summaryrefslogtreecommitdiff
path: root/src/mem/ruby/system/RubyPort.cc
blob: 15013e0566c924064488c36b5dce43ba4e68c7a0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
/*
 * Copyright (c) 2012-2013 ARM Limited
 * All rights reserved.
 *
 * The license below extends only to copyright in the software and shall
 * not be construed as granting a license to any other intellectual
 * property including but not limited to intellectual property relating
 * to a hardware implementation of the functionality of the software
 * licensed hereunder.  You may use the software subject to the license
 * terms below provided that you ensure that this notice is replicated
 * unmodified and in its entirety in all distributions of the software,
 * modified or unmodified, in source code or in binary form.
 *
 * Copyright (c) 2009-2013 Advanced Micro Devices, Inc.
 * Copyright (c) 2011 Mark D. Hill and David A. Wood
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "mem/ruby/system/RubyPort.hh"

#include "cpu/testers/rubytest/RubyTester.hh"
#include "debug/Config.hh"
#include "debug/Drain.hh"
#include "debug/Ruby.hh"
#include "mem/protocol/AccessPermission.hh"
#include "mem/ruby/slicc_interface/AbstractController.hh"
#include "mem/simple_mem.hh"
#include "sim/full_system.hh"
#include "sim/system.hh"

RubyPort::RubyPort(const Params *p)
    : MemObject(p), m_ruby_system(p->ruby_system), m_version(p->version),
      m_controller(NULL), m_mandatory_q_ptr(NULL),
      m_usingRubyTester(p->using_ruby_tester), system(p->system),
      pioMasterPort(csprintf("%s.pio-master-port", name()), this),
      pioSlavePort(csprintf("%s.pio-slave-port", name()), this),
      memMasterPort(csprintf("%s.mem-master-port", name()), this),
      memSlavePort(csprintf("%s-mem-slave-port", name()), this,
                   p->ruby_system->getAccessBackingStore(), -1,
                   p->no_retry_on_stall),
      gotAddrRanges(p->port_master_connection_count),
      m_isCPUSequencer(p->is_cpu_sequencer)
{
    assert(m_version != -1);

    // create the slave ports based on the number of connected ports
    for (size_t i = 0; i < p->port_slave_connection_count; ++i) {
        slave_ports.push_back(new MemSlavePort(csprintf("%s.slave%d", name(),
            i), this, p->ruby_system->getAccessBackingStore(),
            i, p->no_retry_on_stall));
    }

    // create the master ports based on the number of connected ports
    for (size_t i = 0; i < p->port_master_connection_count; ++i) {
        master_ports.push_back(new PioMasterPort(csprintf("%s.master%d",
            name(), i), this));
    }
}

void
RubyPort::init()
{
    assert(m_controller != NULL);
    m_mandatory_q_ptr = m_controller->getMandatoryQueue();
}

BaseMasterPort &
RubyPort::getMasterPort(const std::string &if_name, PortID idx)
{
    if (if_name == "mem_master_port") {
        return memMasterPort;
    }

    if (if_name == "pio_master_port") {
        return pioMasterPort;
    }

    // used by the x86 CPUs to connect the interrupt PIO and interrupt slave
    // port
    if (if_name != "master") {
        // pass it along to our super class
        return MemObject::getMasterPort(if_name, idx);
    } else {
        if (idx >= static_cast<PortID>(master_ports.size())) {
            panic("RubyPort::getMasterPort: unknown index %d\n", idx);
        }

        return *master_ports[idx];
    }
}

BaseSlavePort &
RubyPort::getSlavePort(const std::string &if_name, PortID idx)
{
    if (if_name == "mem_slave_port") {
        return memSlavePort;
    }

    if (if_name == "pio_slave_port")
        return pioSlavePort;

    // used by the CPUs to connect the caches to the interconnect, and
    // for the x86 case also the interrupt master
    if (if_name != "slave") {
        // pass it along to our super class
        return MemObject::getSlavePort(if_name, idx);
    } else {
        if (idx >= static_cast<PortID>(slave_ports.size())) {
            panic("RubyPort::getSlavePort: unknown index %d\n", idx);
        }

        return *slave_ports[idx];
    }
}

RubyPort::PioMasterPort::PioMasterPort(const std::string &_name,
                           RubyPort *_port)
    : QueuedMasterPort(_name, _port, reqQueue, snoopRespQueue),
      reqQueue(*_port, *this), snoopRespQueue(*_port, *this)
{
    DPRINTF(RubyPort, "Created master pioport on sequencer %s\n", _name);
}

