summaryrefslogtreecommitdiff
path: root/src/mem/ruby/system/System.cc
blob: 357511127f69ea3441e1be26170592b6317200e8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
/*
 * Copyright (c) 1999-2011 Mark D. Hill and David A. Wood
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <fcntl.h>
#include <zlib.h>

#include <cstdio>

#include "base/intmath.hh"
#include "base/statistics.hh"
#include "debug/RubyCacheTrace.hh"
#include "debug/RubySystem.hh"
#include "mem/ruby/common/Address.hh"
#include "mem/ruby/network/Network.hh"
#include "mem/ruby/profiler/Profiler.hh"
#include "mem/ruby/system/System.hh"
#include "sim/eventq.hh"
#include "sim/simulate.hh"

using namespace std;

int RubySystem::m_random_seed;
bool RubySystem::m_randomization;
uint32_t RubySystem::m_block_size_bytes;
uint32_t RubySystem::m_block_size_bits;
uint64_t RubySystem::m_memory_size_bytes;
uint32_t RubySystem::m_memory_size_bits;

RubySystem::RubySystem(const Params *p)
    : ClockedObject(p)
{
    if (g_system_ptr != NULL)
        fatal("Only one RubySystem object currently allowed.\n");

    m_random_seed = p->random_seed;
    srandom(m_random_seed);
    m_randomization = p->randomization;

    m_block_size_bytes = p->block_size_bytes;
    assert(isPowerOf2(m_block_size_bytes));
    m_block_size_bits = floorLog2(m_block_size_bytes);

    m_memory_size_bytes = p->mem_size;
    if (m_memory_size_bytes == 0) {
        m_memory_size_bits = 0;
    } else {
        m_memory_size_bits = ceilLog2(m_memory_size_bytes);
    }

    if (p->no_mem_vec) {
        m_mem_vec_ptr = NULL;
    } else {
        m_mem_vec_ptr = new MemoryVector;
        m_mem_vec_ptr->resize(m_memory_size_bytes);
    }

    // Print ruby configuration and stats at exit and when asked for
    Stats::registerDumpCallback(new RubyDumpStatsCallback(p->stats_filename,
                                                          this));

    m_warmup_enabled = false;
    m_cooldown_enabled = false;

    // Setup the global variables used in Ruby
    g_system_ptr = this;

    // Resize to the size of different machine types
    g_abs_controls.resize(MachineType_NUM);
}

void
RubySystem::registerNetwork(Network* network_ptr)
{
  m_network_ptr = network_ptr;
}

void
RubySystem::registerProfiler(Profiler* profiler_ptr)
{
  m_profiler_ptr = profiler_ptr;
}

void
RubySystem::registerAbstractController(AbstractController* cntrl)
{
  m_abs_cntrl_vec.push_back(cntrl);

  MachineID id = cntrl->getMachineID();
  g_abs_controls[id.getType()][id.getNum()] = cntrl;
}

void
RubySystem::registerSparseMemory(SparseMemory* s)
{
    m_sparse_memory_vector.push_back(s);
}

void
RubySystem::registerMemController(MemoryControl *mc) {
    m_memory_controller_vec.push_back(mc);
}

RubySystem::~RubySystem()
{
    delete m_network_ptr;
    delete m_profiler_ptr;
    if (m_mem_vec_ptr)
        delete m_mem_vec_ptr;
}

void
RubySystem::printStats(ostream& out)
{
    const time_t T = time(NULL);
    tm *localTime = localtime(&T);
    char buf[100];
    strftime(buf, 100, "%b/%d/%Y %H:%M:%S", localTime);

    out << "Real time: " << buf << endl;

    m_profiler_ptr->printStats(out);
    m_network_ptr->printStats(out);

    for (uint32_t i = 0;i < g_abs_controls.size(); ++i) {
        for (map<uint32_t, AbstractController *>::iterator it =
                g_abs_controls[i].begin();
             it != g_abs_controls[i].end(); ++it) {

