1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
|
/*
* Copyright (c) 2008 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <memory>
#include "debug/Config.hh"
#include "debug/Drain.hh"
#include "debug/RubyDma.hh"
#include "debug/RubyStats.hh"
#include "mem/protocol/SequencerMsg.hh"
#include "mem/ruby/system/DMASequencer.hh"
#include "mem/ruby/system/System.hh"
#include "sim/system.hh"
DMASequencer::DMASequencer(const Params *p)
: MemObject(p), m_version(p->version), m_controller(NULL),
m_mandatory_q_ptr(NULL), m_usingRubyTester(p->using_ruby_tester),
slave_port(csprintf("%s.slave", name()), this, 0),
drainManager(NULL), system(p->system), retry(false)
{
assert(m_version != -1);
}
void
DMASequencer::init()
{
MemObject::init();
assert(m_controller != NULL);
m_mandatory_q_ptr = m_controller->getMandatoryQueue();
m_mandatory_q_ptr->setSender(this);
m_is_busy = false;
m_data_block_mask = ~ (~0 << RubySystem::getBlockSizeBits());
slave_port.sendRangeChange();
}
BaseSlavePort &
DMASequencer::getSlavePort(const std::string &if_name, PortID idx)
{
// used by the CPUs to connect the caches to the interconnect, and
// for the x86 case also the interrupt master
if (if_name != "slave") {
// pass it along to our super class
return MemObject::getSlavePort(if_name, idx);
} else {
return slave_port;
}
}
DMASequencer::MemSlavePort::MemSlavePort(const std::string &_name,
DMASequencer *_port, PortID id)
: QueuedSlavePort(_name, _port, queue, id), queue(*_port, *this)
{
DPRINTF(RubyDma, "Created slave memport on ruby sequencer %s\n", _name);
}
bool
DMASequencer::MemSlavePort::recvTimingReq(PacketPtr pkt)
{
DPRINTF(RubyDma, "Timing request for address %#x on port %d\n",
pkt->getAddr(), id);
DMASequencer *seq = static_cast<DMASequencer *>(&owner);
if (pkt->memInhibitAsserted())
panic("DMASequencer should never see an inhibited request\n");
assert(isPhysMemAddress(pkt->getAddr()));
assert(Address(pkt->getAddr()).getOffset() + pkt->getSize() <=
RubySystem::getBlockSizeBytes());
// Submit the ruby request
RequestStatus requestStatus = seq->makeRequest(pkt);
// If the request successfully issued then we should return true.
// Otherwise, we need to tell the port to retry at a later point
// and return false.
if (requestStatus == RequestStatus_Issued) {
DPRINTF(RubyDma, "Request %s 0x%x issued\n", pkt->cmdString(),
pkt->getAddr());
return true;
}
// Unless one is using the ruby tester, record the stalled M5 port for
// later retry when the sequencer becomes free.
if (!seq->m_usingRubyTester) {
seq->retry = true;
}
DPRINTF(RubyDma, "Request for address %#x did not issued because %s\n",
pkt->getAddr(), RequestStatus_to_string(requestStatus));
return false;
}
void
DMASequencer::ruby_hit_callback(PacketPtr pkt)
{
DPRINTF(RubyDma, "Hit callback for %s 0x%x\n", pkt->cmdString(),
pkt->getAddr());
// The packet was destined for memory and has not yet been turned
// into a response
assert(system->isMemAddr(pkt->getAddr()));
assert(pkt->isRequest());
slave_port.hitCallback(pkt);
// If we had to stall the slave ports, wake it up because
// the sequencer likely has free resources now.
if (retry) {
retry = false;
DPRINTF(RubyDma,"Sequencer may now be free. SendRetry to port %s\n",
slave_port.name());
slave_port.sendRetry();
}
testDrainComplete();
}
void
DMASequencer::testDrainComplete()
{
//If we weren't able to drain before, we might be able to now.
if (drainManager != NULL) {
unsigned int drainCount = outstandingCount();
DPRINTF(Drain, "Drain count: %u\n", drainCount);
if (drainCount == 0) {
DPRINTF(Drain, "DMASequencer done draining, signaling drain done\n");
drainManager->signalDrainDone();
// Clear the drain manager once we're done with it.