RubyPort::PioSlavePort::PioSlavePort(const std::string &_name,
                           RubyPort *_port)
    : QueuedSlavePort(_name, _port, queue), queue(*_port, *this)
{
    DPRINTF(RubyPort, "Created slave pioport on sequencer %s\n", _name);
}

RubyPort::MemMasterPort::MemMasterPort(const std::string &_name,
                           RubyPort *_port)
    : QueuedMasterPort(_name, _port, reqQueue, snoopRespQueue),
      reqQueue(*_port, *this), snoopRespQueue(*_port, *this)
{
    DPRINTF(RubyPort, "Created master memport on ruby sequencer %s\n", _name);
}

RubyPort::MemSlavePort::MemSlavePort(const std::string &_name, RubyPort *_port,
                                     bool _access_backing_store, PortID id,
                                     bool _no_retry_on_stall)
    : QueuedSlavePort(_name, _port, queue, id), queue(*_port, *this),
      access_backing_store(_access_backing_store),
      no_retry_on_stall(_no_retry_on_stall)
{
    DPRINTF(RubyPort, "Created slave memport on ruby sequencer %s\n", _name);
}

bool
RubyPort::PioMasterPort::recvTimingResp(PacketPtr pkt)
{
    RubyPort *rp = static_cast<RubyPort *>(&owner);
    DPRINTF(RubyPort, "Response for address: 0x%#x\n", pkt->getAddr());

    // send next cycle
    rp->pioSlavePort.schedTimingResp(
            pkt, curTick() + rp->m_ruby_system->clockPeriod());
    return true;
}

bool RubyPort::MemMasterPort::recvTimingResp(PacketPtr pkt)
{
    // got a response from a device
    assert(pkt->isResponse());

    // First we must retrieve the request port from the sender State
    RubyPort::SenderState *senderState =
        safe_cast<RubyPort::SenderState *>(pkt->popSenderState());
    MemSlavePort *port = senderState->port;
    assert(port != NULL);
    delete senderState;

    // In FS mode, ruby memory will receive pio responses from devices
    // and it must forward these responses back to the particular CPU.
    DPRINTF(RubyPort,  "Pio response for address %#x, going to %s\n",
            pkt->getAddr(), port->name());

    // attempt to send the response in the next cycle
    RubyPort *rp = static_cast<RubyPort *>(&owner);
    port->schedTimingResp(pkt, curTick() + rp->m_ruby_system->clockPeriod());

    return true;
}

bool
RubyPort::PioSlavePort::recvTimingReq(PacketPtr pkt)
{
    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);

    for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) {
        AddrRangeList l = ruby_port->master_ports[i]->getAddrRanges();
        for (auto it = l.begin(); it != l.end(); ++it) {
            if (it->contains(pkt->getAddr())) {
                // generally it is not safe to assume success here as
                // the port could be blocked
                bool M5_VAR_USED success =
                    ruby_port->master_ports[i]->sendTimingReq(pkt);
                assert(success);
                return true;
            }
        }
    }
    panic("Should never reach here!\n");
}

Tick
RubyPort::PioSlavePort::recvAtomic(PacketPtr pkt)
{
    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
    // Only atomic_noncaching mode supported!
    if (!ruby_port->system->bypassCaches()) {
        panic("Ruby supports atomic accesses only in noncaching mode\n");
    }

    for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) {
        AddrRangeList l = ruby_port->master_ports[i]->getAddrRanges();
        for (auto it = l.begin(); it != l.end(); ++it) {
            if (it->contains(pkt->getAddr())) {
                return ruby_port->master_ports[i]->sendAtomic(pkt);
            }
        }
    }
    panic("Could not find address in Ruby PIO address ranges!\n");
}

