequeue(clockEdge());
  }

  action(pr_popResponseQueue, "pr", desc="Pop Response Queue") {
    responseToSQC_in.dequeue(clockEdge());
  }

  action(pp_popProbeQueue, "pp", desc="pop probe queue") {
    probeNetwork_in.dequeue(clockEdge());
  }

  action(l_loadDone, "l", desc="local load done") {
    assert(is_valid(cache_entry));
    sequencer.readCallback(address, cache_entry.DataBlk,
                           false, MachineType:L1Cache);
    APPEND_TRANSITION_COMMENT(cache_entry.DataBlk);
  }

  action(xl_loadDone, "xl", desc="remote load done") {
    peek(responseToSQC_in, ResponseMsg) {
      assert(is_valid(cache_entry));
      sequencer.readCallback(address,
                             cache_entry.DataBlk,
                             false,
                             machineIDToMachineType(in_msg.Sender),
                             in_msg.InitialRequestTime,
                             in_msg.ForwardRequestTime,
                             in_msg.ProbeRequestStartTime);
      APPEND_TRANSITION_COMMENT(cache_entry.DataBlk);
    }
  }

  action(w_writeCache, "w", desc="write data to cache") {
    peek(responseToSQC_in, ResponseMsg) {
      assert(is_valid(cache_entry));
      cache_entry.DataBlk := in_msg.DataBlk;
      cache_entry.Dirty := in_msg.Dirty;
    }
  }

  action(ss_sendStaleNotification, "ss", desc="stale data; nothing to writeback") {
    peek(responseToSQC_in, ResponseMsg) {
      enqueue(responseNetwork_out, ResponseMsg, issue_latency) {
        out_msg.addr := address;
        out_msg.Type := CoherenceResponseType:StaleNotif;
        out_msg.Sender := machineID;
        out_msg.Destination.add(mapAddressToRange(address,MachineType:TCC,
                                TCC_select_low_bit, TCC_select_num_bits));
        out_msg.MessageSize := MessageSizeType:Response_Control;
        DPRINTF(RubySlicc, "%s\n", out_msg);
      }
    }
  }

  action(wb_data, "wb", desc="write back data") {
    peek(responseToSQC_in, ResponseMsg) {
      enqueue(responseNetwork_out, ResponseMsg, issue_latency) {
        out_msg.addr := address;
        out_msg.Type := CoherenceResponseType:CPUData;
        out_msg.Sender := machineID;
        out_msg.Destination.add(mapAddressToRange(address,MachineType:TCC,
                                TCC_select_low_bit, TCC_select_num_bits));
        out_msg.DataBlk := tbe.DataBlk;
        out_msg.Dirty := tbe.Dirty;
        if (tbe.Shared) {
          out_msg.NbReqShared := true;
        } else {
          out_msg.NbReqShared := false;
        }
        out_msg.State := CoherenceState:Shared; // faux info
        out_msg.MessageSize := MessageSizeType:Writeback_Data;
        DPRINTF(RubySlicc, "%s\n", out_msg);
      }
    }
  }

  action(pi_sendProbeResponseInv, "pi", desc="send probe ack inv, no data") {
    enqueue(responseNetwork_out, ResponseMsg, issue_latency) {
      out_msg.addr := address;
      out_msg.Type := CoherenceResponseType:CPUPrbResp;  // L3 and CPUs respond in same way to probes
      out_msg.Sender := machineID;
      // will this always be ok? probably not for multisocket
      out_msg.Destination.add(mapAddressToRange(address,MachineType:TCCdir,
                              TCC_select_low_bit, TCC_select_num_bits));
      out_msg.Dirty := false;
      out_msg.Hit := false;
      out_msg.Ntsl := true;
      out_msg.State := CoherenceState:NA;
      out_msg.MessageSize := MessageSizeType:Response_Control;
    }
  }

