summaryrefslogtreecommitdiff
path: root/src/mem/ruby/system/RubyPort.cc
blob: c829bf66e5d775a64317faca47bb4d5e8c8a430a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
/*
 * Copyright (c) 2012 ARM Limited
 * All rights reserved.
 *
 * The license below extends only to copyright in the software and shall
 * not be construed as granting a license to any other intellectual
 * property including but not limited to intellectual property relating
 * to a hardware implementation of the functionality of the software
 * licensed hereunder.  You may use the software subject to the license
 * terms below provided that you ensure that this notice is replicated
 * unmodified and in its entirety in all distributions of the software,
 * modified or unmodified, in source code or in binary form.
 *
 * Copyright (c) 2009 Advanced Micro Devices, Inc.
 * Copyright (c) 2011 Mark D. Hill and David A. Wood
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "cpu/testers/rubytest/RubyTester.hh"
#include "debug/Config.hh"
#include "debug/Drain.hh"
#include "debug/Ruby.hh"
#include "mem/protocol/AccessPermission.hh"
#include "mem/ruby/slicc_interface/AbstractController.hh"
#include "mem/ruby/system/RubyPort.hh"
#include "sim/system.hh"

RubyPort::RubyPort(const Params *p)
    : MemObject(p), m_version(p->version), m_controller(NULL),
      m_mandatory_q_ptr(NULL),
      pio_port(csprintf("%s-pio-port", name()), this),
      m_usingRubyTester(p->using_ruby_tester), m_request_cnt(0),
      drainEvent(NULL), ruby_system(p->ruby_system), system(p->system),
      waitingOnSequencer(false), access_phys_mem(p->access_phys_mem)
{
    assert(m_version != -1);

    // create the slave ports based on the number of connected ports
    for (size_t i = 0; i < p->port_slave_connection_count; ++i) {
        slave_ports.push_back(new M5Port(csprintf("%s-slave%d", name(), i),
                                         this, ruby_system, access_phys_mem));
    }

    // create the master ports based on the number of connected ports
    for (size_t i = 0; i < p->port_master_connection_count; ++i) {
        master_ports.push_back(new PioPort(csprintf("%s-master%d", name(), i),
                                           this));
    }
}

void
RubyPort::init()
{
    assert(m_controller != NULL);
    m_mandatory_q_ptr = m_controller->getMandatoryQueue();
}

MasterPort &
RubyPort::getMasterPort(const std::string &if_name, int idx)
{
    if (if_name == "pio_port") {
        return pio_port;
    }

    // used by the x86 CPUs to connect the interrupt PIO and interrupt slave
    // port
    if (if_name != "master") {
        // pass it along to our super class
        return MemObject::getMasterPort(if_name, idx);
    } else {
        if (idx >= static_cast<int>(master_ports.size())) {
            panic("RubyPort::getMasterPort: unknown index %d\n", idx);
        }

        return *master_ports[idx];
    }
}

SlavePort &
RubyPort::getSlavePort(const std::string &if_name, int idx)
{
    // used by the CPUs to connect the caches to the interconnect, and
    // for the x86 case also the interrupt master
    if (if_name != "slave") {
        // pass it along to our super class
        return MemObject::getSlavePort(if_name, idx);
    } else {
        if (idx >= static_cast<int>(slave_ports.size())) {
            panic("RubyPort::getSlavePort: unknown index %d\n", idx);
        }

        return *slave_ports[idx];
    }
}

RubyPort::PioPort::PioPort(const std::string &_name,
                           RubyPort *_port)
    : QueuedMasterPort(_name, _port, queue), queue(*_port, *this),
      ruby_port(_port)
{
    DPRINTF(RubyPort, "creating master port on ruby sequencer %s\n", _name);
}

RubyPort::M5Port::M5Port(const std::string &_name, RubyPort *_port,
                         RubySystem *_system, bool _access_phys_mem)
    : QueuedSlavePort(_name, _port, queue), queue(*_port, *this),
      ruby_port(_port), ruby_system(_system),
      _onRetryList(false), access_phys_mem(_access_phys_mem)
{
    DPRINTF(RubyPort, "creating slave port on ruby sequencer %s\n", _name);
}

Tick
RubyPort::M5Port::recvAtomic(PacketPtr pkt)
{
    panic("RubyPort::M5Port::recvAtomic() not implemented!\n");
    return 0;
}


bool
RubyPort::PioPort::recvTimingResp(PacketPtr pkt)
{
    // In FS mode, ruby memory will receive pio responses from devices
    // and it must forward these responses back to the particular CPU.
    DPRINTF(RubyPort,  "Pio response for address %#x\n", pkt->getAddr());

