1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
|
/*
* Copyright (c) 2009 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "debug/RubyCache.hh"
#include "mem/ruby/system/SparseMemory.hh"
#include "mem/ruby/system/System.hh"
using namespace std;
SparseMemory::SparseMemory(int number_of_levels)
{
int even_level_bits;
int extra;
m_total_number_of_bits = RubySystem::getMemorySizeBits()
- RubySystem::getBlockSizeBits();;
m_number_of_levels = number_of_levels;
//
// Create the array that describes the bits per level
//
m_number_of_bits_per_level = new int[m_number_of_levels];
even_level_bits = m_total_number_of_bits / m_number_of_levels;
extra = m_total_number_of_bits % m_number_of_levels;
for (int level = 0; level < m_number_of_levels; level++) {
if (level < extra)
m_number_of_bits_per_level[level] = even_level_bits + 1;
else
m_number_of_bits_per_level[level] = even_level_bits;
}
m_map_head = new SparseMapType;
m_total_adds = 0;
m_total_removes = 0;
m_adds_per_level = new uint64_t[m_number_of_levels];
m_removes_per_level = new uint64_t[m_number_of_levels];
for (int level = 0; level < m_number_of_levels; level++) {
m_adds_per_level[level] = 0;
m_removes_per_level[level] = 0;
}
}
SparseMemory::~SparseMemory()
{
recursivelyRemoveTables(m_map_head, 0);
delete m_map_head;
delete [] m_number_of_bits_per_level;
delete [] m_adds_per_level;
delete [] m_removes_per_level;
}
// Recursively search table hierarchy for the lowest level table.
// Delete the lowest table first, the tables above
void
SparseMemory::recursivelyRemoveTables(SparseMapType* curTable, int curLevel)
{
SparseMapType::iterator iter;
for (iter = curTable->begin(); iter != curTable->end(); iter++) {
SparseMemEntry* entryStruct = &((*iter).second);
if (curLevel != (m_number_of_levels - 1)) {
// If the not at the last level, analyze those lower level
// tables first, then delete those next tables
SparseMapType* nextTable = (SparseMapType*)(entryStruct->entry);
recursivelyRemoveTables(nextTable, (curLevel + 1));
delete nextTable;
} else {
// If at the last level, delete the directory entry
Directory_Entry* dirEntry;
dirEntry = (Directory_Entry*)(entryStruct->entry);
delete dirEntry;
}
entryStruct->entry = NULL;
}
// Once all entries have been deleted, erase the entries
curTable->erase(curTable->begin(), curTable->end());
}
// tests to see if an address is present in the memory
bool
SparseMemory::exist(const Address& address) const
{
SparseMapType* curTable = m_map_head;
Address curAddress;
// Initiallize the high bit to be the total number of bits plus
// the block offset. However the highest bit index is one less
// than this value.
int highBit = m_total_number_of_bits + RubySystem::getBlockSizeBits();
int lowBit;
assert(address == line_address(address));
DPRINTF(RubyCache, "address: %s\n", address);
for (int level = 0; level < m_number_of_levels; level++) {
// Create the appropriate sub address for this level
// Note: that set Address is inclusive of the specified range,
// thus the high bit is one less than the total number of bits
// used to create the address.
lowBit = highBit - m_number_of_bits_per_level[level];
curAddress.setAddress(address.bitSelect(lowBit, highBit - 1));
DPRINTF(RubyCache, "level: %d, lowBit: %d, highBit - 1: %d, "
"curAddress: %s\n",
level, lowBit, highBit - 1, curAddress);
// Adjust the highBit value for the next level
highBit -= m_number_of_bits_per_level[level];
// If the address is found, move on to the next level.
// Otherwise, return not found
if (curTable->count(curAddress) != 0) {
curTable = (SparseMapType*)(((*curTable)[curAddress]).entry);
} else {
DPRINTF(RubyCache, "Not found\n");
return false;
}
}
DPRINTF(RubyCache, "Entry found\n");
return true;
}
// add an address to memory
void
SparseMemory::add(const Address& address)
{
assert(address == line_address(address));
assert(!exist(address));
m_total_adds++;
Address curAddress;
SparseMapType* curTable = m_map_head;
SparseMemEntry* entryStruct = NULL;
// Initiallize the high bit to be the total number of bits plus
// the block offset. However the highest bit index is one less
// than this value.
int highBit = m_total_number_of_bits + RubySystem::getBlockSizeBits();
int lowBit;
void* newEntry = NULL;
for (int level = 0; level < m_number_of_levels; level++) {
// create the appropriate address for this level
// Note: that set Address is inclusive of the specified range,
// thus the high bit is one less than the total number of bits
// used to create the address.
lowBit = highBit - m_number_of_bits_per_level[level];
curAddress.setAddress(address.bitSelect(lowBit, highBit - 1));
// Adjust the highBit value for the next level
highBit -= m_number_of_bits_per_level[level];
// if the address exists in the cur table, move on. Otherwise
// create a new table.
if (curTable->count(curAddress) != 0) {
curTable = (SparseMapType*)(((*curTable)[curAddress]).entry);
} else {
m_adds_per_level[level]++;
// if the last level, add a directory entry. Otherwise add a map.
if (level == (m_number_of_levels - 1)) {
Directory_Entry* tempDirEntry = new Directory_Entry();
tempDirEntry->getDataBlk().clear();
newEntry = (void*)tempDirEntry;
} else {
SparseMapType* tempMap = new SparseMapType;
newEntry = (void*)(tempMap);
}
// Create the pointer container SparseMemEntry and add it
// to the table.
entryStruct = new SparseMemEntry;
entryStruct->entry = newEntry;
(*curTable)[curAddress] = *entryStruct;
// Move to the next level of the heirarchy
curTable = (SparseMapType*)newEntry;
}
}
assert(exist(address));
return;
}
// recursively search table hierarchy for the lowest level table.
