1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
|
/*
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* $Id$
*
*/
#include "mem/ruby/common/Global.hh"
#include "mem/ruby/system/System.hh"
#include "mem/ruby/tester/SyntheticDriver.hh"
#include "mem/ruby/eventqueue/RubyEventQueue.hh"
//#ifndef XACT_MEM
#include "mem/ruby/tester/RequestGenerator.hh"
//#endif
//#include "mem/ruby/tester/XactAbortRequestGenerator.hh"
//#include "mem/ruby/tester/XactRequestGenerator.hh"
#include "mem/ruby/common/SubBlock.hh"
#include "mem/protocol/Chip.hh"
SyntheticDriver::SyntheticDriver(RubySystem* sys_ptr)
{
cout << "SyntheticDriver::SyntheticDriver" << endl;
if (g_SIMULATING) {
ERROR_MSG("g_SIMULATING should not be defined.");
}
m_finish_time = 0;
m_done_counter = 0;
m_last_progress_vector.setSize(RubyConfig::numberOfProcessors());
for (int i=0; i<m_last_progress_vector.size(); i++) {
m_last_progress_vector[i] = 0;
}
m_lock_vector.setSize(g_synthetic_locks);
for (int i=0; i<m_lock_vector.size(); i++) {
m_lock_vector[i] = -1; // No processor last held it
}
m_request_generator_vector.setSize(RubyConfig::numberOfProcessors());
for (int i=0; i<m_request_generator_vector.size(); i++) {
if(XACT_MEMORY){
//m_request_generator_vector[i] = new XactRequestGenerator(i, *this);
} else {
m_request_generator_vector[i] = new RequestGenerator(i, *this);
}
}
// add the tester consumer to the global event queue
g_eventQueue_ptr->scheduleEvent(this, 1);
}
SyntheticDriver::~SyntheticDriver()
{
for (int i=0; i<m_last_progress_vector.size(); i++) {
delete m_request_generator_vector[i];
}
}
void SyntheticDriver::hitCallback(NodeID proc, SubBlock& data, CacheRequestType type, int thread)
{
DEBUG_EXPR(TESTER_COMP, MedPrio, data);
//cout << " " << proc << " in S.D. hitCallback" << endl;
if(XACT_MEMORY){
//XactRequestGenerator* reqGen = static_cast<XactRequestGenerator*>(m_request_generator_vector[proc]);
//reqGen->performCallback(proc, data);
} else {
m_request_generator_vector[proc]->performCallback(proc, data);
}
// Mark that we made progress
m_last_progress_vector[proc] = g_eventQueue_ptr->getTime();
}
void SyntheticDriver::abortCallback(NodeID proc, SubBlock& data, CacheRequestType type, int thread)
{
//cout << "SyntheticDriver::abortCallback" << endl;
DEBUG_EXPR(TESTER_COMP, MedPrio, data);
if(XACT_MEMORY){
//XactRequestGenerator* reqGen = static_cast<XactRequestGenerator*>(m_request_generator_vector[proc]);
//reqGen->abortTransaction();
//reqGen->performCallback(proc, data);
} else {
m_request_generator_vector[proc]->performCallback(proc, data);
}
// Mark that we made progress
m_last_progress_vector[proc] = g_eventQueue_ptr->getTime();
}
// For Transactional Memory
/*
// called whenever we send a nack
void SyntheticDriver::notifySendNack( int proc, const Address & addr, uint64 remote_timestamp, const MachineID & remote_id ){
if(XACT_MEMORY){
//XactRequestGenerator* reqGen = static_cast<XactRequestGenerator*>(m_request_generator_vector[proc]);
//reqGen->notifySendNack(addr, remote_timestamp, remote_id);
}
else{
cout << "notifySendNack NOT USING TM" << endl;
ASSERT(0);
}
}
// called whenever we receive a NACK
// Either for a demand request or log store
void SyntheticDriver::notifyReceiveNack( int proc, const Address & addr, uint64 remote_timestamp, const MachineID & remote_id ){
if(XACT_MEMORY){
//XactRequestGenerator* reqGen = static_cast<XactRequestGenerator*>(m_request_generator_vector[proc]);
//reqGen->notifyReceiveNack(addr, remote_timestamp, remote_id);
}
else{
cout << "notifyReceiveNack NOT USING TM" << endl;
ASSERT(0);
}
}
// called whenever we received ALL the NACKs. Take abort or retry action here
void SyntheticDriver::notifyReceiveNackFinal(int proc, const Address & addr){
if(XACT_MEMORY){
//XactRequestGenerator* reqGen = static_cast<XactRequestGenerator*>(m_request_generator_vector[proc]);
//reqGen->notifyReceiveNackFinal(addr);
}
else{
cout << "notifyReceiveNackFinal NOT USING TM" << endl;
ASSERT(0);
}
}
// called during abort handling
// void SyntheticDriver::notifyAbortStart( const Address & handlerPC ){
// }
// void SyntheticDriver::notifyAbortComplete( const Address & newPC ){
// }
*/
Address SyntheticDriver::pickAddress(NodeID node)
{
// This methods picks a random lock that we were NOT that last
// processor to acquire. Why? Without this change 2 and 4
// processor runs, the odds of having the lock in your cache in
// read/write state is 50% or 25%, respectively. This effect can
// make our 'throughput per processor' results look too strange.