            ((*it).second)->printStats(out);
        }
    }
}

void
RubySystem::writeCompressedTrace(uint8_t *raw_data, string filename,
                                 uint64 uncompressed_trace_size)
{
    // Create the checkpoint file for the memory
    string thefile = Checkpoint::dir() + "/" + filename.c_str();

    int fd = creat(thefile.c_str(), 0664);
    if (fd < 0) {
        perror("creat");
        fatal("Can't open memory trace file '%s'\n", filename);
    }

    gzFile compressedMemory = gzdopen(fd, "wb");
    if (compressedMemory == NULL)
        fatal("Insufficient memory to allocate compression state for %s\n",
              filename);

    if (gzwrite(compressedMemory, raw_data, uncompressed_trace_size) !=
        uncompressed_trace_size) {
        fatal("Write failed on memory trace file '%s'\n", filename);
    }

    if (gzclose(compressedMemory)) {
        fatal("Close failed on memory trace file '%s'\n", filename);
    }
    delete raw_data;
}

void
RubySystem::serialize(std::ostream &os)
{
    m_cooldown_enabled = true;

    vector<Sequencer*> sequencer_map;
    Sequencer* sequencer_ptr = NULL;
    int cntrl_id = -1;


    for (int cntrl = 0; cntrl < m_abs_cntrl_vec.size(); cntrl++) {
        sequencer_map.push_back(m_abs_cntrl_vec[cntrl]->getSequencer());
        if (sequencer_ptr == NULL) {
            sequencer_ptr = sequencer_map[cntrl];
            cntrl_id = cntrl;
        }
    }

    assert(sequencer_ptr != NULL);

    for (int cntrl = 0; cntrl < m_abs_cntrl_vec.size(); cntrl++) {
        if (sequencer_map[cntrl] == NULL) {
            sequencer_map[cntrl] = sequencer_ptr;
        }
    }

    DPRINTF(RubyCacheTrace, "Recording Cache Trace\n");
    // Create the CacheRecorder and record the cache trace
    m_cache_recorder = new CacheRecorder(NULL, 0, sequencer_map);

    for (int cntrl = 0; cntrl < m_abs_cntrl_vec.size(); cntrl++) {
        m_abs_cntrl_vec[cntrl]->recordCacheTrace(cntrl, m_cache_recorder);
    }

    DPRINTF(RubyCacheTrace, "Cache Trace Complete\n");
    // save the current tick value
    Tick curtick_original = curTick();
    // save the event queue head
    Event* eventq_head = eventq->replaceHead(NULL);
    DPRINTF(RubyCacheTrace, "Recording current tick %ld and event queue\n",
            curtick_original);

    // Schedule an event to start cache cooldown
    DPRINTF(RubyCacheTrace, "Starting cache flush\n");
    enqueueRubyEvent(curTick());
    simulate();
    DPRINTF(RubyCacheTrace, "Cache flush complete\n");

    // Restore eventq head
    eventq_head = eventq->replaceHead(eventq_head);
    // Restore curTick
    setCurTick(curtick_original);

    uint8_t *raw_data = NULL;

    if (m_mem_vec_ptr != NULL) {
        uint64 memory_trace_size = m_mem_vec_ptr->collatePages(raw_data);

        string memory_trace_file = name() + ".memory.gz";
        writeCompressedTrace(raw_data, memory_trace_file,
                             memory_trace_size);

        SERIALIZE_SCALAR(memory_trace_file);
        SERIALIZE_SCALAR(memory_trace_size);

    } else {
        for (int i = 0; i < m_sparse_memory_vector.size(); ++i) {
            m_sparse_memory_vector[i]->recordBlocks(cntrl_id,
                                                    m_cache_recorder);
        }
    }

    // Aggergate the trace entries together into a single array
    raw_data = new uint8_t[4096];
    uint64 cache_trace_size = m_cache_recorder->aggregateRecords(&raw_data,
                                                                 4096);
    string cache_trace_file = name() + ".cache.gz";
    writeCompressedTrace(raw_data, cache_trace_file, cache_trace_size);

    SERIALIZE_SCALAR(cache_trace_file);
    SERIALIZE_SCALAR(cache_trace_size);

    m_cooldown_enabled = false;
}

void
RubySystem::readCompressedTrace(string filename, uint8_t *&raw_data,
                                uint64& uncompressed_trace_size)
{
    // Read the trace file
    gzFile compressedTrace;