// remove the lowest entry and any empty tables above it.
int
SparseMemory::recursivelyRemoveLevels(const Address& address,
CurNextInfo& curInfo)
{
Address curAddress;
CurNextInfo nextInfo;
SparseMemEntry* entryStruct;
// create the appropriate address for this level
// Note: that set Address is inclusive of the specified range,
// thus the high bit is one less than the total number of bits
// used to create the address.
curAddress.setAddress(address.bitSelect(curInfo.lowBit,
curInfo.highBit - 1));
DPRINTF(RubyCache, "address: %s, curInfo.level: %d, curInfo.lowBit: %d, "
"curInfo.highBit - 1: %d, curAddress: %s\n",
address, curInfo.level, curInfo.lowBit,
curInfo.highBit - 1, curAddress);
assert(curInfo.curTable->count(curAddress) != 0);
entryStruct = &((*(curInfo.curTable))[curAddress]);
if (curInfo.level < (m_number_of_levels - 1)) {
// set up next level's info
nextInfo.curTable = (SparseMapType*)(entryStruct->entry);
nextInfo.level = curInfo.level + 1;
nextInfo.highBit = curInfo.highBit -
m_number_of_bits_per_level[curInfo.level];
nextInfo.lowBit = curInfo.lowBit -
m_number_of_bits_per_level[curInfo.level + 1];
// recursively search the table hierarchy
int tableSize = recursivelyRemoveLevels(address, nextInfo);
// If this table below is now empty, we must delete it and
// erase it from our table.
if (tableSize == 0) {
m_removes_per_level[curInfo.level]++;
delete nextInfo.curTable;
entryStruct->entry = NULL;
curInfo.curTable->erase(curAddress);
}
} else {
// if this is the last level, we have reached the Directory
// Entry and thus we should delete it including the
// SparseMemEntry container struct.
Directory_Entry* dirEntry;
dirEntry = (Directory_Entry*)(entryStruct->entry);
entryStruct->entry = NULL;
delete dirEntry;
curInfo.curTable->erase(curAddress);
m_removes_per_level[curInfo.level]++;
}
return curInfo.curTable->size();
}
// remove an entry from the table
void
SparseMemory::remove(const Address& address)
{
assert(address == line_address(address));
assert(exist(address));
m_total_removes++;
CurNextInfo nextInfo;
// Initialize table pointer and level value
nextInfo.curTable = m_map_head;
nextInfo.level = 0;
// Initiallize the high bit to be the total number of bits plus
// the block offset. However the highest bit index is one less
// than this value.
nextInfo.highBit = m_total_number_of_bits + RubySystem::getBlockSizeBits();
nextInfo.lowBit = nextInfo.highBit - m_number_of_bits_per_level[0];;
// recursively search the table hierarchy for empty tables
// starting from the level 0. Note we do not check the return
// value because the head table is never deleted;
recursivelyRemoveLevels(address, nextInfo);
assert(!exist(address));
return;
}
// looks an address up in memory
Directory_Entry*
SparseMemory::lookup(const Address& address)
{
assert(exist(address));
assert(address == line_address(address));
DPRINTF(RubyCache, "address: %s\n", address);
Address curAddress;
SparseMapType* curTable = m_map_head;
Directory_Entry* entry = NULL;
// Initiallize the high bit to be the total number of bits plus
// the block offset. However the highest bit index is one less
// than this value.
int highBit = m_total_number_of_bits + RubySystem::getBlockSizeBits();
int lowBit;
for (int level = 0; level < m_number_of_levels; level++) {
// create the appropriate address for this level
// Note: that set Address is inclusive of the specified range,
// thus the high bit is one less than the total number of bits
// used to create the address.
lowBit = highBit - m_number_of_bits_per_level[level];
curAddress.setAddress(address.bitSelect(lowBit, highBit - 1));
DPRINTF(RubyCache, "level: %d, lowBit: %d, highBit - 1: %d, "
"curAddress: %s\n",
level, lowBit, highBit - 1, curAddress);
// Adjust the highBit value for the next level
highBit -= m_number_of_bits_per_level[level];
// The entry should be in the table and valid
curTable = (SparseMapType*)(((*curTable)[curAddress]).entry);
assert(curTable != NULL);
}
// The last entry actually points to the Directory entry not a table
entry = (Directory_Entry*)curTable;
return entry;
}
void
SparseMemory::print(ostream& out) const
{
}
void
SparseMemory::printStats(ostream& out) const
{
out << "total_adds: " << m_total_adds << " [";
for (int level = 0; level < m_number_of_levels; level++) {
out << m_adds_per_level[level] << " ";
}
out << "]" << endl;
out << "total_removes: " << m_total_removes << " [";
for (int level = 0; level < m_number_of_levels; level++) {
out << m_removes_per_level[level] << " ";
}
out << "]" << endl;
}
|