// [InvisiSpec] Request on the way from CPU to Ruby
bool
RubyPort::MemSlavePort::recvTimingReq(PacketPtr pkt)
{
    DPRINTF(RubyPort, "Timing request for address %#x on port %d\n",
            pkt->getAddr(), id);
    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);

    if (pkt->cacheResponding())
        panic("RubyPort should never see request with the "
              "cacheResponding flag set\n");

    // ruby doesn't support cache maintenance operations at the
    // moment, as a workaround, we respond right away
    if (pkt->req->isCacheMaintenance()) {
        warn_once("Cache maintenance operations are not supported in Ruby.\n");
        pkt->makeResponse();
        schedTimingResp(pkt, curTick());
        return true;
    }
    // Check for pio requests and directly send them to the dedicated
    // pio port.
    if (pkt->cmd != MemCmd::MemFenceReq) {
        if (!isPhysMemAddress(pkt->getAddr())) {
            assert(ruby_port->memMasterPort.isConnected());
            DPRINTF(RubyPort, "Request address %#x assumed to be a "
                    "pio address\n", pkt->getAddr());

            // Save the port in the sender state object to be used later to
            // route the response
            pkt->pushSenderState(new SenderState(this));

            // send next cycle
            RubySystem *rs = ruby_port->m_ruby_system;
            ruby_port->memMasterPort.schedTimingReq(pkt,
                curTick() + rs->clockPeriod());
            return true;
        }

        assert(getOffset(pkt->getAddr()) + pkt->getSize() <=
               RubySystem::getBlockSizeBytes());
    }

    // Submit the ruby request
    RequestStatus requestStatus = ruby_port->makeRequest(pkt);

    // If the request successfully issued then we should return true.
    // Otherwise, we need to tell the port to retry at a later point
    // and return false.
    if (requestStatus == RequestStatus_Issued) {
        // Save the port in the sender state object to be used later to
        // route the response
        pkt->pushSenderState(new SenderState(this));

        DPRINTF(RubyPort, "Request %s address %#x issued\n", pkt->cmdString(),
                pkt->getAddr());
        return true;
    }

    if (pkt->cmd != MemCmd::MemFenceReq) {
        DPRINTF(RubyPort,
                "Request %s for address %#x did not issue because %s\n",
                pkt->cmdString(), pkt->getAddr(),
                RequestStatus_to_string(requestStatus));
    }

    addToRetryList();

    return false;
}

Tick
RubyPort::MemSlavePort::recvAtomic(PacketPtr pkt)
{
    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
    // Only atomic_noncaching mode supported!
    if (!ruby_port->system->bypassCaches()) {
        panic("Ruby supports atomic accesses only in noncaching mode\n");
    }

    // Check for pio requests and directly send them to the dedicated
    // pio port.
    if (pkt->cmd != MemCmd::MemFenceReq) {
        if (!isPhysMemAddress(pkt->getAddr())) {
            assert(ruby_port->memMasterPort.isConnected());
            DPRINTF(RubyPort, "Request address %#x assumed to be a "
                    "pio address\n", pkt->getAddr());

            // Save the port in the sender state object to be used later to
            // route the response
            pkt->pushSenderState(new SenderState(this));

            // send next cycle
            Tick req_ticks = ruby_port->memMasterPort.sendAtomic(pkt);
            return ruby_port->ticksToCycles(req_ticks);
        }

        assert(getOffset(pkt->getAddr()) + pkt->getSize() <=
               RubySystem::getBlockSizeBytes());
    }

    // Find appropriate directory for address
    // This assumes that protocols have a Directory machine,
    // which has its memPort hooked up to memory. This can
    // fail for some custom protocols.
    MachineID id = ruby_port->m_controller->mapAddressToMachine(
                    pkt->getAddr(), MachineType_Directory);
    RubySystem *rs = ruby_port->m_ruby_system;
    AbstractController *directory =
        rs->m_abstract_controls[id.getType()][id.getNum()];
    return directory->recvAtomic(pkt);
}

void
RubyPort::MemSlavePort::addToRetryList()
{
    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);

    //
    // Unless the requestor do not want retries (e.g., the Ruby tester),
    // record the stalled M5 port for later retry when the sequencer
    // becomes free.
    //
    if (!no_retry_on_stall && !ruby_port->onRetryList(this)) {
        ruby_port->addToRetryList(this);
    }
}

void
RubyPort::MemSlavePort::recvFunctional(PacketPtr pkt)
{
    DPRINTF(RubyPort, "Functional access for address: %#x\n", pkt->getAddr());

