1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
|
/*
* Copyright (c) 2013-2015 Advanced Micro Devices, Inc.
* All rights reserved.
*
* For use for simulation and test purposes only
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Author: Sooraj Puthoor
*/
#ifndef __MEM_RUBY_SYSTEM_GPU_COALESCER_HH__
#define __MEM_RUBY_SYSTEM_GPU_COALESCER_HH__
#include <iostream>
#include <unordered_map>
#include "base/statistics.hh"
#include "mem/protocol/HSAScope.hh"
#include "mem/protocol/HSASegment.hh"
#include "mem/protocol/PrefetchBit.hh"
#include "mem/protocol/RubyAccessMode.hh"
#include "mem/protocol/RubyRequestType.hh"
#include "mem/protocol/SequencerRequestType.hh"
#include "mem/request.hh"
#include "mem/ruby/common/Address.hh"
#include "mem/ruby/common/Consumer.hh"
#include "mem/ruby/system/RubyPort.hh"
class DataBlock;
class CacheMsg;
class MachineID;
class CacheMemory;
class RubyGPUCoalescerParams;
HSAScope reqScopeToHSAScope(Request* req);
HSASegment reqSegmentToHSASegment(Request* req);
struct GPUCoalescerRequest
{
PacketPtr pkt;
RubyRequestType m_type;
Cycles issue_time;
GPUCoalescerRequest(PacketPtr _pkt, RubyRequestType _m_type,
Cycles _issue_time)
: pkt(_pkt), m_type(_m_type), issue_time(_issue_time)
{}
};
std::ostream& operator<<(std::ostream& out, const GPUCoalescerRequest& obj);
class GPUCoalescer : public RubyPort
{
public:
typedef RubyGPUCoalescerParams Params;
GPUCoalescer(const Params *);
~GPUCoalescer();
// Public Methods
void wakeup(); // Used only for deadlock detection
void printProgress(std::ostream& out) const;
void resetStats();
void collateStats();
void regStats();
void writeCallback(Addr address, DataBlock& data);
void writeCallback(Addr address,
MachineType mach,
DataBlock& data);
void writeCallback(Addr address,
MachineType mach,
DataBlock& data,
Cycles initialRequestTime,
Cycles forwardRequestTime,
Cycles firstResponseTime,
bool isRegion);
void writeCallback(Addr address,
MachineType mach,
DataBlock& data,
Cycles initialRequestTime,
Cycles forwardRequestTime,
Cycles firstResponseTime);
void readCallback(Addr address, DataBlock& data);
void readCallback(Addr address,
MachineType mach,
DataBlock& data);
void readCallback(Addr address,
MachineType mach,
DataBlock& data,
Cycles initialRequestTime,
Cycles forwardRequestTime,
Cycles firstResponseTime);
void readCallback(Addr address,
MachineType mach,
DataBlock& data,
Cycles initialRequestTime,
Cycles forwardRequestTime,
Cycles firstResponseTime,
bool isRegion);
/* atomics need their own callback because the data
might be const coming from SLICC */
void atomicCallback(Addr address,
MachineType mach,
const DataBlock& data);
void recordCPReadCallBack(MachineID myMachID, MachineID senderMachID);
void recordCPWriteCallBack(MachineID myMachID, MachineID senderMachID);
// Alternate implementations in VIPER Coalescer
virtual RequestStatus makeRequest(PacketPtr pkt);
int outstandingCount() const { return m_outstanding_count; }
bool
isDeadlockEventScheduled() const
{
return deadlockCheckEvent.scheduled();
}
void
descheduleDeadlockEvent()
{
deschedule(deadlockCheckEvent);
}
bool empty() const;
void print(std::ostream& out) const;
void checkCoherence(Addr address);
void markRemoved();
void removeRequest(GPUCoalescerRequest* request);
void evictionCallback(Addr address);
void completeIssue();
void insertKernel(int wavefront_id, PacketPtr pkt);
void recordRequestType(SequencerRequestType requestType);
Stats::Histogram& getOutstandReqHist() { return m_outstandReqHist; }
Stats::Histogram& getLatencyHist() { return m_latencyHist; }
Stats::Histogram& getTypeLatencyHist(uint32_t t)
{ return *m_typeLatencyHist[t]; }
Stats::Histogram& getMissLatencyHist()
{ return m_missLatencyHist; }
Stats::Histogram& getMissTypeLatencyHist(uint32_t t)
{ return *m_missTypeLatencyHist[t]; }
Stats::Histogram& getMissMachLatencyHist(uint32_t t) const
{ return *m_missMachLatencyHist[t]; }
Stats::Histogram&
getMissTypeMachLatencyHist(uint32_t r, uint32_t t) const
{ return *m_missTypeMachLatencyHist[r][t]; }
Stats::Histogram& getIssueToInitialDelayHist(uint32_t t) const
{ return *m_IssueToInitialDelayHist[t]; }
Stats::Histogram&
getInitialToForwardDelayHist(const MachineType t) const
{ return *m_InitialToForwardDelayHist[t]; }
Stats::Histogram&
getForwardRequestToFirstResponseHist(const MachineType t) const
{ return *m_ForwardToFirstResponseDelayHist[t]; }
Stats::Histogram&
getFirstResponseToCompletionDelayHist(const MachineType t) const
{ return *m_FirstResponseToCompletionDelayHist[t]; }
// Changed to protected to enable inheritance by VIPER Coalescer
protected:
bool tryCacheAccess(Addr addr, RubyRequestType type,
Addr pc, RubyAccessMode access_mode,