drainManager = NULL;
}
}
}
unsigned int
DMASequencer::getChildDrainCount(DrainManager *dm)
{
int count = 0;
count += slave_port.drain(dm);
DPRINTF(Config, "count after slave port check %d\n", count);
return count;
}
unsigned int
DMASequencer::drain(DrainManager *dm)
{
if (isDeadlockEventScheduled()) {
descheduleDeadlockEvent();
}
// If the DMASequencer is not empty, then it needs to clear all outstanding
// requests before it should call drainManager->signalDrainDone()
DPRINTF(Config, "outstanding count %d\n", outstandingCount());
bool need_drain = outstandingCount() > 0;
//
// Also, get the number of child ports that will also need to clear
// their buffered requests before they call drainManager->signalDrainDone()
//
unsigned int child_drain_count = getChildDrainCount(dm);
// Set status
if (need_drain) {
drainManager = dm;
DPRINTF(Drain, "DMASequencer not drained\n");
setDrainState(Drainable::Draining);
return child_drain_count + 1;
}
drainManager = NULL;
setDrainState(Drainable::Drained);
return child_drain_count;
}
void
DMASequencer::MemSlavePort::hitCallback(PacketPtr pkt)
{
bool needsResponse = pkt->needsResponse();
assert(!pkt->isLLSC());
assert(!pkt->isFlush());
DPRINTF(RubyDma, "Hit callback needs response %d\n", needsResponse);
// turn packet around to go back to requester if response expected
if (needsResponse) {
pkt->makeResponse();
DPRINTF(RubyDma, "Sending packet back over port\n");
// send next cycle
schedTimingResp(pkt, curTick() + g_system_ptr->clockPeriod());
} else {
delete pkt;
}
DPRINTF(RubyDma, "Hit callback done!\n");
}
bool
DMASequencer::MemSlavePort::isPhysMemAddress(Addr addr) const
{
DMASequencer *seq = static_cast<DMASequencer *>(&owner);
return seq->system->isMemAddr(addr);
}
RequestStatus
DMASequencer::makeRequest(PacketPtr pkt)
{
if (m_is_busy) {
return RequestStatus_BufferFull;
}
uint64_t paddr = pkt->getAddr();
uint8_t* data = pkt->getPtr<uint8_t>(true);
int len = pkt->getSize();
bool write = pkt->isWrite();
assert(!m_is_busy); // only support one outstanding DMA request
m_is_busy = true;
active_request.start_paddr = paddr;
active_request.write = write;
active_request.data = data;
active_request.len = len;
active_request.bytes_completed = 0;
active_request.bytes_issued = 0;
active_request.pkt = pkt;
std::shared_ptr<SequencerMsg> msg =
std::make_shared<SequencerMsg>(clockEdge());
msg->getPhysicalAddress() = Address(paddr);
msg->getLineAddress() = line_address(msg->getPhysicalAddress());
msg->getType() = write ? SequencerRequestType_ST : SequencerRequestType_LD;
int offset = paddr & m_data_block_mask;
msg->getLen() = (offset + len) <= RubySystem::getBlockSizeBytes() ?
len : RubySystem::getBlockSizeBytes() - offset;
if (write && (data != NULL)) {
if (active_request.data != NULL) {
msg->getDataBlk().setData(data, offset, msg->getLen());
}
}
assert(m_mandatory_q_ptr != NULL);
m_mandatory_q_ptr->enqueue(msg);
active_request.bytes_issued += msg->getLen();
return RequestStatus_Issued;
}
void
DMASequencer::issueNext()
{
assert(m_is_busy);
active_request.bytes_completed = active_request.bytes_issued;
if (active_request.len == active_request.bytes_completed) {
//
// Must unset the busy flag before calling back the dma port because
// the callback may cause a previously nacked request to be reissued
//
DPRINTF(RubyDma, "DMA request completed\n");
m_is_busy = false;
ruby_hit_callback(active_request.pkt);
return;
}
std::shared_ptr<SequencerMsg> msg =
std::make_shared<SequencerMsg>(clockEdge());
msg->getPhysicalAddress() = Address(active_request.start_paddr +
active_request.bytes_completed);
assert((msg->getPhysicalAddress().getAddress() & m_data_block_mask) == 0);
msg->getLineAddress() = line_address(msg->getPhysicalAddress());
msg->getType() = (active_request.write ? SequencerRequestType_ST :
SequencerRequestType_LD);
msg->getLen() =
(active_request.len -
active_request.bytes_completed < RubySystem::getBlockSizeBytes() ?
active_request.len - active_request.bytes_completed :
RubySystem::getBlockSizeBytes());
if (active_request.write) {
msg->getDataBlk().
setData(&active_request.data[active_request.bytes_completed],
0, msg->getLen());
msg->getType() = SequencerRequestType_ST;
} else {
msg->getType() = SequencerRequestType_LD;
}
assert(m_mandatory_q_ptr != NULL);
m_mandatory_q_ptr->enqueue(msg);
active_request.bytes_issued += msg->getLen();
DPRINTF(RubyDma,
"DMA request bytes issued %d, bytes completed %d, total len %d\n",
active_request.bytes_issued, active_request.bytes_completed,
active_request.len);
}
void
DMASequencer::dataCallback(const DataBlock & dblk)
{
assert(m_is_busy);
int len = active_request.bytes_issued - active_request.bytes_completed;
int offset = 0;
if (active_request.bytes_completed == 0)
offset = active_request.start_paddr & m_data_block_mask;
assert(!active_request.write);
if (active_request.data != NULL) {
memcpy(&active_request.data[active_request.bytes_completed],
dblk.getData(offset, len), len);
}
issueNext();
}
void
DMASequencer::ackCallback()
{
issueNext();
}
void
DMASequencer::recordRequestType(DMASequencerRequestType requestType)
{
DPRINTF(RubyStats, "Recorded statistic: %s\n",
DMASequencerRequestType_to_string(requestType));
}
DMASequencer *
DMASequencerParams::create()
{
return new DMASequencer(this);
}
|