    RubyPort *rp M5_VAR_USED = static_cast<RubyPort *>(&owner);
    RubySystem *rs = rp->m_ruby_system;

    // Check for pio requests and directly send them to the dedicated
    // pio port.
    if (!isPhysMemAddress(pkt->getAddr())) {
        DPRINTF(RubyPort, "Pio Request for address: 0x%#x\n", pkt->getAddr());
        assert(rp->pioMasterPort.isConnected());
        rp->pioMasterPort.sendFunctional(pkt);
        return;
    }

    assert(pkt->getAddr() + pkt->getSize() <=
           makeLineAddress(pkt->getAddr()) + RubySystem::getBlockSizeBytes());

    if (access_backing_store) {
        // The attached physmem contains the official version of data.
        // The following command performs the real functional access.
        // This line should be removed once Ruby supplies the official version
        // of data.
        rs->getPhysMem()->functionalAccess(pkt);
    } else {
        bool accessSucceeded = false;
        bool needsResponse = pkt->needsResponse();

        // Do the functional access on ruby memory
        if (pkt->isRead()) {
            accessSucceeded = rs->functionalRead(pkt);
        } else if (pkt->isWrite()) {
            accessSucceeded = rs->functionalWrite(pkt);
        } else {
            panic("Unsupported functional command %s\n", pkt->cmdString());
        }

        // Unless the requester explicitly said otherwise, generate an error if
        // the functional request failed
        if (!accessSucceeded && !pkt->suppressFuncError()) {
            fatal("Ruby functional %s failed for address %#x\n",
                  pkt->isWrite() ? "write" : "read", pkt->getAddr());
        }

        // turn packet around to go back to requester if response expected
        if (needsResponse) {
            pkt->setFunctionalResponseStatus(accessSucceeded);
        }

        DPRINTF(RubyPort, "Functional access %s!\n",
                accessSucceeded ? "successful":"failed");
    }
}

// [InvisiSpec] On the way from Ruby to CPU
void
RubyPort::ruby_hit_callback(PacketPtr pkt)
{
    DPRINTF(RubyPort, "Hit callback for %s 0x%x\n", pkt->cmdString(),
            pkt->getAddr());

    // The packet was destined for memory and has not yet been turned
    // into a response
    assert(system->isMemAddr(pkt->getAddr()));
    assert(pkt->isRequest());

    // First we must retrieve the request port from the sender State
    RubyPort::SenderState *senderState =
        safe_cast<RubyPort::SenderState *>(pkt->popSenderState());
    MemSlavePort *port = senderState->port;
    assert(port != NULL);
    delete senderState;

    port->hitCallback(pkt);

    trySendRetries();
}

void
RubyPort::trySendRetries()
{
    //
    // If we had to stall the MemSlavePorts, wake them up because the sequencer
    // likely has free resources now.
    //
    if (!retryList.empty()) {
        // Record the current list of ports to retry on a temporary list
        // before calling sendRetryReq on those ports. sendRetryReq will cause
        // an immediate retry, which may result in the ports being put back on
        // the list. Therefore we want to clear the retryList before calling
        // sendRetryReq.
        std::vector<MemSlavePort *> curRetryList(retryList);

        retryList.clear();

        for (auto i = curRetryList.begin(); i != curRetryList.end(); ++i) {
            DPRINTF(RubyPort,
                    "Sequencer may now be free. SendRetry to port %s\n",
                    (*i)->name());
            (*i)->sendRetryReq();
        }
    }
}

void
RubyPort::testDrainComplete()
{
    //If we weren't able to drain before, we might be able to now.
    if (drainState() == DrainState::Draining) {
        unsigned int drainCount = outstandingCount();
        DPRINTF(Drain, "Drain count: %u\n", drainCount);
        if (drainCount == 0) {
            DPRINTF(Drain, "RubyPort done draining, signaling drain done\n");
            signalDrainDone();
        }
    }
}

