1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
|
/*
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* $Id: Sequencer.C 1.131 2006/11/06 17:41:01-06:00 bobba@gratiano.cs.wisc.edu $
*
*/
#include "Global.hh"
#include "Sequencer.hh"
#include "System.hh"
#include "Protocol.hh"
#include "Profiler.hh"
#include "CacheMemory.hh"
#include "RubyConfig.hh"
//#include "Tracer.hh"
#include "AbstractChip.hh"
#include "Chip.hh"
#include "Tester.hh"
#include "SubBlock.hh"
#include "Protocol.hh"
#include "Map.hh"
#include "interface.hh"
//#include "XactCommitArbiter.hh"
// #include "TransactionInterfaceManager.hh"
//#include "TransactionVersionManager.hh"
//#include "LazyTransactionVersionManager.hh"
//#define XACT_MGR g_system_ptr->getChip(m_chip_ptr->getID())->getTransactionInterfaceManager(m_version)
Sequencer::Sequencer(AbstractChip* chip_ptr, int version) {
m_chip_ptr = chip_ptr;
m_version = version;
m_deadlock_check_scheduled = false;
m_outstanding_count = 0;
int smt_threads = RubyConfig::numberofSMTThreads();
m_writeRequestTable_ptr = new Map<Address, CacheMsg>*[smt_threads];
m_readRequestTable_ptr = new Map<Address, CacheMsg>*[smt_threads];
for(int p=0; p < smt_threads; ++p){
m_writeRequestTable_ptr[p] = new Map<Address, CacheMsg>;
m_readRequestTable_ptr[p] = new Map<Address, CacheMsg>;
}
}
Sequencer::~Sequencer() {
int smt_threads = RubyConfig::numberofSMTThreads();
for(int i=0; i < smt_threads; ++i){
if(m_writeRequestTable_ptr[i]){
delete m_writeRequestTable_ptr[i];
}
if(m_readRequestTable_ptr[i]){
delete m_readRequestTable_ptr[i];
}
}
if(m_writeRequestTable_ptr){
delete [] m_writeRequestTable_ptr;
}
if(m_readRequestTable_ptr){
delete [] m_readRequestTable_ptr;
}
}
void Sequencer::wakeup() {
// Check for deadlock of any of the requests
Time current_time = g_eventQueue_ptr->getTime();
bool deadlock = false;
// Check across all outstanding requests
int smt_threads = RubyConfig::numberofSMTThreads();
int total_outstanding = 0;
for(int p=0; p < smt_threads; ++p){
Vector<Address> keys = m_readRequestTable_ptr[p]->keys();
for (int i=0; i<keys.size(); i++) {
CacheMsg& request = m_readRequestTable_ptr[p]->lookup(keys[i]);
if (current_time - request.getTime() >= g_DEADLOCK_THRESHOLD) {
WARN_MSG("Possible Deadlock detected");
WARN_EXPR(request);
WARN_EXPR(m_chip_ptr->getID());
WARN_EXPR(m_version);
WARN_EXPR(keys.size());
WARN_EXPR(current_time);
WARN_EXPR(request.getTime());
WARN_EXPR(current_time - request.getTime());
WARN_EXPR(*m_readRequestTable_ptr[p]);
ERROR_MSG("Aborting");
deadlock = true;
}
}
keys = m_writeRequestTable_ptr[p]->keys();
for (int i=0; i<keys.size(); i++) {
CacheMsg& request = m_writeRequestTable_ptr[p]->lookup(keys[i]);
if (current_time - request.getTime() >= g_DEADLOCK_THRESHOLD) {
WARN_MSG("Possible Deadlock detected");
WARN_EXPR(request);
WARN_EXPR(m_chip_ptr->getID());
WARN_EXPR(m_version);
WARN_EXPR(current_time);
WARN_EXPR(request.getTime());
WARN_EXPR(current_time - request.getTime());
WARN_EXPR(keys.size());
WARN_EXPR(*m_writeRequestTable_ptr[p]);
ERROR_MSG("Aborting");
deadlock = true;
}
}
total_outstanding += m_writeRequestTable_ptr[p]->size() + m_readRequestTable_ptr[p]->size();
} // across all request tables
assert(m_outstanding_count == total_outstanding);
if (m_outstanding_count > 0) { // If there are still outstanding requests, keep checking
g_eventQueue_ptr->scheduleEvent(this, g_DEADLOCK_THRESHOLD);
} else {
m_deadlock_check_scheduled = false;
}
}
//returns the total number of requests
int Sequencer::getNumberOutstanding(){
return m_outstanding_count;
}
// returns the total number of demand requests
int Sequencer::getNumberOutstandingDemand(){
int smt_threads = RubyConfig::numberofSMTThreads();
int total_demand = 0;
for(int p=0; p < smt_threads; ++p){
Vector<Address> keys = m_readRequestTable_ptr[p]->keys();
for (int i=0; i< keys.size(); i++) {
CacheMsg& request = m_readRequestTable_ptr[p]->lookup(keys[i]);
// don't count transactional begin/commit requests
if(request.getType() != CacheRequestType_BEGIN_XACT && request.getType() != CacheRequestType_COMMIT_XACT){
if(request.getPrefetch() == PrefetchBit_No){
total_demand++;
}
}
}
keys = m_writeRequestTable_ptr[p]->keys();
for (int i=0; i< keys.size(); i++) {
CacheMsg& request = m_writeRequestTable_ptr[p]->lookup(keys[i]);
if(request.getPrefetch() == PrefetchBit_No){
total_demand++;
}
}
}
return total_demand;
}
int Sequencer::getNumberOutstandingPrefetch(){
int smt_threads = RubyConfig::numberofSMTThreads();
int total_prefetch = 0;
for(int p=0; p < smt_threads; ++p){
Vector<Address> keys = m_readRequestTable_ptr[p]->keys();
for (int i=0; i< keys.size(); i++) {
CacheMsg& request = m_readRequestTable_ptr[p]->lookup(keys[i]);
if(request.getPrefetch() == PrefetchBit_Yes){
total_prefetch++;
}
}
keys = m_writeRequestTable_ptr[p]->keys();
for (int i=0; i< keys.size(); i++) {
CacheMsg& request = m_writeRequestTable_ptr[p]->lookup(keys[i]);
if(request.getPrefetch() == PrefetchBit_Yes){
total_prefetch++;
}
}
}
return total_prefetch;
}
bool Sequencer::isPrefetchRequest(const Address & lineaddr){
int smt_threads = RubyConfig::numberofSMTThreads();
for(int p=0; p < smt_threads; ++p){
// check load requests