    // trace file
    int fd = open(filename.c_str(), O_RDONLY);
    if (fd < 0) {
        perror("open");
        fatal("Unable to open trace file %s", filename);
    }

    compressedTrace = gzdopen(fd, "rb");
    if (compressedTrace == NULL) {
        fatal("Insufficient memory to allocate compression state for %s\n",
              filename);
    }

    raw_data = new uint8_t[uncompressed_trace_size];
    if (gzread(compressedTrace, raw_data, uncompressed_trace_size) <
            uncompressed_trace_size) {
        fatal("Unable to read complete trace from file %s\n", filename);
    }

    if (gzclose(compressedTrace)) {
        fatal("Failed to close cache trace file '%s'\n", filename);
    }
}

void
RubySystem::unserialize(Checkpoint *cp, const string &section)
{
    uint8_t *uncompressed_trace = NULL;

    if (m_mem_vec_ptr != NULL) {
        string memory_trace_file;
        uint64 memory_trace_size = 0;

        UNSERIALIZE_SCALAR(memory_trace_file);
        UNSERIALIZE_SCALAR(memory_trace_size);
        memory_trace_file = cp->cptDir + "/" + memory_trace_file;

        readCompressedTrace(memory_trace_file, uncompressed_trace,
                            memory_trace_size);
        m_mem_vec_ptr->populatePages(uncompressed_trace);

        delete [] uncompressed_trace;
        uncompressed_trace = NULL;
    }

    string cache_trace_file;
    uint64 cache_trace_size = 0;

    UNSERIALIZE_SCALAR(cache_trace_file);
    UNSERIALIZE_SCALAR(cache_trace_size);
    cache_trace_file = cp->cptDir + "/" + cache_trace_file;

    readCompressedTrace(cache_trace_file, uncompressed_trace,
                        cache_trace_size);
    m_warmup_enabled = true;

    vector<Sequencer*> sequencer_map;
    Sequencer* t = NULL;
    for (int cntrl = 0; cntrl < m_abs_cntrl_vec.size(); cntrl++) {
        sequencer_map.push_back(m_abs_cntrl_vec[cntrl]->getSequencer());
        if (t == NULL) t = sequencer_map[cntrl];
    }

    assert(t != NULL);

    for (int cntrl = 0; cntrl < m_abs_cntrl_vec.size(); cntrl++) {
        if (sequencer_map[cntrl] == NULL) {
            sequencer_map[cntrl] = t;
        }
    }

    m_cache_recorder = new CacheRecorder(uncompressed_trace, cache_trace_size,
                                         sequencer_map);
}

void
RubySystem::startup()
{

    // Ruby restores state from a checkpoint by resetting the clock to 0 and
    // playing the requests that can possibly re-generate the cache state.
    // The clock value is set to the actual checkpointed value once all the
    // requests have been executed.
    //
    // This way of restoring state is pretty finicky. For example, if a
    // Ruby component reads time before the state has been restored, it would
    // cache this value and hence its clock would not be reset to 0, when
    // Ruby resets the global clock. This can potentially result in a
    // deadlock.
    //
    // The solution is that no Ruby component should read time before the
    // simulation starts. And then one also needs to hope that the time
    // Ruby finishes restoring the state is less than the time when the
    // state was checkpointed.

    if (m_warmup_enabled) {
        // save the current tick value
        Tick curtick_original = curTick();
        // save the event queue head
        Event* eventq_head = eventq->replaceHead(NULL);
        // set curTick to 0 and reset Ruby System's clock
        setCurTick(0);
        resetClock();

        // Schedule an event to start cache warmup
        enqueueRubyEvent(curTick());
        simulate();

        delete m_cache_recorder;
        m_cache_recorder = NULL;
        m_warmup_enabled = false;

        // reset DRAM so that it's not waiting for events on the old event
        // queue
        for (int i = 0; i < m_memory_controller_vec.size(); ++i) {
            m_memory_controller_vec[i]->reset();
        }

        // Restore eventq head
        eventq_head = eventq->replaceHead(eventq_head);
        // Restore curTick and Ruby System's clock
        setCurTick(curtick_original);
        resetClock();
    }

    resetStats();
}

void
RubySystem::RubyEvent::process()
{
    if (ruby_system->m_warmup_enabled) {
        ruby_system->m_cache_recorder->enqueueNextFetchRequest();
    }  else if (ruby_system->m_cooldown_enabled) {
        ruby_system->m_cache_recorder->enqueueNextFlushRequest();
    }
}

void
RubySystem::resetStats()
{
    m_profiler_ptr->clearStats();
    m_network_ptr->clearStats();
    for (uint32_t cntrl = 0; cntrl < m_abs_cntrl_vec.size(); cntrl++) {
        m_abs_cntrl_vec[cntrl]->clearStats();
    }

    g_ruby_start = curCycle();
}

bool
RubySystem::functionalRead(PacketPtr pkt)
{
    Address address(pkt->getAddr());
    Address line_address(address);
    line_address.makeLineAddress();

