1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
|
/*
* Copyright (c) 2009 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "cpu/testers/rubytest/RubyTester.hh"
#include "mem/physical.hh"
#include "mem/ruby/slicc_interface/AbstractController.hh"
#include "mem/ruby/system/RubyPort.hh"
RubyPort::RubyPort(const Params *p)
: MemObject(p)
{
m_version = p->version;
assert(m_version != -1);
physmem = p->physmem;
m_controller = NULL;
m_mandatory_q_ptr = NULL;
m_request_cnt = 0;
pio_port = NULL;
physMemPort = NULL;
}
void
RubyPort::init()
{
assert(m_controller != NULL);
m_mandatory_q_ptr = m_controller->getMandatoryQueue();
}
Port *
RubyPort::getPort(const std::string &if_name, int idx)
{
if (if_name == "port") {
return new M5Port(csprintf("%s-port%d", name(), idx), this);
}
if (if_name == "pio_port") {
// ensure there is only one pio port
assert(pio_port == NULL);
pio_port = new PioPort(csprintf("%s-pio-port%d", name(), idx), this);
return pio_port;
}
if (if_name == "physMemPort") {
// RubyPort should only have one port to physical memory
assert (physMemPort == NULL);
physMemPort = new M5Port(csprintf("%s-physMemPort", name()), this);
return physMemPort;
}
if (if_name == "functional") {
// Calls for the functional port only want to access
// functional memory. Therefore, directly pass these calls
// ports to physmem.
assert(physmem != NULL);
return physmem->getPort(if_name, idx);
}
return NULL;
}
RubyPort::PioPort::PioPort(const std::string &_name,
RubyPort *_port)
: SimpleTimingPort(_name, _port)
{
DPRINTF(Ruby, "creating port to ruby sequencer to cpu %s\n", _name);
ruby_port = _port;
}
RubyPort::M5Port::M5Port(const std::string &_name,
RubyPort *_port)
: SimpleTimingPort(_name, _port)
{
DPRINTF(Ruby, "creating port from ruby sequcner to cpu %s\n", _name);
ruby_port = _port;
}
Tick
RubyPort::PioPort::recvAtomic(PacketPtr pkt)
{
panic("RubyPort::PioPort::recvAtomic() not implemented!\n");
return 0;
}
Tick
RubyPort::M5Port::recvAtomic(PacketPtr pkt)
{
panic("RubyPort::M5Port::recvAtomic() not implemented!\n");
return 0;
}
bool
RubyPort::PioPort::recvTiming(PacketPtr pkt)
{
// In FS mode, ruby memory will receive pio responses from devices
// and it must forward these responses back to the particular CPU.
DPRINTF(MemoryAccess, "Pio response for address %#x\n", pkt->getAddr());
assert(pkt->isResponse());
// First we must retrieve the request port from the sender State
RubyPort::SenderState *senderState =
safe_cast<RubyPort::SenderState *>(pkt->senderState);
M5Port *port = senderState->port;
assert(port != NULL);
// pop the sender state from the packet
pkt->senderState = senderState->saved;
delete senderState;
port->sendTiming(pkt);
return true;
}
bool
RubyPort::M5Port::recvTiming(PacketPtr pkt)
{
DPRINTF(MemoryAccess,
"Timing access caught for address %#x\n", pkt->getAddr());
//dsm: based on SimpleTimingPort::recvTiming(pkt);
// The received packets should only be M5 requests, which should never
// get nacked. There used to be code to hanldle nacks here, but
// I'm pretty sure it didn't work correctly with the drain code,
// so that would need to be fixed if we ever added it back.
assert(pkt->isRequest());
if (pkt->memInhibitAsserted()) {
warn("memInhibitAsserted???");
// snooper will supply based on copy of packet
// still target's responsibility to delete packet
delete pkt;
return true;
}
// Save the port in the sender state object to be used later to
// route the response
pkt->senderState = new SenderState(this, pkt->senderState);
// Check for pio requests and directly send them to the dedicated
// pio port.
if (!isPhysMemAddress(pkt->getAddr())) {
assert(ruby_port->pio_port != NULL);
DPRINTF(MemoryAccess,
"Request for address 0x%#x is assumed to be a pio request\n",
pkt->getAddr());
return ruby_port->pio_port->sendTiming(pkt);
}
// For DMA and CPU requests, translate them to ruby requests before
// sending them to our assigned ruby port.