Vector<Address> keys = m_readRequestTable_ptr[p]->keys();
for (int i=0; i< keys.size(); i++) {
CacheMsg& request = m_readRequestTable_ptr[p]->lookup(keys[i]);
if(line_address(request.getAddress()) == lineaddr){
if(request.getPrefetch() == PrefetchBit_Yes){
return true;
}
else{
return false;
}
}
}
// check store requests
keys = m_writeRequestTable_ptr[p]->keys();
for (int i=0; i< keys.size(); i++) {
CacheMsg& request = m_writeRequestTable_ptr[p]->lookup(keys[i]);
if(line_address(request.getAddress()) == lineaddr){
if(request.getPrefetch() == PrefetchBit_Yes){
return true;
}
else{
return false;
}
}
}
}
// we should've found a matching request
cout << "isRequestPrefetch() ERROR request NOT FOUND : " << lineaddr << endl;
printProgress(cout);
assert(0);
}
AccessModeType Sequencer::getAccessModeOfRequest(Address addr, int thread){
if(m_readRequestTable_ptr[thread]->exist(line_address(addr))){
CacheMsg& request = m_readRequestTable_ptr[thread]->lookup(addr);
return request.getAccessMode();
} else if(m_writeRequestTable_ptr[thread]->exist(line_address(addr))){
CacheMsg& request = m_writeRequestTable_ptr[thread]->lookup(addr);
return request.getAccessMode();
} else {
printProgress(cout);
ERROR_MSG("Request not found in RequestTables");
}
}
Address Sequencer::getLogicalAddressOfRequest(Address addr, int thread){
assert(thread >= 0);
if(m_readRequestTable_ptr[thread]->exist(line_address(addr))){
CacheMsg& request = m_readRequestTable_ptr[thread]->lookup(addr);
return request.getLogicalAddress();
} else if(m_writeRequestTable_ptr[thread]->exist(line_address(addr))){
CacheMsg& request = m_writeRequestTable_ptr[thread]->lookup(addr);
return request.getLogicalAddress();
} else {
printProgress(cout);
WARN_MSG("Request not found in RequestTables");
WARN_MSG(addr);
WARN_MSG(thread);
ASSERT(0);
}
}
// returns the ThreadID of the request
int Sequencer::getRequestThreadID(const Address & addr){
int smt_threads = RubyConfig::numberofSMTThreads();
int thread = -1;
int num_found = 0;
for(int p=0; p < smt_threads; ++p){
if(m_readRequestTable_ptr[p]->exist(addr)){
num_found++;
thread = p;
}
if(m_writeRequestTable_ptr[p]->exist(addr)){
num_found++;
thread = p;
}
}
if(num_found != 1){
cout << "getRequestThreadID ERROR too many matching requests addr = " << addr << endl;
printProgress(cout);
}
ASSERT(num_found == 1);
ASSERT(thread != -1);
return thread;
}
// given a line address, return the request's physical address
Address Sequencer::getRequestPhysicalAddress(const Address & lineaddr){
int smt_threads = RubyConfig::numberofSMTThreads();
Address physaddr;
int num_found = 0;
for(int p=0; p < smt_threads; ++p){
if(m_readRequestTable_ptr[p]->exist(lineaddr)){
num_found++;
physaddr = (m_readRequestTable_ptr[p]->lookup(lineaddr)).getAddress();
}
if(m_writeRequestTable_ptr[p]->exist(lineaddr)){
num_found++;
physaddr = (m_writeRequestTable_ptr[p]->lookup(lineaddr)).getAddress();
}
}
if(num_found != 1){
cout << "getRequestPhysicalAddress ERROR too many matching requests addr = " << lineaddr << endl;
printProgress(cout);
}
ASSERT(num_found == 1);
return physaddr;
}
void Sequencer::printProgress(ostream& out) const{
int total_demand = 0;
out << "Sequencer Stats Version " << m_version << endl;
out << "Current time = " << g_eventQueue_ptr->getTime() << endl;
out << "---------------" << endl;
out << "outstanding requests" << endl;
int smt_threads = RubyConfig::numberofSMTThreads();
for(int p=0; p < smt_threads; ++p){
Vector<Address> rkeys = m_readRequestTable_ptr[p]->keys();
int read_size = rkeys.size();
out << "proc " << m_chip_ptr->getID() << " thread " << p << " Read Requests = " << read_size << endl;
// print the request table
for(int i=0; i < read_size; ++i){
CacheMsg & request = m_readRequestTable_ptr[p]->lookup(rkeys[i]);
out << "\tRequest[ " << i << " ] = " << request.getType() << " Address " << rkeys[i] << " Posted " << request.getTime() << " PF " << request.getPrefetch() << endl;
if( request.getPrefetch() == PrefetchBit_No ){
total_demand++;
}
}
Vector<Address> wkeys = m_writeRequestTable_ptr[p]->keys();
int write_size = wkeys.size();
out << "proc " << m_chip_ptr->getID() << " thread " << p << " Write Requests = " << write_size << endl;
// print the request table
for(int i=0; i < write_size; ++i){
CacheMsg & request = m_writeRequestTable_ptr[p]->lookup(wkeys[i]);
out << "\tRequest[ " << i << " ] = " << request.getType() << " Address " << wkeys[i] << " Posted " << request.getTime() << " PF " << request.getPrefetch() << endl;
if( request.getPrefetch() == PrefetchBit_No ){
total_demand++;
}
}
out << endl;
}
out << "Total Number Outstanding: " << m_outstanding_count << endl;
out << "Total Number Demand : " << total_demand << endl;
out << "Total Number Prefetches : " << m_outstanding_count - total_demand << endl;
out << endl;
out << endl;
}
void Sequencer::printConfig(ostream& out) {
if (TSO) {
out << "sequencer: Sequencer - TSO" << endl;
} else {
out << "sequencer: Sequencer - SC" << endl;
}
out << " max_outstanding_requests: " << g_SEQUENCER_OUTSTANDING_REQUESTS << endl;
}
bool Sequencer::empty() const {
return m_outstanding_count == 0;
}
// Insert the request on the correct request table. Return true if
// the entry was already present.