int size, DataBlock*& data_ptr);
// Alternate implementations in VIPER Coalescer
virtual void issueRequest(PacketPtr pkt, RubyRequestType type);
void kernelCallback(int wavfront_id);
void hitCallback(GPUCoalescerRequest* request,
MachineType mach,
DataBlock& data,
bool success,
Cycles initialRequestTime,
Cycles forwardRequestTime,
Cycles firstResponseTime,
bool isRegion);
void recordMissLatency(GPUCoalescerRequest* request,
MachineType mach,
Cycles initialRequestTime,
Cycles forwardRequestTime,
Cycles firstResponseTime,
bool success, bool isRegion);
void completeHitCallback(std::vector<PacketPtr> & mylist, int len);
PacketPtr mapAddrToPkt(Addr address);
RequestStatus getRequestStatus(PacketPtr pkt,
RubyRequestType request_type);
bool insertRequest(PacketPtr pkt, RubyRequestType request_type);
bool handleLlsc(Addr address, GPUCoalescerRequest* request);
// Private copy constructor and assignment operator
GPUCoalescer(const GPUCoalescer& obj);
GPUCoalescer& operator=(const GPUCoalescer& obj);
class IssueEvent : public Event
{
private:
GPUCoalescer *seq;
public:
IssueEvent(GPUCoalescer *_seq);
void process();
const char *description() const;
};
IssueEvent issueEvent;
// Changed to protected to enable inheritance by VIPER Coalescer
protected:
int m_max_outstanding_requests;
int m_deadlock_threshold;
CacheMemory* m_dataCache_ptr;
CacheMemory* m_instCache_ptr;
// The cache access latency for this GPU data cache. This is assessed at the
// beginning of each access. This should be very similar to the
// implementation in Sequencer() as this is very much like a Sequencer
Cycles m_data_cache_hit_latency;
// We need to track both the primary and secondary request types.
// The secondary request type comprises a subset of RubyRequestTypes that
// are understood by the L1 Controller. A primary request type can be any
// RubyRequestType.
enum {PrimaryType, SecondaryType};
typedef std::pair<PacketPtr, std::vector<RubyRequestType> > RequestDesc;
typedef std::unordered_map<Addr, std::vector<RequestDesc> > CoalescingTable;
CoalescingTable reqCoalescer;
std::vector<Addr> newRequests;
typedef std::unordered_map<Addr, GPUCoalescerRequest*> RequestTable;
RequestTable m_writeRequestTable;
RequestTable m_readRequestTable;
// Global outstanding request count, across all request tables
int m_outstanding_count;
bool m_deadlock_check_scheduled;
std::unordered_map<int, PacketPtr> kernelEndList;
std::vector<int> newKernelEnds;
int m_store_waiting_on_load_cycles;
int m_store_waiting_on_store_cycles;
int m_load_waiting_on_store_cycles;
int m_load_waiting_on_load_cycles;
bool m_runningGarnetStandalone;
class GPUCoalescerWakeupEvent : public Event
{
private:
GPUCoalescer *m_GPUCoalescer_ptr;
public:
GPUCoalescerWakeupEvent(GPUCoalescer *_seq) :
m_GPUCoalescer_ptr(_seq) {}
void process() { m_GPUCoalescer_ptr->wakeup(); }
const char *description() const
{
return "GPUCoalescer deadlock check";
}
};
GPUCoalescerWakeupEvent deadlockCheckEvent;
bool assumingRfOCoherence;
// m5 style stats for TCP hit/miss counts
Stats::Scalar GPU_TCPLdHits;
Stats::Scalar GPU_TCPLdTransfers;
Stats::Scalar GPU_TCCLdHits;
Stats::Scalar GPU_LdMiss;
Stats::Scalar GPU_TCPStHits;
Stats::Scalar GPU_TCPStTransfers;
Stats::Scalar GPU_TCCStHits;
Stats::Scalar GPU_StMiss;
Stats::Scalar CP_TCPLdHits;
Stats::Scalar CP_TCPLdTransfers;
Stats::Scalar CP_TCCLdHits;
Stats::Scalar CP_LdMiss;
Stats::Scalar CP_TCPStHits;
Stats::Scalar CP_TCPStTransfers;
Stats::Scalar CP_TCCStHits;
Stats::Scalar CP_StMiss;
//! Histogram for number of outstanding requests per cycle.
Stats::Histogram m_outstandReqHist;
//! Histogram for holding latency profile of all requests.
Stats::Histogram m_latencyHist;
std::vector<Stats::Histogram *> m_typeLatencyHist;
//! Histogram for holding latency profile of all requests that
//! miss in the controller connected to this sequencer.
Stats::Histogram m_missLatencyHist;
std::vector<Stats::Histogram *> m_missTypeLatencyHist;
//! Histograms for profiling the latencies for requests that
//! required external messages.
std::vector<Stats::Histogram *> m_missMachLatencyHist;
std::vector< std::vector<Stats::Histogram *> > m_missTypeMachLatencyHist;
//! Histograms for recording the breakdown of miss latency
std::vector<Stats::Histogram *> m_IssueToInitialDelayHist;
std::vector<Stats::Histogram *> m_InitialToForwardDelayHist;
std::vector<Stats::Histogram *> m_ForwardToFirstResponseDelayHist;
std::vector<Stats::Histogram *> m_FirstResponseToCompletionDelayHist;
};
inline std::ostream&
operator<<(std::ostream& out, const GPUCoalescer& obj)
{
obj.print(out);
out << std::flush;
return out;
}
#endif // __MEM_RUBY_SYSTEM_GPU_COALESCER_HH__
|