RubyRequestType type = RubyRequestType_NULL;
// If valid, copy the pc to the ruby request
Addr pc = 0;
if (pkt->req->hasPC()) {
pc = pkt->req->getPC();
}
if (pkt->isLLSC()) {
if (pkt->isWrite()) {
DPRINTF(MemoryAccess, "Issuing SC\n");
type = RubyRequestType_Locked_Write;
} else {
DPRINTF(MemoryAccess, "Issuing LL\n");
assert(pkt->isRead());
type = RubyRequestType_Locked_Read;
}
} else {
if (pkt->isRead()) {
if (pkt->req->isInstFetch()) {
type = RubyRequestType_IFETCH;
} else {
type = RubyRequestType_LD;
}
} else if (pkt->isWrite()) {
type = RubyRequestType_ST;
} else if (pkt->isReadWrite()) {
// Fix me. This conditional will never be executed
// because isReadWrite() is just an OR of isRead() and
// isWrite(). Furthermore, just because the packet is a
// read/write request does not necessary mean it is a
// read-modify-write atomic operation.
type = RubyRequestType_RMW_Write;
} else {
panic("Unsupported ruby packet type\n");
}
}
RubyRequest ruby_request(pkt->getAddr(), pkt->getPtr<uint8_t>(),
pkt->getSize(), pc, type,
RubyAccessMode_Supervisor, pkt);
assert(Address(ruby_request.paddr).getOffset() + ruby_request.len <=
RubySystem::getBlockSizeBytes());
// Submit the ruby request
RequestStatus requestStatus = ruby_port->makeRequest(ruby_request);
// If the request successfully issued then we should return true.
// Otherwise, we need to delete the senderStatus we just created and return
// false.
if (requestStatus == RequestStatus_Issued) {
return true;
}
DPRINTF(MemoryAccess,
"Request for address %#x did not issue because %s\n",
pkt->getAddr(), RequestStatus_to_string(requestStatus));
SenderState* senderState = safe_cast<SenderState*>(pkt->senderState);
pkt->senderState = senderState->saved;
delete senderState;
return false;
}
void
RubyPort::ruby_hit_callback(PacketPtr pkt)
{
// Retrieve the request port from the sender State
RubyPort::SenderState *senderState =
safe_cast<RubyPort::SenderState *>(pkt->senderState);
M5Port *port = senderState->port;
assert(port != NULL);
// pop the sender state from the packet
pkt->senderState = senderState->saved;
delete senderState;
port->hitCallback(pkt);
}
void
RubyPort::M5Port::hitCallback(PacketPtr pkt)
{
bool needsResponse = pkt->needsResponse();
//
// All responses except failed SC operations access M5 physical memory
//
bool accessPhysMem = true;
if (pkt->isLLSC()) {
if (pkt->isWrite()) {
if (pkt->req->getExtraData() != 0) {
//
// Successful SC packets convert to normal writes
//
pkt->convertScToWrite();
} else {
//
// Failed SC packets don't access physical memory and thus
// the RubyPort itself must convert it to a response.
//
accessPhysMem = false;
pkt->makeAtomicResponse();
}
} else {
//
// All LL packets convert to normal loads so that M5 PhysMem does
// not lock the blocks.
//
pkt->convertLlToRead();
}
}
DPRINTF(MemoryAccess, "Hit callback needs response %d\n", needsResponse);
if (accessPhysMem) {
ruby_port->physMemPort->sendAtomic(pkt);
}
// turn packet around to go back to requester if response expected
if (needsResponse) {
// sendAtomic() should already have turned packet into
// atomic response
assert(pkt->isResponse());
DPRINTF(MemoryAccess, "Sending packet back over port\n");
sendTiming(pkt);
} else {
delete pkt;
}
DPRINTF(MemoryAccess, "Hit callback done!\n");
}
bool
RubyPort::M5Port::sendTiming(PacketPtr pkt)
{
//minimum latency, must be > 0
schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock()));
return true;
}
bool
RubyPort::PioPort::sendTiming(PacketPtr pkt)
{
//minimum latency, must be > 0
schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock()));
return true;
}
bool
RubyPort::M5Port::isPhysMemAddress(Addr addr)
{
AddrRangeList physMemAddrList;
bool snoop = false;
ruby_port->physMemPort->getPeerAddressRanges(physMemAddrList, snoop);
for (AddrRangeIter iter = physMemAddrList.begin();
iter != physMemAddrList.end();
iter++) {
if (addr >= iter->start && addr <= iter->end) {
DPRINTF(MemoryAccess, "Request found in %#llx - %#llx range\n",
iter->start, iter->end);
return true;
}
}
return false;
}
|