bool Sequencer::insertRequest(const CacheMsg& request) {
int thread = request.getThreadID();
assert(thread >= 0);
int total_outstanding = 0;
int smt_threads = RubyConfig::numberofSMTThreads();
for(int p=0; p < smt_threads; ++p){
total_outstanding += m_writeRequestTable_ptr[p]->size() + m_readRequestTable_ptr[p]->size();
}
assert(m_outstanding_count == total_outstanding);
// See if we should schedule a deadlock check
if (m_deadlock_check_scheduled == false) {
g_eventQueue_ptr->scheduleEvent(this, g_DEADLOCK_THRESHOLD);
m_deadlock_check_scheduled = true;
}
if ((request.getType() == CacheRequestType_ST) ||
(request.getType() == CacheRequestType_ST_XACT) ||
(request.getType() == CacheRequestType_LDX_XACT) ||
(request.getType() == CacheRequestType_ATOMIC)) {
if (m_writeRequestTable_ptr[thread]->exist(line_address(request.getAddress()))) {
m_writeRequestTable_ptr[thread]->lookup(line_address(request.getAddress())) = request;
return true;
}
m_writeRequestTable_ptr[thread]->allocate(line_address(request.getAddress()));
m_writeRequestTable_ptr[thread]->lookup(line_address(request.getAddress())) = request;
m_outstanding_count++;
} else {
if (m_readRequestTable_ptr[thread]->exist(line_address(request.getAddress()))) {
m_readRequestTable_ptr[thread]->lookup(line_address(request.getAddress())) = request;
return true;
}
m_readRequestTable_ptr[thread]->allocate(line_address(request.getAddress()));
m_readRequestTable_ptr[thread]->lookup(line_address(request.getAddress())) = request;
m_outstanding_count++;
}
g_system_ptr->getProfiler()->sequencerRequests(m_outstanding_count);
total_outstanding = 0;
for(int p=0; p < smt_threads; ++p){
total_outstanding += m_writeRequestTable_ptr[p]->size() + m_readRequestTable_ptr[p]->size();
}
assert(m_outstanding_count == total_outstanding);
return false;
}
void Sequencer::removeRequest(const CacheMsg& request) {
int thread = request.getThreadID();
assert(thread >= 0);
int total_outstanding = 0;
int smt_threads = RubyConfig::numberofSMTThreads();
for(int p=0; p < smt_threads; ++p){
total_outstanding += m_writeRequestTable_ptr[p]->size() + m_readRequestTable_ptr[p]->size();
}
assert(m_outstanding_count == total_outstanding);
if ((request.getType() == CacheRequestType_ST) ||
(request.getType() == CacheRequestType_ST_XACT) ||
(request.getType() == CacheRequestType_LDX_XACT) ||
(request.getType() == CacheRequestType_ATOMIC)) {
m_writeRequestTable_ptr[thread]->deallocate(line_address(request.getAddress()));
} else {
m_readRequestTable_ptr[thread]->deallocate(line_address(request.getAddress()));
}
m_outstanding_count--;
total_outstanding = 0;
for(int p=0; p < smt_threads; ++p){
total_outstanding += m_writeRequestTable_ptr[p]->size() + m_readRequestTable_ptr[p]->size();
}
assert(m_outstanding_count == total_outstanding);
}
void Sequencer::writeCallback(const Address& address) {
DataBlock data;
writeCallback(address, data);
}
void Sequencer::writeCallback(const Address& address, DataBlock& data) {
// process oldest thread first
int thread = -1;
Time oldest_time = 0;
int smt_threads = RubyConfig::numberofSMTThreads();
for(int t=0; t < smt_threads; ++t){
if(m_writeRequestTable_ptr[t]->exist(address)){
CacheMsg & request = m_writeRequestTable_ptr[t]->lookup(address);
if(thread == -1 || (request.getTime() < oldest_time) ){
thread = t;
oldest_time = request.getTime();
}
}
}
// make sure we found an oldest thread
ASSERT(thread != -1);
CacheMsg & request = m_writeRequestTable_ptr[thread]->lookup(address);
writeCallback(address, data, GenericMachineType_NULL, PrefetchBit_No, thread);
}
void Sequencer::writeCallback(const Address& address, DataBlock& data, GenericMachineType respondingMach, PrefetchBit pf, int thread) {
assert(address == line_address(address));
assert(thread >= 0);
assert(m_writeRequestTable_ptr[thread]->exist(line_address(address)));
writeCallback(address, data, respondingMach, thread);
}
void Sequencer::writeCallback(const Address& address, DataBlock& data, GenericMachineType respondingMach, int thread) {
assert(address == line_address(address));
assert(m_writeRequestTable_ptr[thread]->exist(line_address(address)));
CacheMsg request = m_writeRequestTable_ptr[thread]->lookup(address);
assert( request.getThreadID() == thread);
removeRequest(request);
assert((request.getType() == CacheRequestType_ST) ||
(request.getType() == CacheRequestType_ST_XACT) ||
(request.getType() == CacheRequestType_LDX_XACT) ||
(request.getType() == CacheRequestType_ATOMIC));
hitCallback(request, data, respondingMach, thread);
}
void Sequencer::readCallback(const Address& address) {
DataBlock data;
readCallback(address, data);
}
void Sequencer::readCallback(const Address& address, DataBlock& data) {
// process oldest thread first
int thread = -1;
Time oldest_time = 0;
int smt_threads = RubyConfig::numberofSMTThreads();
for(int t=0; t < smt_threads; ++t){
if(m_readRequestTable_ptr[t]->exist(address)){
CacheMsg & request = m_readRequestTable_ptr[t]->lookup(address);
if(thread == -1 || (request.getTime() < oldest_time) ){
thread = t;
oldest_time = request.getTime();
}
}
}
// make sure we found an oldest thread
ASSERT(thread != -1);
CacheMsg & request = m_readRequestTable_ptr[thread]->lookup(address);
readCallback(address, data, GenericMachineType_NULL, PrefetchBit_No, thread);
}
void Sequencer::readCallback(const Address& address, DataBlock& data, GenericMachineType respondingMach, PrefetchBit pf, int thread) {
assert(address == line_address(address));
assert(m_readRequestTable_ptr[thread]->exist(line_address(address)));