  action(pim_sendProbeResponseInvMs, "pim", desc="send probe ack inv, no data") {
    enqueue(responseNetwork_out, ResponseMsg, issue_latency) {
      out_msg.addr := address;
      out_msg.Type := CoherenceResponseType:CPUPrbResp;  // L3 and CPUs respond in same way to probes
      out_msg.Sender := machineID;
      // will this always be ok? probably not for multisocket
      out_msg.Destination.add(mapAddressToRange(address,MachineType:TCCdir,
                              TCC_select_low_bit, TCC_select_num_bits));
      out_msg.Dirty := false;
      out_msg.Ntsl := true;
      out_msg.Hit := false;
      out_msg.State := CoherenceState:NA;
      out_msg.MessageSize := MessageSizeType:Response_Control;
    }
  }

  action(prm_sendProbeResponseMiss, "prm", desc="send probe ack PrbShrData, no data") {
    enqueue(responseNetwork_out, ResponseMsg, issue_latency) {
      out_msg.addr := address;
      out_msg.Type := CoherenceResponseType:CPUPrbResp;  // L3 and CPUs respond in same way to probes
      out_msg.Sender := machineID;
      // will this always be ok? probably not for multisocket
      out_msg.Destination.add(mapAddressToRange(address,MachineType:TCCdir,
                              TCC_select_low_bit, TCC_select_num_bits));
      out_msg.Dirty := false;  // only true if sending back data i think
      out_msg.Hit := false;
      out_msg.Ntsl := false;
      out_msg.State := CoherenceState:NA;
      out_msg.MessageSize := MessageSizeType:Response_Control;
    }
  }

  action(pd_sendProbeResponseData, "pd", desc="send probe ack, with data") {
    enqueue(responseNetwork_out, ResponseMsg, issue_latency) {
      assert(is_valid(cache_entry) || is_valid(tbe));
      out_msg.addr := address;
      out_msg.Type := CoherenceResponseType:CPUPrbResp;
      out_msg.Sender := machineID;
      // will this always be ok? probably not for multisocket
      out_msg.Destination.add(mapAddressToRange(address,MachineType:TCCdir,
                              TCC_select_low_bit, TCC_select_num_bits));
      out_msg.DataBlk := getDataBlock(address);
      if (is_valid(tbe)) {
        out_msg.Dirty := tbe.Dirty;
      } else {
        out_msg.Dirty := cache_entry.Dirty;
      }
      out_msg.Hit := true;
      out_msg.State := CoherenceState:NA;
      out_msg.MessageSize := MessageSizeType:Response_Data;
    }
  }

  action(pdm_sendProbeResponseDataMs, "pdm", desc="send probe ack, with data") {
    enqueue(responseNetwork_out, ResponseMsg, issue_latency) {
      assert(is_valid(cache_entry) || is_valid(tbe));
      assert(is_valid(cache_entry));
      out_msg.addr := address;
      out_msg.Type := CoherenceResponseType:CPUPrbResp;
      out_msg.Sender := machineID;
      // will this always be ok? probably not for multisocket
      out_msg.Destination.add(mapAddressToRange(address,MachineType:TCCdir,
                              TCC_select_low_bit, TCC_select_num_bits));
      out_msg.DataBlk := getDataBlock(address);
      if (is_valid(tbe)) {
        out_msg.Dirty := tbe.Dirty;
      } else {
        out_msg.Dirty := cache_entry.Dirty;
      }
      out_msg.Hit := true;
      out_msg.State := CoherenceState:NA;
      out_msg.MessageSize := MessageSizeType:Response_Data;
    }
  }

  action(sf_setSharedFlip, "sf", desc="hit by shared probe, status may be different") {
    assert(is_valid(tbe));
    tbe.Shared := true;
  }

  action(uu_sendUnblock, "uu", desc="state changed, unblock") {
    enqueue(unblockNetwork_out, UnblockMsg, issue_latency) {
      out_msg.addr := address;
      out_msg.Sender := machineID;
      out_msg.Destination.add(mapAddressToRange(address,MachineType:TCCdir,
                              TCC_select_low_bit, TCC_select_num_bits));
      out_msg.MessageSize := MessageSizeType:Unblock_Control;
      DPRINTF(RubySlicc, "%s\n", out_msg);
    }
  }

  action(yy_recycleProbeQueue, "yy", desc="recycle probe queue") {
    probeNetwork_in.recycle(clockEdge(), cyclesToTicks(recycle_latency));
  }

  action(zz_recycleMandatoryQueue, "\z", desc="recycle mandatory queue") {
    mandatoryQueue_in.recycle(clockEdge(), cyclesToTicks(recycle_latency));
  }