    // First we must retrieve the request port from the sender State
    RubyPort::SenderState *senderState =
      safe_cast<RubyPort::SenderState *>(pkt->senderState);
    M5Port *port = senderState->port;
    assert(port != NULL);

    // pop the sender state from the packet
    pkt->senderState = senderState->saved;
    delete senderState;

    port->sendTimingResp(pkt);

    return true;
}

bool
RubyPort::M5Port::recvTimingReq(PacketPtr pkt)
{
    DPRINTF(RubyPort,
            "Timing access caught for address %#x\n", pkt->getAddr());

    //dsm: based on SimpleTimingPort::recvTimingReq(pkt);

    // The received packets should only be M5 requests, which should never
    // get nacked.  There used to be code to hanldle nacks here, but
    // I'm pretty sure it didn't work correctly with the drain code,
    // so that would need to be fixed if we ever added it back.

    if (pkt->memInhibitAsserted()) {
        warn("memInhibitAsserted???");
        // snooper will supply based on copy of packet
        // still target's responsibility to delete packet
        delete pkt;
        return true;
    }

    // Save the port in the sender state object to be used later to
    // route the response
    pkt->senderState = new SenderState(this, pkt->senderState);

    // Check for pio requests and directly send them to the dedicated
    // pio port.
    if (!isPhysMemAddress(pkt->getAddr())) {
        assert(ruby_port->pio_port.isConnected());
        DPRINTF(RubyPort,
                "Request for address 0x%#x is assumed to be a pio request\n",
                pkt->getAddr());

        return ruby_port->pio_port.sendNextCycle(pkt);
    }

    assert(Address(pkt->getAddr()).getOffset() + pkt->getSize() <=
           RubySystem::getBlockSizeBytes());

    // Submit the ruby request
    RequestStatus requestStatus = ruby_port->makeRequest(pkt);

    // If the request successfully issued then we should return true.
    // Otherwise, we need to delete the senderStatus we just created and return
    // false.
    if (requestStatus == RequestStatus_Issued) {
        DPRINTF(RubyPort, "Request %#x issued\n", pkt->getAddr());
        return true;
    }

    //
    // Unless one is using the ruby tester, record the stalled M5 port for 
    // later retry when the sequencer becomes free.
    //
    if (!ruby_port->m_usingRubyTester) {
        ruby_port->addToRetryList(this);
    }

    DPRINTF(RubyPort,
            "Request for address %#x did not issue because %s\n",
            pkt->getAddr(), RequestStatus_to_string(requestStatus));

    SenderState* senderState = safe_cast<SenderState*>(pkt->senderState);
    pkt->senderState = senderState->saved;
    delete senderState;
    return false;
}

bool
RubyPort::M5Port::doFunctionalRead(PacketPtr pkt)
{
    Address address(pkt->getAddr());
    Address line_address(address);
    line_address.makeLineAddress();

    AccessPermission access_perm = AccessPermission_NotPresent;
    int num_controllers = ruby_system->m_abs_cntrl_vec.size();

    DPRINTF(RubyPort, "Functional Read request for %s\n",address);

    unsigned int num_ro = 0;
    unsigned int num_rw = 0;
    unsigned int num_busy = 0;
    unsigned int num_backing_store = 0;
    unsigned int num_invalid = 0;

    // In this loop we count the number of controllers that have the given
    // address in read only, read write and busy states.
    for (int i = 0; i < num_controllers; ++i) {
        access_perm = ruby_system->m_abs_cntrl_vec[i]->
                                            getAccessPermission(line_address);
        if (access_perm == AccessPermission_Read_Only)
            num_ro++;
        else if (access_perm == AccessPermission_Read_Write)
            num_rw++;
        else if (access_perm == AccessPermission_Busy)
            num_busy++;
        else if (access_perm == AccessPermission_Backing_Store)
            // See RubySlicc_Exports.sm for details, but Backing_Store is meant
            // to represent blocks in memory *for Broadcast/Snooping protocols*,
            // where memory has no idea whether it has an exclusive copy of data
            // or not.
            num_backing_store++;
        else if (access_perm == AccessPermission_Invalid ||
                 access_perm == AccessPermission_NotPresent)
            num_invalid++;
    }
    assert(num_rw <= 1);

    uint8* data = pkt->getPtr<uint8_t>(true);
    unsigned int size_in_bytes = pkt->getSize();
    unsigned startByte = address.getAddress() - line_address.getAddress();