readCallback(address, data, respondingMach, thread);
}
void Sequencer::readCallback(const Address& address, DataBlock& data, GenericMachineType respondingMach, int thread) {
assert(address == line_address(address));
assert(m_readRequestTable_ptr[thread]->exist(line_address(address)));
CacheMsg request = m_readRequestTable_ptr[thread]->lookup(address);
assert( request.getThreadID() == thread );
removeRequest(request);
assert((request.getType() == CacheRequestType_LD) ||
(request.getType() == CacheRequestType_LD_XACT) ||
(request.getType() == CacheRequestType_IFETCH)
);
hitCallback(request, data, respondingMach, thread);
}
void Sequencer::hitCallback(const CacheMsg& request, DataBlock& data, GenericMachineType respondingMach, int thread) {
int size = request.getSize();
Address request_address = request.getAddress();
Address request_logical_address = request.getLogicalAddress();
Address request_line_address = line_address(request_address);
CacheRequestType type = request.getType();
int threadID = request.getThreadID();
Time issued_time = request.getTime();
int logical_proc_no = ((m_chip_ptr->getID() * RubyConfig::numberOfProcsPerChip()) + m_version) * RubyConfig::numberofSMTThreads() + threadID;
DEBUG_MSG(SEQUENCER_COMP, MedPrio, size);
// Set this cache entry to the most recently used
if (type == CacheRequestType_IFETCH) {
if (Protocol::m_TwoLevelCache) {
if (m_chip_ptr->m_L1Cache_L1IcacheMemory_vec[m_version]->isTagPresent(request_line_address)) {
m_chip_ptr->m_L1Cache_L1IcacheMemory_vec[m_version]->setMRU(request_line_address);
}
}
else {
if (m_chip_ptr->m_L1Cache_cacheMemory_vec[m_version]->isTagPresent(request_line_address)) {
m_chip_ptr->m_L1Cache_cacheMemory_vec[m_version]->setMRU(request_line_address);
}
}
} else {
if (Protocol::m_TwoLevelCache) {
if (m_chip_ptr->m_L1Cache_L1DcacheMemory_vec[m_version]->isTagPresent(request_line_address)) {
m_chip_ptr->m_L1Cache_L1DcacheMemory_vec[m_version]->setMRU(request_line_address);
}
}
else {
if (m_chip_ptr->m_L1Cache_cacheMemory_vec[m_version]->isTagPresent(request_line_address)) {
m_chip_ptr->m_L1Cache_cacheMemory_vec[m_version]->setMRU(request_line_address);
}
}
}
assert(g_eventQueue_ptr->getTime() >= issued_time);
Time miss_latency = g_eventQueue_ptr->getTime() - issued_time;
if (PROTOCOL_DEBUG_TRACE) {
g_system_ptr->getProfiler()->profileTransition("Seq", (m_chip_ptr->getID()*RubyConfig::numberOfProcsPerChip()+m_version), -1, request.getAddress(), "", "Done", "",
int_to_string(miss_latency)+" cycles "+GenericMachineType_to_string(respondingMach)+" "+CacheRequestType_to_string(request.getType())+" "+PrefetchBit_to_string(request.getPrefetch()));
}
DEBUG_MSG(SEQUENCER_COMP, MedPrio, request_address);
DEBUG_MSG(SEQUENCER_COMP, MedPrio, request.getPrefetch());
if (request.getPrefetch() == PrefetchBit_Yes) {
DEBUG_MSG(SEQUENCER_COMP, MedPrio, "return");
g_system_ptr->getProfiler()->swPrefetchLatency(miss_latency, type, respondingMach);
return; // Ignore the software prefetch, don't callback the driver
}
// Profile the miss latency for all non-zero demand misses
if (miss_latency != 0) {
g_system_ptr->getProfiler()->missLatency(miss_latency, type, respondingMach);
#if 0
uinteger_t tick = SIMICS_read_control_register(m_version, SIMICS_get_register_number(m_version, "tick"));
uinteger_t tick_cmpr = SIMICS_read_control_register(m_version, SIMICS_get_register_number(m_version, "tick_cmpr"));
uinteger_t stick = SIMICS_read_control_register(m_version, SIMICS_get_register_number(m_version, "stick"));
uinteger_t stick_cmpr = SIMICS_read_control_register(m_version, SIMICS_get_register_number(m_version, "stick_cmpr"));
cout << "END PROC " << m_version << hex << " tick = " << tick << " tick_cmpr = " << tick_cmpr << " stick = " << stick << " stick_cmpr = " << stick_cmpr << " cycle = "<< g_eventQueue_ptr->getTime() << dec << endl;
#endif
}
bool write =
(type == CacheRequestType_ST) ||
(type == CacheRequestType_ST_XACT) ||
(type == CacheRequestType_LDX_XACT) ||
(type == CacheRequestType_ATOMIC);
if (TSO && write) {
m_chip_ptr->m_L1Cache_storeBuffer_vec[m_version]->callBack(line_address(request.getAddress()), data);
} else {
// Copy the correct bytes out of the cache line into the subblock
SubBlock subblock(request_address, request_logical_address, size);
subblock.mergeFrom(data); // copy the correct bytes from DataBlock in the SubBlock
// Scan the store buffer to see if there are any outstanding stores we need to collect
if (TSO) {
m_chip_ptr->m_L1Cache_storeBuffer_vec[m_version]->updateSubBlock(subblock);
}
// Call into the Driver (Tester or Simics) and let it read and/or modify the sub-block
g_system_ptr->getDriver()->hitCallback(m_chip_ptr->getID()*RubyConfig::numberOfProcsPerChip()+m_version, subblock, type, threadID);
// If the request was a Store or Atomic, apply the changes in the SubBlock to the DataBlock
// (This is only triggered for the non-TSO case)
if (write) {
assert(!TSO);
subblock.mergeTo(data); // copy the correct bytes from SubBlock into the DataBlock
}
}
}
void Sequencer::readConflictCallback(const Address& address) {
// process oldest thread first
int thread = -1;
Time oldest_time = 0;
int smt_threads = RubyConfig::numberofSMTThreads();
for(int t=0; t < smt_threads; ++t){
if(m_readRequestTable_ptr[t]->exist(address)){
CacheMsg & request = m_readRequestTable_ptr[t]->lookup(address);
if(thread == -1 || (request.getTime() < oldest_time) ){
thread = t;
oldest_time = request.getTime();
}
}
}
// make sure we found an oldest thread
ASSERT(thread != -1);