  // Transitions

  // transitions from base
  transition(I, Fetch, I_S) {TagArrayRead, TagArrayWrite} {
    a_allocate;
    nS_issueRdBlkS;
    p_popMandatoryQueue;
  }

  // simple hit transitions
  transition(S, Fetch) {TagArrayRead, DataArrayRead} {
    l_loadDone;
    p_popMandatoryQueue;
  }

  // recycles from transients
  transition({I_S, S_I, I_C}, {Fetch, Repl}) {} {
    zz_recycleMandatoryQueue;
  }

  transition(S, Repl, S_I) {TagArrayRead} {
    t_allocateTBE;
    vc_victim;
    ic_invCache;
  }

  // TCC event
  transition(I_S, TCC_AckS, S) {DataArrayRead, DataArrayWrite} {
    w_writeCache;
    xl_loadDone;
    uu_sendUnblock;
    pr_popResponseQueue;
  }

  transition(S_I, TCC_NackWB, I){TagArrayWrite} {
    d_deallocateTBE;
    pr_popResponseQueue;
  }

  transition(S_I, TCC_AckWB, I) {TagArrayWrite} {
    wb_data;
    d_deallocateTBE;
    pr_popResponseQueue;
  }

  transition(I_C, TCC_AckWB, I){TagArrayWrite} {
    ss_sendStaleNotification;
    d_deallocateTBE;
    pr_popResponseQueue;
  }

  transition(I_C, TCC_NackWB, I) {TagArrayWrite} {
    d_deallocateTBE;
    pr_popResponseQueue;
  }

  // Probe transitions
  transition({S, I}, PrbInvData, I) {TagArrayRead, TagArrayWrite} {
    pd_sendProbeResponseData;
    ic_invCache;
    pp_popProbeQueue;
  }

  transition(I_C, PrbInvData, I_C) {
    pi_sendProbeResponseInv;
    ic_invCache;
    pp_popProbeQueue;
  }

  transition({S, I}, PrbInv, I) {TagArrayRead, TagArrayWrite} {
    pi_sendProbeResponseInv;
    ic_invCache;
    pp_popProbeQueue;
  }

  transition({S}, PrbShrData, S) {DataArrayRead} {
    pd_sendProbeResponseData;
    pp_popProbeQueue;
  }

  transition({I, I_C}, PrbShrData) {TagArrayRead} {
    prm_sendProbeResponseMiss;
    pp_popProbeQueue;
  }

  transition(I_C, PrbInv, I_C){
    pi_sendProbeResponseInv;
    ic_invCache;
    pp_popProbeQueue;
  }

  transition(I_S, {PrbInv, PrbInvData}) {} {
    pi_sendProbeResponseInv;
    ic_invCache;
    a_allocate;  // but make sure there is room for incoming data when it arrives
    pp_popProbeQueue;
  }

  transition(I_S, PrbShrData) {} {
    prm_sendProbeResponseMiss;
    pp_popProbeQueue;
  }

  transition(S_I, PrbInvData, I_C) {TagArrayWrite} {
    pi_sendProbeResponseInv;
    ic_invCache;
    pp_popProbeQueue;
  }

  transition(S_I, PrbInv, I_C) {TagArrayWrite} {
    pi_sendProbeResponseInv;
    ic_invCache;
    pp_popProbeQueue;
  }

  transition(S_I, PrbShrData) {DataArrayRead} {
    pd_sendProbeResponseData;
    sf_setSharedFlip;
    pp_popProbeQueue;
  }
}