    AccessPermission access_perm = AccessPermission_NotPresent;
    int num_controllers = m_abs_cntrl_vec.size();

    DPRINTF(RubySystem, "Functional Read request for %s\n",address);

    unsigned int num_ro = 0;
    unsigned int num_rw = 0;
    unsigned int num_busy = 0;
    unsigned int num_backing_store = 0;
    unsigned int num_invalid = 0;

    // In this loop we count the number of controllers that have the given
    // address in read only, read write and busy states.
    for (unsigned int i = 0; i < num_controllers; ++i) {
        access_perm = m_abs_cntrl_vec[i]-> getAccessPermission(line_address);
        if (access_perm == AccessPermission_Read_Only)
            num_ro++;
        else if (access_perm == AccessPermission_Read_Write)
            num_rw++;
        else if (access_perm == AccessPermission_Busy)
            num_busy++;
        else if (access_perm == AccessPermission_Backing_Store)
            // See RubySlicc_Exports.sm for details, but Backing_Store is meant
            // to represent blocks in memory *for Broadcast/Snooping protocols*,
            // where memory has no idea whether it has an exclusive copy of data
            // or not.
            num_backing_store++;
        else if (access_perm == AccessPermission_Invalid ||
                 access_perm == AccessPermission_NotPresent)
            num_invalid++;
    }
    assert(num_rw <= 1);

    uint8_t *data = pkt->getPtr<uint8_t>(true);
    unsigned int size_in_bytes = pkt->getSize();
    unsigned startByte = address.getAddress() - line_address.getAddress();

    // This if case is meant to capture what happens in a Broadcast/Snoop
    // protocol where the block does not exist in the cache hierarchy. You
    // only want to read from the Backing_Store memory if there is no copy in
    // the cache hierarchy, otherwise you want to try to read the RO or RW
    // copies existing in the cache hierarchy (covered by the else statement).
    // The reason is because the Backing_Store memory could easily be stale, if
    // there are copies floating around the cache hierarchy, so you want to read
    // it only if it's not in the cache hierarchy at all.
    if (num_invalid == (num_controllers - 1) &&
            num_backing_store == 1) {
        DPRINTF(RubySystem, "only copy in Backing_Store memory, read from it\n");
        for (unsigned int i = 0; i < num_controllers; ++i) {
            access_perm = m_abs_cntrl_vec[i]->getAccessPermission(line_address);
            if (access_perm == AccessPermission_Backing_Store) {
                DataBlock& block = m_abs_cntrl_vec[i]->
                    getDataBlock(line_address);

                DPRINTF(RubySystem, "reading from %s block %s\n",
                        m_abs_cntrl_vec[i]->name(), block);
                for (unsigned j = 0; j < size_in_bytes; ++j) {
                    data[j] = block.getByte(j + startByte);
                }
                return true;
            }
        }
    } else if (num_ro > 0 || num_rw == 1) {
        // In Broadcast/Snoop protocols, this covers if you know the block
        // exists somewhere in the caching hierarchy, then you want to read any
        // valid RO or RW block.  In directory protocols, same thing, you want
        // to read any valid readable copy of the block.
        DPRINTF(RubySystem, "num_busy = %d, num_ro = %d, num_rw = %d\n",
                num_busy, num_ro, num_rw);
        // In this loop, we try to figure which controller has a read only or
        // a read write copy of the given address. Any valid copy would suffice
        // for a functional read.
        for (unsigned int i = 0;i < num_controllers;++i) {
            access_perm = m_abs_cntrl_vec[i]->getAccessPermission(line_address);
            if (access_perm == AccessPermission_Read_Only ||
                access_perm == AccessPermission_Read_Write) {
                DataBlock& block = m_abs_cntrl_vec[i]->
                    getDataBlock(line_address);