    // This if case is meant to capture what happens in a Broadcast/Snoop
    // protocol where the block does not exist in the cache hierarchy. You
    // only want to read from the Backing_Store memory if there is no copy in
    // the cache hierarchy, otherwise you want to try to read the RO or RW
    // copies existing in the cache hierarchy (covered by the else statement).
    // The reason is because the Backing_Store memory could easily be stale, if
    // there are copies floating around the cache hierarchy, so you want to read
    // it only if it's not in the cache hierarchy at all.
    if (num_invalid == (num_controllers - 1) &&
            num_backing_store == 1)
    {
        DPRINTF(RubyPort, "only copy in Backing_Store memory, read from it\n");
        for (int i = 0; i < num_controllers; ++i) {
            access_perm = ruby_system->m_abs_cntrl_vec[i]
                                              ->getAccessPermission(line_address);
            if (access_perm == AccessPermission_Backing_Store) {
                DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
                                                 ->getDataBlock(line_address);

                DPRINTF(RubyPort, "reading from %s block %s\n",
                        ruby_system->m_abs_cntrl_vec[i]->name(), block);
                for (unsigned i = 0; i < size_in_bytes; ++i) {
                    data[i] = block.getByte(i + startByte);
                }
                return true;
            }
        }
    } else {
        // In Broadcast/Snoop protocols, this covers if you know the block
        // exists somewhere in the caching hierarchy, then you want to read any
        // valid RO or RW block.  In directory protocols, same thing, you want
        // to read any valid readable copy of the block.
        DPRINTF(RubyPort, "num_busy = %d, num_ro = %d, num_rw = %d\n",
                num_busy, num_ro, num_rw);
        // In this loop, we try to figure which controller has a read only or
        // a read write copy of the given address. Any valid copy would suffice
        // for a functional read.
        for(int i = 0;i < num_controllers;++i) {
            access_perm = ruby_system->m_abs_cntrl_vec[i]
                                              ->getAccessPermission(line_address);
            if(access_perm == AccessPermission_Read_Only ||
               access_perm == AccessPermission_Read_Write)
            {
                DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
                                                     ->getDataBlock(line_address);

                DPRINTF(RubyPort, "reading from %s block %s\n",
                        ruby_system->m_abs_cntrl_vec[i]->name(), block);
                for (unsigned i = 0; i < size_in_bytes; ++i) {
                    data[i] = block.getByte(i + startByte);
                }
                return true;
            }
        }
    }
    return false;
}

bool
RubyPort::M5Port::doFunctionalWrite(PacketPtr pkt)
{
    Address addr(pkt->getAddr());
    Address line_addr = line_address(addr);
    AccessPermission access_perm = AccessPermission_NotPresent;
    int num_controllers = ruby_system->m_abs_cntrl_vec.size();

    DPRINTF(RubyPort, "Functional Write request for %s\n",addr);

    unsigned int num_ro = 0;
    unsigned int num_rw = 0;
    unsigned int num_busy = 0;
    unsigned int num_backing_store = 0;
    unsigned int num_invalid = 0;

    // In this loop we count the number of controllers that have the given
    // address in read only, read write and busy states.
    for(int i = 0;i < num_controllers;++i) {
        access_perm = ruby_system->m_abs_cntrl_vec[i]->
                                            getAccessPermission(line_addr);
        if (access_perm == AccessPermission_Read_Only)
            num_ro++;
        else if (access_perm == AccessPermission_Read_Write)
            num_rw++;
        else if (access_perm == AccessPermission_Busy)
            num_busy++;
        else if (access_perm == AccessPermission_Backing_Store)
            // See RubySlicc_Exports.sm for details, but Backing_Store is meant
            // to represent blocks in memory *for Broadcast/Snooping protocols*,
            // where memory has no idea whether it has an exclusive copy of data
            // or not.
            num_backing_store++;
        else if (access_perm == AccessPermission_Invalid ||
                 access_perm == AccessPermission_NotPresent)
            num_invalid++;
    }

    // If the number of read write copies is more than 1, then there is bug in
    // coherence protocol. Otherwise, if all copies are in stable states, i.e.
    // num_busy == 0, we update all the copies. If there is at least one copy
    // in busy state, then we check if there is read write copy. If yes, then
    // also we let the access go through. Or, if there is no copy in the cache
    // hierarchy at all, we still want to do the write to the memory
    // (Backing_Store) instead of failing.