CacheMsg & request = m_readRequestTable_ptr[thread]->lookup(address);
readConflictCallback(address, GenericMachineType_NULL, thread);
}
void Sequencer::readConflictCallback(const Address& address, GenericMachineType respondingMach, int thread) {
assert(address == line_address(address));
assert(m_readRequestTable_ptr[thread]->exist(line_address(address)));
CacheMsg request = m_readRequestTable_ptr[thread]->lookup(address);
assert( request.getThreadID() == thread );
removeRequest(request);
assert((request.getType() == CacheRequestType_LD) ||
(request.getType() == CacheRequestType_LD_XACT) ||
(request.getType() == CacheRequestType_IFETCH)
);
conflictCallback(request, respondingMach, thread);
}
void Sequencer::writeConflictCallback(const Address& address) {
// process oldest thread first
int thread = -1;
Time oldest_time = 0;
int smt_threads = RubyConfig::numberofSMTThreads();
for(int t=0; t < smt_threads; ++t){
if(m_writeRequestTable_ptr[t]->exist(address)){
CacheMsg & request = m_writeRequestTable_ptr[t]->lookup(address);
if(thread == -1 || (request.getTime() < oldest_time) ){
thread = t;
oldest_time = request.getTime();
}
}
}
// make sure we found an oldest thread
ASSERT(thread != -1);
CacheMsg & request = m_writeRequestTable_ptr[thread]->lookup(address);
writeConflictCallback(address, GenericMachineType_NULL, thread);
}
void Sequencer::writeConflictCallback(const Address& address, GenericMachineType respondingMach, int thread) {
assert(address == line_address(address));
assert(m_writeRequestTable_ptr[thread]->exist(line_address(address)));
CacheMsg request = m_writeRequestTable_ptr[thread]->lookup(address);
assert( request.getThreadID() == thread);
removeRequest(request);
assert((request.getType() == CacheRequestType_ST) ||
(request.getType() == CacheRequestType_ST_XACT) ||
(request.getType() == CacheRequestType_LDX_XACT) ||
(request.getType() == CacheRequestType_ATOMIC));
conflictCallback(request, respondingMach, thread);
}
void Sequencer::conflictCallback(const CacheMsg& request, GenericMachineType respondingMach, int thread) {
assert(XACT_MEMORY);
int size = request.getSize();
Address request_address = request.getAddress();
Address request_logical_address = request.getLogicalAddress();
Address request_line_address = line_address(request_address);
CacheRequestType type = request.getType();
int threadID = request.getThreadID();
Time issued_time = request.getTime();
int logical_proc_no = ((m_chip_ptr->getID() * RubyConfig::numberOfProcsPerChip()) + m_version) * RubyConfig::numberofSMTThreads() + threadID;
DEBUG_MSG(SEQUENCER_COMP, MedPrio, size);
assert(g_eventQueue_ptr->getTime() >= issued_time);
Time miss_latency = g_eventQueue_ptr->getTime() - issued_time;
if (PROTOCOL_DEBUG_TRACE) {
g_system_ptr->getProfiler()->profileTransition("Seq", (m_chip_ptr->getID()*RubyConfig::numberOfProcsPerChip()+m_version), -1, request.getAddress(), "", "Conflict", "",
int_to_string(miss_latency)+" cycles "+GenericMachineType_to_string(respondingMach)+" "+CacheRequestType_to_string(request.getType())+" "+PrefetchBit_to_string(request.getPrefetch()));
}
DEBUG_MSG(SEQUENCER_COMP, MedPrio, request_address);
DEBUG_MSG(SEQUENCER_COMP, MedPrio, request.getPrefetch());
if (request.getPrefetch() == PrefetchBit_Yes) {
DEBUG_MSG(SEQUENCER_COMP, MedPrio, "return");
g_system_ptr->getProfiler()->swPrefetchLatency(miss_latency, type, respondingMach);
return; // Ignore the software prefetch, don't callback the driver
}
bool write =
(type == CacheRequestType_ST) ||
(type == CacheRequestType_ST_XACT) ||
(type == CacheRequestType_LDX_XACT) ||
(type == CacheRequestType_ATOMIC);
// Copy the correct bytes out of the cache line into the subblock
SubBlock subblock(request_address, request_logical_address, size);
// Call into the Driver (Tester or Simics)
g_system_ptr->getDriver()->conflictCallback(m_chip_ptr->getID()*RubyConfig::numberOfProcsPerChip()+m_version, subblock, type, threadID);
// If the request was a Store or Atomic, apply the changes in the SubBlock to the DataBlock
// (This is only triggered for the non-TSO case)
if (write) {
assert(!TSO);
}
}
void Sequencer::printDebug(){
//notify driver of debug
g_system_ptr->getDriver()->printDebug();
}
// Returns true if the sequencer already has a load or store outstanding
bool Sequencer::isReady(const CacheMsg& request) const {
if (m_outstanding_count >= g_SEQUENCER_OUTSTANDING_REQUESTS) {
//cout << "TOO MANY OUTSTANDING: " << m_outstanding_count << " " << g_SEQUENCER_OUTSTANDING_REQUESTS << " VER " << m_version << endl;
//printProgress(cout);
return false;
}
int thread = request.getThreadID();
// This code allows reads to be performed even when we have a write
// request outstanding for the line
bool write =
(request.getType() == CacheRequestType_ST) ||
(request.getType() == CacheRequestType_ST_XACT) ||
(request.getType() == CacheRequestType_LDX_XACT) ||
(request.getType() == CacheRequestType_ATOMIC);
// LUKE - disallow more than one request type per address
// INVARIANT: at most one request type per address, per processor
int smt_threads = RubyConfig::numberofSMTThreads();
for(int p=0; p < smt_threads; ++p){
if( m_writeRequestTable_ptr[p]->exist(line_address(request.getAddress())) ||
m_readRequestTable_ptr[p]->exist(line_address(request.getAddress())) ){
//cout << "OUTSTANDING REQUEST EXISTS " << p << " VER " << m_version << endl;
//printProgress(cout);
return false;
}
}
if (TSO) {
return m_chip_ptr->m_L1Cache_storeBuffer_vec[m_version]->isReady();
}
return true;
}
// Called by Driver (Simics or Tester).