                DPRINTF(RubySystem, "reading from %s block %s\n",
                        m_abs_cntrl_vec[i]->name(), block);
                for (unsigned j = 0; j < size_in_bytes; ++j) {
                    data[j] = block.getByte(j + startByte);
                }
                return true;
            }
        }
    }

    return false;
}

// The function searches through all the buffers that exist in different
// cache, directory and memory controllers, and in the network components
// and writes the data portion of those that hold the address specified
// in the packet.
bool
RubySystem::functionalWrite(PacketPtr pkt)
{
    Address addr(pkt->getAddr());
    Address line_addr = line_address(addr);
    AccessPermission access_perm = AccessPermission_NotPresent;
    int num_controllers = m_abs_cntrl_vec.size();

    DPRINTF(RubySystem, "Functional Write request for %s\n",addr);

    uint8_t *data = pkt->getPtr<uint8_t>(true);
    unsigned int size_in_bytes = pkt->getSize();
    unsigned startByte = addr.getAddress() - line_addr.getAddress();

    uint32_t M5_VAR_USED num_functional_writes = 0;

    for (unsigned int i = 0; i < num_controllers;++i) {
        num_functional_writes +=
            m_abs_cntrl_vec[i]->functionalWriteBuffers(pkt);

        access_perm = m_abs_cntrl_vec[i]->getAccessPermission(line_addr);
        if (access_perm != AccessPermission_Invalid &&
            access_perm != AccessPermission_NotPresent) {

            num_functional_writes++;

            DataBlock& block = m_abs_cntrl_vec[i]->getDataBlock(line_addr);
            DPRINTF(RubySystem, "%s\n",block);
            for (unsigned j = 0; j < size_in_bytes; ++j) {
              block.setByte(j + startByte, data[j]);
            }
            DPRINTF(RubySystem, "%s\n",block);
        }
    }

    for (unsigned int i = 0; i < m_memory_controller_vec.size() ;++i) {
        num_functional_writes +=
            m_memory_controller_vec[i]->functionalWriteBuffers(pkt);
    }

    num_functional_writes += m_network_ptr->functionalWrite(pkt);
    DPRINTF(RubySystem, "Messages written = %u\n", num_functional_writes);

    return true;
}

#ifdef CHECK_COHERENCE
// This code will check for cases if the given cache block is exclusive in
// one node and shared in another-- a coherence violation
//
// To use, the SLICC specification must call sequencer.checkCoherence(address)
// when the controller changes to a state with new permissions.  Do this
// in setState.  The SLICC spec must also define methods "isBlockShared"
// and "isBlockExclusive" that are specific to that protocol
//
void
RubySystem::checkGlobalCoherenceInvariant(const Address& addr)
{
#if 0
    NodeID exclusive = -1;
    bool sharedDetected = false;
    NodeID lastShared = -1;

    for (int i = 0; i < m_chip_vector.size(); i++) {
        if (m_chip_vector[i]->isBlockExclusive(addr)) {
            if (exclusive != -1) {
                // coherence violation
                WARN_EXPR(exclusive);
                WARN_EXPR(m_chip_vector[i]->getID());
                WARN_EXPR(addr);
                WARN_EXPR(getTime());
                ERROR_MSG("Coherence Violation Detected -- 2 exclusive chips");
            } else if (sharedDetected) {
                WARN_EXPR(lastShared);
                WARN_EXPR(m_chip_vector[i]->getID());
                WARN_EXPR(addr);
                WARN_EXPR(getTime());
                ERROR_MSG("Coherence Violation Detected -- exclusive chip with >=1 shared");
            } else {
                exclusive = m_chip_vector[i]->getID();
            }
        } else if (m_chip_vector[i]->isBlockShared(addr)) {
            sharedDetected = true;
            lastShared = m_chip_vector[i]->getID();

            if (exclusive != -1) {
                WARN_EXPR(lastShared);
                WARN_EXPR(exclusive);
                WARN_EXPR(addr);
                WARN_EXPR(getTime());
                ERROR_MSG("Coherence Violation Detected -- exclusive chip with >=1 shared");
            }
        }
    }
#endif
}
#endif

RubySystem *
RubySystemParams::create()
{
    return new RubySystem(this);
}

/**
 * virtual process function that is invoked when the callback
 * queue is executed.
 */
void
RubyDumpStatsCallback::process()
{
    ruby_system->printStats(*os);
}