DrainState
RubyPort::drain()
{
    if (isDeadlockEventScheduled()) {
        descheduleDeadlockEvent();
    }

    //
    // If the RubyPort is not empty, then it needs to clear all outstanding
    // requests before it should call signalDrainDone()
    //
    DPRINTF(Config, "outstanding count %d\n", outstandingCount());
    if (outstandingCount() > 0) {
        DPRINTF(Drain, "RubyPort not drained\n");
        return DrainState::Draining;
    } else {
        return DrainState::Drained;
    }
}

// [InvisiSpec] Still on the way from Ruby to CPU
void
RubyPort::MemSlavePort::hitCallback(PacketPtr pkt)
{
    bool needsResponse = pkt->needsResponse();

    // Unless specified at configuraiton, all responses except failed SC
    // and Flush operations access M5 physical memory.
    bool accessPhysMem = access_backing_store;

    if (pkt->isLLSC()) {
        if (pkt->isWrite()) {
            if (pkt->req->getExtraData() != 0) {
                //
                // Successful SC packets convert to normal writes
                //
                pkt->convertScToWrite();
            } else {
                //
                // Failed SC packets don't access physical memory and thus
                // the RubyPort itself must convert it to a response.
                //
                accessPhysMem = false;
            }
        } else {
            //
            // All LL packets convert to normal loads so that M5 PhysMem does
            // not lock the blocks.
            //
            pkt->convertLlToRead();
        }
    }

    // Flush, acquire, release requests don't access physical memory
    if (pkt->isFlush() || pkt->isExpose() || pkt->cmd == MemCmd::MemFenceReq) {
        accessPhysMem = false;
    }

    if (pkt->req->isKernel()) {
        accessPhysMem = false;
        needsResponse = true;
    }

    DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse);

    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
    RubySystem *rs = ruby_port->m_ruby_system;
    if (accessPhysMem) {
        rs->getPhysMem()->access(pkt);
    } else if (needsResponse) {
        pkt->makeResponse();
    }

    // turn packet around to go back to requester if response expected
    if (needsResponse) {
        DPRINTF(RubyPort, "Sending packet back over port\n");
        // Send a response in the same cycle. There is no need to delay the
        // response because the response latency is already incurred in the
        // Ruby protocol.
        schedTimingResp(pkt, curTick());
    } else {
        // [InvisiSpec] Delete the packet if a reponse is not required
        delete pkt;
    }

    DPRINTF(RubyPort, "Hit callback done!\n");
}

AddrRangeList
RubyPort::PioSlavePort::getAddrRanges() const
{
    // at the moment the assumption is that the master does not care
    AddrRangeList ranges;
    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);

    for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) {
        ranges.splice(ranges.begin(),
                ruby_port->master_ports[i]->getAddrRanges());
    }
    for (const auto M5_VAR_USED &r : ranges)
        DPRINTF(RubyPort, "%s\n", r.to_string());
    return ranges;
}

bool
RubyPort::MemSlavePort::isPhysMemAddress(Addr addr) const
{
    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
    return ruby_port->system->isMemAddr(addr);
}

void
RubyPort::ruby_eviction_callback(Addr address, bool external)
{
    DPRINTF(RubyPort, "Sending invalidations.\n");
    // Allocate the invalidate request and packet on the stack, as it is
    // assumed they will not be modified or deleted by receivers.
    // TODO: should this really be using funcMasterId?
    auto request = std::make_shared<Request>(
        address, RubySystem::getBlockSizeBytes(), 0,
        Request::funcMasterId);

    // Use a single packet to signal all snooping ports of the invalidation.
    // This assumes that snooping ports do NOT modify the packet/request
    Packet pkt(request, MemCmd::InvalidateReq);
    if (external) {
        pkt.setExternalEviction();
    }
    for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
        // check if the connected master port is snooping
        if ((*p)->isSnooping()) {
            // send as a snoop request
            (*p)->sendTimingSnoopReq(&pkt);
        }
    }
}

void
RubyPort::PioMasterPort::recvRangeChange()
{
    RubyPort &r = static_cast<RubyPort &>(owner);
    r.gotAddrRanges--;
    if (r.gotAddrRanges == 0 && FullSystem) {
        r.pioSlavePort.sendRangeChange();
    }
}