void Sequencer::makeRequest(const CacheMsg& request) {
//assert(isReady(request));
bool write = (request.getType() == CacheRequestType_ST) ||
(request.getType() == CacheRequestType_ST_XACT) ||
(request.getType() == CacheRequestType_LDX_XACT) ||
(request.getType() == CacheRequestType_ATOMIC);
if (TSO && (request.getPrefetch() == PrefetchBit_No) && write) {
assert(m_chip_ptr->m_L1Cache_storeBuffer_vec[m_version]->isReady());
m_chip_ptr->m_L1Cache_storeBuffer_vec[m_version]->insertStore(request);
return;
}
bool hit = doRequest(request);
}
bool Sequencer::doRequest(const CacheMsg& request) {
bool hit = false;
// Check the fast path
DataBlock* data_ptr;
int thread = request.getThreadID();
hit = tryCacheAccess(line_address(request.getAddress()),
request.getType(),
request.getProgramCounter(),
request.getAccessMode(),
request.getSize(),
data_ptr);
if (hit && (request.getType() == CacheRequestType_IFETCH || !REMOVE_SINGLE_CYCLE_DCACHE_FAST_PATH) ) {
DEBUG_MSG(SEQUENCER_COMP, MedPrio, "Fast path hit");
hitCallback(request, *data_ptr, GenericMachineType_L1Cache, thread);
return true;
}
#if 0
uinteger_t tick = SIMICS_read_control_register(m_version, SIMICS_get_register_number(m_version, "tick"));
uinteger_t tick_cmpr = SIMICS_read_control_register(m_version, SIMICS_get_register_number(m_version, "tick_cmpr"));
uinteger_t stick = SIMICS_read_control_register(m_version, SIMICS_get_register_number(m_version, "stick"));
uinteger_t stick_cmpr = SIMICS_read_control_register(m_version, SIMICS_get_register_number(m_version, "stick_cmpr"));
cout << "START PROC " << m_version << hex << " tick = " << tick << " tick_cmpr = " << tick_cmpr << " stick = " << stick << " stick_cmpr = " << stick_cmpr << " cycle = "<< g_eventQueue_ptr->getTime() << dec << endl;;
#endif
if (TSO && (request.getType() == CacheRequestType_LD || request.getType() == CacheRequestType_IFETCH)) {
// See if we can satisfy the load entirely from the store buffer
SubBlock subblock(line_address(request.getAddress()), request.getSize());
if (m_chip_ptr->m_L1Cache_storeBuffer_vec[m_version]->trySubBlock(subblock)) {
DataBlock dummy;
hitCallback(request, dummy, GenericMachineType_NULL, thread); // Call with an 'empty' datablock, since the data is in the store buffer
return true;
}
}
DEBUG_MSG(SEQUENCER_COMP, MedPrio, "Fast path miss");
issueRequest(request);
return hit;
}
void Sequencer::issueRequest(const CacheMsg& request) {
bool found = insertRequest(request);
if (!found) {
CacheMsg msg = request;
msg.getAddress() = line_address(request.getAddress()); // Make line address
// Fast Path L1 misses are profiled here - all non-fast path misses are profiled within the generated protocol code
if (!REMOVE_SINGLE_CYCLE_DCACHE_FAST_PATH) {
g_system_ptr->getProfiler()->addPrimaryStatSample(msg, m_chip_ptr->getID());
}
if (PROTOCOL_DEBUG_TRACE) {
g_system_ptr->getProfiler()->profileTransition("Seq", (m_chip_ptr->getID()*RubyConfig::numberOfProcsPerChip() + m_version), -1, msg.getAddress(),"", "Begin", "", CacheRequestType_to_string(request.getType()));
}
#if 0
// Commented out by nate binkert because I removed the trace stuff
if (g_system_ptr->getTracer()->traceEnabled()) {
g_system_ptr->getTracer()->traceRequest((m_chip_ptr->getID()*RubyConfig::numberOfProcsPerChip()+m_version), msg.getAddress(), msg.getProgramCounter(),
msg.getType(), g_eventQueue_ptr->getTime());
}
#endif
Time latency = 0; // initialzed to an null value
latency = SEQUENCER_TO_CONTROLLER_LATENCY;
// Send the message to the cache controller
assert(latency > 0);
m_chip_ptr->m_L1Cache_mandatoryQueue_vec[m_version]->enqueue(msg, latency);
} // !found
}
bool Sequencer::tryCacheAccess(const Address& addr, CacheRequestType type,
const Address& pc, AccessModeType access_mode,
int size, DataBlock*& data_ptr) {
if (type == CacheRequestType_IFETCH) {
if (Protocol::m_TwoLevelCache) {
return m_chip_ptr->m_L1Cache_L1IcacheMemory_vec[m_version]->tryCacheAccess(line_address(addr), type, data_ptr);
}
else {
return m_chip_ptr->m_L1Cache_cacheMemory_vec[m_version]->tryCacheAccess(line_address(addr), type, data_ptr);
}
} else {
if (Protocol::m_TwoLevelCache) {
return m_chip_ptr->m_L1Cache_L1DcacheMemory_vec[m_version]->tryCacheAccess(line_address(addr), type, data_ptr);
}
else {
return m_chip_ptr->m_L1Cache_cacheMemory_vec[m_version]->tryCacheAccess(line_address(addr), type, data_ptr);
}
}
}
void Sequencer::resetRequestTime(const Address& addr, int thread){
assert(thread >= 0);
//reset both load and store requests, if they exist
if(m_readRequestTable_ptr[thread]->exist(line_address(addr))){
CacheMsg& request = m_readRequestTable_ptr[thread]->lookup(addr);
if( request.m_AccessMode != AccessModeType_UserMode){
cout << "resetRequestType ERROR read request addr = " << addr << " thread = "<< thread << " is SUPERVISOR MODE" << endl;
printProgress(cout);
}