Address addr;
// FIXME - make this a parameter of the workload
int lock_number = 0;
int counter = 0;
while (1) {
// Pick a random lock
lock_number = random() % m_lock_vector.size();
// Were we the last to acquire the lock?
if (m_lock_vector[lock_number] != node) {
break;
}
// Don't keep trying forever, since if there is only one lock, we're always the last to try to obtain the lock
counter++;
if (counter > 10) {
break;
}
}
// We're going to acquire it soon, so we can update the last
// processor to hold the lock at this time
m_lock_vector[lock_number] = node;
// One lock per cache line
addr.setAddress(lock_number * RubyConfig::dataBlockBytes());
return addr;
}
void SyntheticDriver::reportDone()
{
m_done_counter++;
if (m_done_counter == RubyConfig::numberOfProcessors()) {
m_finish_time = g_eventQueue_ptr->getTime();
}
}
void SyntheticDriver::recordTestLatency(Time time)
{
m_test_latency.add(time);
}
void SyntheticDriver::recordSwapLatency(Time time)
{
m_swap_latency.add(time);
}
void SyntheticDriver::recordReleaseLatency(Time time)
{
m_release_latency.add(time);
}
void SyntheticDriver::wakeup()
{
// checkForDeadlock();
if (m_done_counter < RubyConfig::numberOfProcessors()) {
g_eventQueue_ptr->scheduleEvent(this, g_DEADLOCK_THRESHOLD);
}
}
void SyntheticDriver::checkForDeadlock()
{
int size = m_last_progress_vector.size();
Time current_time = g_eventQueue_ptr->getTime();
for (int processor=0; processor<size; processor++) {
if ((current_time - m_last_progress_vector[processor]) > g_DEADLOCK_THRESHOLD) {
WARN_EXPR(processor);
#ifndef NDEBUG
Sequencer* seq_ptr = g_system_ptr->getChip(processor/RubyConfig::numberOfProcsPerChip())->getSequencer(processor%RubyConfig::numberOfProcsPerChip());
#endif
assert(seq_ptr != NULL);
// if (seq_ptr->isRequestPending()) {
// WARN_EXPR(seq_ptr->pendingAddress());
// }
WARN_EXPR(current_time);
WARN_EXPR(m_last_progress_vector[processor]);
WARN_EXPR(current_time - m_last_progress_vector[processor]);
ERROR_MSG("Deadlock detected.");
}
}
}
integer_t SyntheticDriver::readPhysicalMemory(int procID, physical_address_t address,
int len ){
char buffer[8];
ASSERT(len <= 8);
Sequencer* seq = g_system_ptr->getChip(procID/RubyConfig::numberOfProcsPerChip())->getSequencer(procID%RubyConfig::numberOfProcsPerChip());
assert(seq != NULL);
bool found = seq->getRubyMemoryValue(Address(address), buffer, len );
ASSERT(found);
return *((integer_t *) buffer);
}
void SyntheticDriver::writePhysicalMemory( int procID, physical_address_t address,
integer_t value, int len ){
char buffer[8];
ASSERT(len <= 8);
memcpy(buffer, (const void*) &value, len);
DEBUG_EXPR(TESTER_COMP, MedPrio, "");
Sequencer* seq = g_system_ptr->getChip(procID/RubyConfig::numberOfProcsPerChip())->getSequencer(procID%RubyConfig::numberOfProcsPerChip());
assert(seq != NULL);
bool found = seq->setRubyMemoryValue(Address(address), buffer, len );
ASSERT(found);
//return found;
}
void SyntheticDriver::printStats(ostream& out) const
{
out << endl;
out << "SyntheticDriver Stats" << endl;
out << "---------------------" << endl;
out << "synthetic_finish_time: " << m_finish_time << endl;
out << "test_latency: " << m_test_latency << endl;
out << "swap_latency: " << m_swap_latency << endl;
out << "release_latency: " << m_release_latency << endl;
}
void SyntheticDriver::print(ostream& out) const
{
}
|