    DPRINTF(RubyPort, "num_busy = %d, num_ro = %d, num_rw = %d\n",
            num_busy, num_ro, num_rw);
    assert(num_rw <= 1);

    uint8* data = pkt->getPtr<uint8_t>(true);
    unsigned int size_in_bytes = pkt->getSize();
    unsigned startByte = addr.getAddress() - line_addr.getAddress();

    if ((num_busy == 0 && num_ro > 0) || num_rw == 1 ||
            (num_invalid == (num_controllers - 1) && num_backing_store == 1))
    {
        for(int i = 0; i < num_controllers;++i) {
            access_perm = ruby_system->m_abs_cntrl_vec[i]->
                                                getAccessPermission(line_addr);
            if(access_perm == AccessPermission_Read_Only ||
               access_perm == AccessPermission_Read_Write||
               access_perm == AccessPermission_Maybe_Stale ||
               access_perm == AccessPermission_Backing_Store)
            {
                DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
                                                      ->getDataBlock(line_addr);

                DPRINTF(RubyPort, "%s\n",block);
                for (unsigned i = 0; i < size_in_bytes; ++i) {
                  block.setByte(i + startByte, data[i]);
                }
                DPRINTF(RubyPort, "%s\n",block);
            }
        }
        return true;
    }
    return false;
}

void
RubyPort::M5Port::recvFunctional(PacketPtr pkt)
{
    DPRINTF(RubyPort, "Functional access caught for address %#x\n",
                                                           pkt->getAddr());

    // Check for pio requests and directly send them to the dedicated
    // pio port.
    if (!isPhysMemAddress(pkt->getAddr())) {
        assert(ruby_port->pio_port.isConnected());
        DPRINTF(RubyPort, "Request for address 0x%#x is a pio request\n",
                                                           pkt->getAddr());
        panic("RubyPort::PioPort::recvFunctional() not implemented!\n");
    }

    assert(pkt->getAddr() + pkt->getSize() <=
                line_address(Address(pkt->getAddr())).getAddress() +
                RubySystem::getBlockSizeBytes());

    bool accessSucceeded = false;
    bool needsResponse = pkt->needsResponse();

    // Do the functional access on ruby memory
    if (pkt->isRead()) {
        accessSucceeded = doFunctionalRead(pkt);
    } else if (pkt->isWrite()) {
        accessSucceeded = doFunctionalWrite(pkt);
    } else {
        panic("RubyPort: unsupported functional command %s\n",
              pkt->cmdString());
    }

    // Unless the requester explicitly said otherwise, generate an error if
    // the functional request failed
    if (!accessSucceeded && !pkt->suppressFuncError()) {
        fatal("Ruby functional %s failed for address %#x\n",
              pkt->isWrite() ? "write" : "read", pkt->getAddr());
    }

    if (access_phys_mem) {
        // The attached physmem contains the official version of data.
        // The following command performs the real functional access.
        // This line should be removed once Ruby supplies the official version
        // of data.
        ruby_port->system->getPhysMem().functionalAccess(pkt);
    }

    // turn packet around to go back to requester if response expected
    if (needsResponse) {
        pkt->setFunctionalResponseStatus(accessSucceeded);

        // @todo There should not be a reverse call since the response is
        // communicated through the packet pointer
        // DPRINTF(RubyPort, "Sending packet back over port\n");
        // sendFunctional(pkt);
    }
    DPRINTF(RubyPort, "Functional access %s!\n",
            accessSucceeded ? "successful":"failed");
}

void
RubyPort::ruby_hit_callback(PacketPtr pkt)
{
    // Retrieve the request port from the sender State
    RubyPort::SenderState *senderState =
        safe_cast<RubyPort::SenderState *>(pkt->senderState);
    M5Port *port = senderState->port;
    assert(port != NULL);

    // pop the sender state from the packet
    pkt->senderState = senderState->saved;
    delete senderState;

    port->hitCallback(pkt);

    //
    // If we had to stall the M5Ports, wake them up because the sequencer
    // likely has free resources now.
    //
    if (waitingOnSequencer) {
        //
        // Record the current list of ports to retry on a temporary list before
        // calling sendRetry on those ports.  sendRetry will cause an 
        // immediate retry, which may result in the ports being put back on the
        // list. Therefore we want to clear the retryList before calling
        // sendRetry.
        //
        std::list<M5Port*> curRetryList(retryList);

        retryList.clear();
        waitingOnSequencer = false;
        
        for (std::list<M5Port*>::iterator i = curRetryList.begin();
             i != curRetryList.end(); ++i) {
            DPRINTF(RubyPort,
                    "Sequencer may now be free.  SendRetry to port %s\n",
                    (*i)->name());
            (*i)->onRetryList(false);
            (*i)->sendRetry();
        }
    }

    testDrainComplete();
}

void
RubyPort::testDrainComplete()
{
    //If we weren't able to drain before, we might be able to now.
    if (drainEvent != NULL) {
        unsigned int drainCount = getDrainCount(drainEvent);
        DPRINTF(Drain, "Drain count: %u\n", drainCount);
        if (drainCount == 0) {
            DPRINTF(Drain, "RubyPort done draining, processing drain event\n");
            drainEvent->process();
            // Clear the drain event once we're done with it.
            drainEvent = NULL;
        }
    }
}

unsigned int
RubyPort::getDrainCount(Event *de)
{
    int count = 0;
    //
    // If the sequencer is not empty, then requests need to drain.
    // The outstandingCount is the number of requests outstanding and thus the
    // number of times M5's timing port will process the drain event.
    //
    count += outstandingCount();