//ASSERT(request.m_AccessMode == AccessModeType_UserMode);
request.setTime(g_eventQueue_ptr->getTime());
}
if(m_writeRequestTable_ptr[thread]->exist(line_address(addr))){
CacheMsg& request = m_writeRequestTable_ptr[thread]->lookup(addr);
if( request.m_AccessMode != AccessModeType_UserMode){
cout << "resetRequestType ERROR write request addr = " << addr << " thread = "<< thread << " is SUPERVISOR MODE" << endl;
printProgress(cout);
}
//ASSERT(request.m_AccessMode == AccessModeType_UserMode);
request.setTime(g_eventQueue_ptr->getTime());
}
}
// removes load request from queue
void Sequencer::removeLoadRequest(const Address & addr, int thread){
removeRequest(getReadRequest(addr, thread));
}
void Sequencer::removeStoreRequest(const Address & addr, int thread){
removeRequest(getWriteRequest(addr, thread));
}
// returns the read CacheMsg
CacheMsg & Sequencer::getReadRequest( const Address & addr, int thread ){
Address temp = addr;
assert(thread >= 0);
assert(temp == line_address(temp));
assert(m_readRequestTable_ptr[thread]->exist(addr));
return m_readRequestTable_ptr[thread]->lookup(addr);
}
CacheMsg & Sequencer::getWriteRequest( const Address & addr, int thread){
Address temp = addr;
assert(thread >= 0);
assert(temp == line_address(temp));
assert(m_writeRequestTable_ptr[thread]->exist(addr));
return m_writeRequestTable_ptr[thread]->lookup(addr);
}
void Sequencer::print(ostream& out) const {
out << "[Sequencer: " << m_chip_ptr->getID()
<< ", outstanding requests: " << m_outstanding_count;
int smt_threads = RubyConfig::numberofSMTThreads();
for(int p=0; p < smt_threads; ++p){
out << ", read request table[ " << p << " ]: " << *m_readRequestTable_ptr[p]
<< ", write request table[ " << p << " ]: " << *m_writeRequestTable_ptr[p];
}
out << "]";
}
// this can be called from setState whenever coherence permissions are upgraded
// when invoked, coherence violations will be checked for the given block
void Sequencer::checkCoherence(const Address& addr) {
#ifdef CHECK_COHERENCE
g_system_ptr->checkGlobalCoherenceInvariant(addr);
#endif
}
bool Sequencer::getRubyMemoryValue(const Address& addr, char* value,
unsigned int size_in_bytes ) {
if(g_SIMICS){
for(unsigned int i=0; i < size_in_bytes; i++) {
value[i] = SIMICS_read_physical_memory( m_chip_ptr->getID()*RubyConfig::numberOfProcsPerChip()+m_version,
addr.getAddress() + i, 1 );
}
return false; // Do nothing?
} else {
bool found = false;
const Address lineAddr = line_address(addr);
DataBlock data;
PhysAddress paddr(addr);
DataBlock* dataPtr = &data;
Chip* n = dynamic_cast<Chip*>(m_chip_ptr);
// LUKE - use variable names instead of macros
assert(n->m_L1Cache_L1IcacheMemory_vec[m_version] != NULL);
assert(n->m_L1Cache_L1DcacheMemory_vec[m_version] != NULL);
MachineID l2_mach = map_L2ChipId_to_L2Cache(addr, m_chip_ptr->getID() );
int l2_ver = l2_mach.num%RubyConfig::numberOfL2CachePerChip();
if (Protocol::m_TwoLevelCache) {
if(Protocol::m_CMP){
assert(n->m_L2Cache_L2cacheMemory_vec[l2_ver] != NULL);
}
else{
assert(n->m_L1Cache_cacheMemory_vec[m_version] != NULL);
}
}
if (n->m_L1Cache_L1IcacheMemory_vec[m_version]->tryCacheAccess(lineAddr, CacheRequestType_IFETCH, dataPtr)){
n->m_L1Cache_L1IcacheMemory_vec[m_version]->getMemoryValue(addr, value, size_in_bytes);
found = true;
} else if (n->m_L1Cache_L1DcacheMemory_vec[m_version]->tryCacheAccess(lineAddr, CacheRequestType_LD, dataPtr)){
n->m_L1Cache_L1DcacheMemory_vec[m_version]->getMemoryValue(addr, value, size_in_bytes);
found = true;
} else if (Protocol::m_CMP && n->m_L2Cache_L2cacheMemory_vec[l2_ver]->tryCacheAccess(lineAddr, CacheRequestType_LD, dataPtr)){
n->m_L2Cache_L2cacheMemory_vec[l2_ver]->getMemoryValue(addr, value, size_in_bytes);
found = true;
// } else if (n->TBE_TABLE_MEMBER_VARIABLE->isPresent(lineAddr)){
// ASSERT(n->TBE_TABLE_MEMBER_VARIABLE->isPresent(lineAddr));
// L1Cache_TBE tbeEntry = n->TBE_TABLE_MEMBER_VARIABLE->lookup(lineAddr);
// int offset = addr.getOffset();
// for(int i=0; i<size_in_bytes; ++i){
// value[i] = tbeEntry.getDataBlk().getByte(offset + i);
// }
// found = true;
} else {
// Address not found
//cout << " " << m_chip_ptr->getID() << " NOT IN CACHE, Value at Directory is: " << (int) value[0] << endl;
n = dynamic_cast<Chip*>(g_system_ptr->getChip(map_Address_to_DirectoryNode(addr)/RubyConfig::numberOfDirectoryPerChip()));
int dir_version = map_Address_to_DirectoryNode(addr)%RubyConfig::numberOfDirectoryPerChip();
for(unsigned int i=0; i<size_in_bytes; ++i){
int offset = addr.getOffset();
value[i] = n->m_Directory_directory_vec[dir_version]->lookup(lineAddr).m_DataBlk.getByte(offset + i);
}
// Address not found
//WARN_MSG("Couldn't find address");
//WARN_EXPR(addr);
found = false;
}
return true;
}
}
bool Sequencer::setRubyMemoryValue(const Address& addr, char *value,
unsigned int size_in_bytes) {
char test_buffer[64];
if(g_SIMICS){
return false; // Do nothing?
