1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
|
/*
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* $Id$
*
*/
#include "mem/ruby/common/Global.hh"
#include "mem/ruby/config/RubyConfig.hh"
#include "mem/ruby/system/StoreBuffer.hh"
#include "mem/ruby/slicc_interface/AbstractChip.hh"
#include "mem/ruby/system/System.hh"
#include "mem/ruby/common/Driver.hh"
#include "mem/gems_common/Vector.hh"
#include "mem/ruby/eventqueue/RubyEventQueue.hh"
#include "mem/ruby/profiler/AddressProfiler.hh"
#include "mem/ruby/system/Sequencer.hh"
#include "mem/ruby/common/SubBlock.hh"
#include "mem/ruby/profiler/Profiler.hh"
// *** Begin Helper class ***
struct StoreBufferEntry {
StoreBufferEntry() {} // So we can allocate a vector of StoreBufferEntries
StoreBufferEntry(const SubBlock& block, CacheRequestType type, const Address& pc, AccessModeType access_mode, int size, int thread) : m_subblock(block) {
m_type = type;
m_pc = pc;
m_access_mode = access_mode;
m_size = size;
m_thread = thread;
m_time = g_eventQueue_ptr->getTime();
}
void print(ostream& out) const
{
out << "[StoreBufferEntry: "
<< "SubBlock: " << m_subblock
<< ", Type: " << m_type
<< ", PC: " << m_pc
<< ", AccessMode: " << m_access_mode
<< ", Size: " << m_size
<< ", Thread: " << m_thread
<< ", Time: " << m_time
<< "]";
}
SubBlock m_subblock;
CacheRequestType m_type;
Address m_pc;
AccessModeType m_access_mode;
int m_size;
int m_thread;
Time m_time;
};
extern inline
ostream& operator<<(ostream& out, const StoreBufferEntry& obj)
{
obj.print(out);
out << flush;
return out;
}
// *** End Helper class ***
const int MAX_ENTRIES = 128;
static void inc_index(int& index)
{
index++;
if (index >= MAX_ENTRIES) {
index = 0;
}
}
StoreBuffer::StoreBuffer(AbstractChip* chip_ptr, int version) :
m_store_cache()
{
m_chip_ptr = chip_ptr;
m_version = version;
m_queue_ptr = new Vector<StoreBufferEntry>(MAX_ENTRIES);
m_queue_ptr->setSize(MAX_ENTRIES);
m_pending = false;
m_seen_atomic = false;
m_head = 0;
m_tail = 0;
m_size = 0;
m_deadlock_check_scheduled = false;
}
StoreBuffer::~StoreBuffer()
{
delete m_queue_ptr;
}
// Used only to check for deadlock
void StoreBuffer::wakeup()
{
// Check for deadlock of any of the requests
Time current_time = g_eventQueue_ptr->getTime();
int queue_pointer = m_head;
for (int i=0; i<m_size; i++) {
if (current_time - (getEntry(queue_pointer).m_time) >= g_DEADLOCK_THRESHOLD) {
WARN_EXPR(getEntry(queue_pointer));
WARN_EXPR(m_chip_ptr->getID());
WARN_EXPR(current_time);
ERROR_MSG("Possible Deadlock detected");
}
inc_index(queue_pointer);
}
if (m_size > 0) { // If there are still outstanding requests, keep checking
g_eventQueue_ptr->scheduleEvent(this, g_DEADLOCK_THRESHOLD);
} else {
m_deadlock_check_scheduled = false;
}
}
void StoreBuffer::printConfig(ostream& out)
{
out << "Store buffer entries: " << MAX_ENTRIES << " (Only valid if TSO is enabled)" << endl;
}
// Handle an incoming store request, this method is responsible for
// calling hitCallback as needed
void StoreBuffer::insertStore(const CacheMsg& request)
{
Address addr = request.getAddress();
CacheRequestType type = request.getType();
Address pc = request.getProgramCounter();
AccessModeType access_mode = request.getAccessMode();
int size = request.getSize();
int threadID = request.getThreadID();
DEBUG_MSG(STOREBUFFER_COMP, MedPrio, "insertStore");
DEBUG_EXPR(STOREBUFFER_COMP, MedPrio, g_eventQueue_ptr->getTime());
assert((type == CacheRequestType_ST) || (type == CacheRequestType_ATOMIC));
assert(isReady());
// See if we should schedule a deadlock check