    DPRINTF(Config, "outstanding count %d\n", outstandingCount());

    // To simplify the draining process, the sequencer's deadlock detection
    // event should have been descheduled.
    assert(isDeadlockEventScheduled() == false);

    if (pio_port.isConnected()) {
        count += pio_port.drain(de);
        DPRINTF(Config, "count after pio check %d\n", count);
    }

    for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
        count += (*p)->drain(de);
        DPRINTF(Config, "count after slave port check %d\n", count);
    }

    for (std::vector<PioPort*>::iterator p = master_ports.begin();
         p != master_ports.end(); ++p) {
        count += (*p)->drain(de);
        DPRINTF(Config, "count after master port check %d\n", count);
    }

    DPRINTF(Config, "final count %d\n", count);

    return count;
}

unsigned int
RubyPort::drain(Event *de)
{
    if (isDeadlockEventScheduled()) {
        descheduleDeadlockEvent();
    }

    int count = getDrainCount(de);

    // Set status
    if (count != 0) {
        drainEvent = de;

        DPRINTF(Drain, "RubyPort not drained\n");
        changeState(SimObject::Draining);
        return count;
    }

    changeState(SimObject::Drained);
    return 0;
}

void
RubyPort::M5Port::hitCallback(PacketPtr pkt)
{
    bool needsResponse = pkt->needsResponse();

    //
    // Unless specified at configuraiton, all responses except failed SC 
    // and Flush operations access M5 physical memory.
    //
    bool accessPhysMem = access_phys_mem;

    if (pkt->isLLSC()) {
        if (pkt->isWrite()) {
            if (pkt->req->getExtraData() != 0) {
                //
                // Successful SC packets convert to normal writes
                //
                pkt->convertScToWrite();
            } else {
                //
                // Failed SC packets don't access physical memory and thus
                // the RubyPort itself must convert it to a response.
                //
                accessPhysMem = false;
            }
        } else {
            //
            // All LL packets convert to normal loads so that M5 PhysMem does
            // not lock the blocks.
            //
            pkt->convertLlToRead();
        }
    }

    //
    // Flush requests don't access physical memory
    //
    if (pkt->isFlush()) {
        accessPhysMem = false;
    }

    DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse);

    if (accessPhysMem) {
        ruby_port->system->getPhysMem().access(pkt);
    } else if (needsResponse) {
        pkt->makeResponse();
    }

    // turn packet around to go back to requester if response expected
    if (needsResponse) {
        DPRINTF(RubyPort, "Sending packet back over port\n");
        sendNextCycle(pkt);
    } else {
        delete pkt;
    }
    DPRINTF(RubyPort, "Hit callback done!\n");
}

bool
RubyPort::M5Port::sendNextCycle(PacketPtr pkt, bool send_as_snoop)
{
    //minimum latency, must be > 0
    queue.schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock()),
                          send_as_snoop);
    return true;
}

bool
RubyPort::PioPort::sendNextCycle(PacketPtr pkt)
{
    //minimum latency, must be > 0
    queue.schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock()));
    return true;
}

AddrRangeList
RubyPort::M5Port::getAddrRanges() const
{
    // at the moment the assumption is that the master does not care
    AddrRangeList ranges;
    return ranges;
}

bool
RubyPort::M5Port::isPhysMemAddress(Addr addr)
{
    return ruby_port->system->isMemAddr(addr);
}

unsigned
RubyPort::M5Port::deviceBlockSize() const
{
    return (unsigned) RubySystem::getBlockSizeBytes();
}

void
RubyPort::ruby_eviction_callback(const Address& address)
{
    DPRINTF(RubyPort, "Sending invalidations.\n");
    // should this really be using funcMasterId?
    Request req(address.getAddress(), 0, 0, Request::funcMasterId);
    for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
        // check if the connected master port is snooping
        if ((*p)->isSnooping()) {
            Packet *pkt = new Packet(&req, MemCmd::InvalidationReq);
            // send as a snoop request
            (*p)->sendTimingSnoopReq(pkt);
        }
    }
}