} else {
// idea here is that coherent cache should find the
// latest data, the update it
bool found = false;
const Address lineAddr = line_address(addr);
PhysAddress paddr(addr);
DataBlock data;
DataBlock* dataPtr = &data;
Chip* n = dynamic_cast<Chip*>(m_chip_ptr);
MachineID l2_mach = map_L2ChipId_to_L2Cache(addr, m_chip_ptr->getID() );
int l2_ver = l2_mach.num%RubyConfig::numberOfL2CachePerChip();
// LUKE - use variable names instead of macros
//cout << "number of L2caches per chip = " << RubyConfig::numberOfL2CachePerChip(m_version) << endl;
//cout << "L1I cache vec size = " << n->m_L1Cache_L1IcacheMemory_vec.size() << endl;
//cout << "L1D cache vec size = " << n->m_L1Cache_L1DcacheMemory_vec.size() << endl;
//cout << "L1cache_cachememory size = " << n->m_L1Cache_cacheMemory_vec.size() << endl;
//cout << "L1cache_l2cachememory size = " << n->m_L1Cache_L2cacheMemory_vec.size() << endl;
// if (Protocol::m_TwoLevelCache) {
// if(Protocol::m_CMP){
// cout << "CMP L2 cache vec size = " << n->m_L2Cache_L2cacheMemory_vec.size() << endl;
// }
// else{
// cout << "L2 cache vec size = " << n->m_L1Cache_cacheMemory_vec.size() << endl;
// }
// }
assert(n->m_L1Cache_L1IcacheMemory_vec[m_version] != NULL);
assert(n->m_L1Cache_L1DcacheMemory_vec[m_version] != NULL);
if (Protocol::m_TwoLevelCache) {
if(Protocol::m_CMP){
assert(n->m_L2Cache_L2cacheMemory_vec[l2_ver] != NULL);
}
else{
assert(n->m_L1Cache_cacheMemory_vec[m_version] != NULL);
}
}
if (n->m_L1Cache_L1IcacheMemory_vec[m_version]->tryCacheAccess(lineAddr, CacheRequestType_IFETCH, dataPtr)){
n->m_L1Cache_L1IcacheMemory_vec[m_version]->setMemoryValue(addr, value, size_in_bytes);
found = true;
} else if (n->m_L1Cache_L1DcacheMemory_vec[m_version]->tryCacheAccess(lineAddr, CacheRequestType_LD, dataPtr)){
n->m_L1Cache_L1DcacheMemory_vec[m_version]->setMemoryValue(addr, value, size_in_bytes);
found = true;
} else if (Protocol::m_CMP && n->m_L2Cache_L2cacheMemory_vec[l2_ver]->tryCacheAccess(lineAddr, CacheRequestType_LD, dataPtr)){
n->m_L2Cache_L2cacheMemory_vec[l2_ver]->setMemoryValue(addr, value, size_in_bytes);
found = true;
// } else if (n->TBE_TABLE_MEMBER_VARIABLE->isTagPresent(lineAddr)){
// L1Cache_TBE& tbeEntry = n->TBE_TABLE_MEMBER_VARIABLE->lookup(lineAddr);
// DataBlock tmpData;
// int offset = addr.getOffset();
// for(int i=0; i<size_in_bytes; ++i){
// tmpData.setByte(offset + i, value[i]);
// }
// tbeEntry.setDataBlk(tmpData);
// tbeEntry.setDirty(true);
} else {
// Address not found
n = dynamic_cast<Chip*>(g_system_ptr->getChip(map_Address_to_DirectoryNode(addr)/RubyConfig::numberOfDirectoryPerChip()));
int dir_version = map_Address_to_DirectoryNode(addr)%RubyConfig::numberOfDirectoryPerChip();
for(unsigned int i=0; i<size_in_bytes; ++i){
int offset = addr.getOffset();
n->m_Directory_directory_vec[dir_version]->lookup(lineAddr).m_DataBlk.setByte(offset + i, value[i]);
}
found = false;
}
if (found){
found = getRubyMemoryValue(addr, test_buffer, size_in_bytes);
assert(found);
if(value[0] != test_buffer[0]){
WARN_EXPR((int) value[0]);
WARN_EXPR((int) test_buffer[0]);
ERROR_MSG("setRubyMemoryValue failed to set value.");
}
}
return true;
}
}
|