if (m_deadlock_check_scheduled == false) {
g_eventQueue_ptr->scheduleEvent(this, g_DEADLOCK_THRESHOLD);
m_deadlock_check_scheduled = true;
}
// Perform the hit-callback for the store
SubBlock subblock(addr, size);
if(type == CacheRequestType_ST) {
g_system_ptr->getDriver()->hitCallback(m_chip_ptr->getID(), subblock, type, threadID);
assert(subblock.getSize() != 0);
} else {
// wait to perform the hitCallback until later for Atomics
}
// Perform possible pre-fetch
if(!isEmpty()) {
CacheMsg new_request = request;
new_request.getPrefetch() = PrefetchBit_Yes;
m_chip_ptr->getSequencer(m_version)->makeRequest(new_request);
}
// Update the StoreCache
m_store_cache.add(subblock);
// Enqueue the entry
StoreBufferEntry entry(subblock, type, pc, access_mode, size, threadID); // FIXME
enqueue(entry);
if(type == CacheRequestType_ATOMIC) {
m_seen_atomic = true;
}
processHeadOfQueue();
}
void StoreBuffer::callBack(const Address& addr, DataBlock& data)
{
DEBUG_MSG(STOREBUFFER_COMP, MedPrio, "callBack");
DEBUG_EXPR(STOREBUFFER_COMP, MedPrio, g_eventQueue_ptr->getTime());
assert(!isEmpty());
assert(m_pending == true);
assert(line_address(addr) == addr);
assert(line_address(m_pending_address) == addr);
assert(line_address(peek().m_subblock.getAddress()) == addr);
CacheRequestType type = peek().m_type;
//int threadID = peek().m_thread;
assert((type == CacheRequestType_ST) || (type == CacheRequestType_ATOMIC));
m_pending = false;
// If oldest entry was ATOMIC, perform the callback
if(type == CacheRequestType_ST) {
// We already performed the call back for the store at insert time
} else {
// We waited to perform the hitCallback until now for Atomics
peek().m_subblock.mergeFrom(data); // copy the correct bytes from DataBlock into the SubBlock for the Load part of the atomic Load/Store
g_system_ptr->getDriver()->hitCallback(m_chip_ptr->getID(), peek().m_subblock, type, threadID);
m_seen_atomic = false;
/// FIXME - record the time spent in the store buffer - split out ST vs ATOMIC
}
assert(peek().m_subblock.getSize() != 0);
// Apply the head entry to the datablock
peek().m_subblock.mergeTo(data); // For both the Store and Atomic cases
// Update the StoreCache
m_store_cache.remove(peek().m_subblock);
// Dequeue the entry from the store buffer
dequeue();
if (isEmpty()) {
assert(m_store_cache.isEmpty());
}
if(type == CacheRequestType_ATOMIC) {
assert(isEmpty());
}
// See if we can remove any more entries
processHeadOfQueue();
}
void StoreBuffer::processHeadOfQueue()
{
if(!isEmpty() && !m_pending) {
StoreBufferEntry& entry = peek();
assert(m_pending == false);
m_pending = true;
m_pending_address = entry.m_subblock.getAddress();
CacheMsg request(entry.m_subblock.getAddress(), entry.m_subblock.getAddress(), entry.m_type, entry.m_pc, entry.m_access_mode, entry.m_size, PrefetchBit_No, 0, Address(0), entry.m_thread);
m_chip_ptr->getSequencer(m_version)->doRequest(request);
}
}
bool StoreBuffer::isReady() const
{
return ((m_size < MAX_ENTRIES) && (!m_seen_atomic));
}
// Queue implementation methods
StoreBufferEntry& StoreBuffer::peek()
{
return getEntry(m_head);
}
void StoreBuffer::dequeue()
{
assert(m_size > 0);
m_size--;
inc_index(m_head);
}
void StoreBuffer::enqueue(const StoreBufferEntry& entry)
{
// assert(isReady());
(*m_queue_ptr)[m_tail] = entry;
m_size++;
g_system_ptr->getProfiler()->storeBuffer(m_size, m_store_cache.size());
inc_index(m_tail);
}
StoreBufferEntry& StoreBuffer::getEntry(int index)
{
return (*m_queue_ptr)[index];
}
void StoreBuffer::print(ostream& out) const
{
out << "[StoreBuffer]";
}
|