1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
|
/*
* Copyright (c) 2011-2013 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2006 The Regents of The University of Michigan
* Copyright (c) 2015 The University of Bologna
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ali Saidi
* Steve Reinhardt
* Andreas Hansson
* Erfan Azarkhish
*/
/**
* @file
* Implementation of the SerialLink Class, modeling Hybrid-Memory-Cube's
* serial interface.
*/
#include "mem/serial_link.hh"
#include "base/trace.hh"
#include "debug/SerialLink.hh"
#include "params/SerialLink.hh"
SerialLink::SerialLinkSlavePort::SerialLinkSlavePort(const std::string& _name,
SerialLink& _serial_link,
SerialLinkMasterPort& _masterPort,
Cycles _delay, int _resp_limit,
const std::vector<AddrRange>&
_ranges)
: SlavePort(_name, &_serial_link), serial_link(_serial_link),
masterPort(_masterPort), delay(_delay),
ranges(_ranges.begin(), _ranges.end()),
outstandingResponses(0), retryReq(false),
respQueueLimit(_resp_limit), sendEvent(*this)
{
}
SerialLink::SerialLinkMasterPort::SerialLinkMasterPort(const std::string&
_name, SerialLink& _serial_link,
SerialLinkSlavePort& _slavePort,
Cycles _delay, int _req_limit)
: MasterPort(_name, &_serial_link), serial_link(_serial_link),
slavePort(_slavePort), delay(_delay), reqQueueLimit(_req_limit),
sendEvent(*this)
{
}
SerialLink::SerialLink(SerialLinkParams *p)
: MemObject(p),
slavePort(p->name + ".slave", *this, masterPort,
ticksToCycles(p->delay), p->resp_size, p->ranges),
masterPort(p->name + ".master", *this, slavePort,
ticksToCycles(p->delay), p->req_size),
num_lanes(p->num_lanes),
link_speed(p->link_speed)
{
}
BaseMasterPort&
SerialLink::getMasterPort(const std::string &if_name, PortID idx)
{
if (if_name == "master")
return masterPort;
else
// pass it along to our super class
return MemObject::getMasterPort(if_name, idx);
}
BaseSlavePort&
SerialLink::getSlavePort(const std::string &if_name, PortID idx)
{
if (if_name == "slave")
return slavePort;
else
// pass it along to our super class
return MemObject::getSlavePort(if_name, idx);
}
void
SerialLink::init()
{
// make sure both sides are connected and have the same block size
if (!slavePort.isConnected() || !masterPort.isConnected())
fatal("Both ports of a serial_link must be connected.\n");
// notify the master side of our address ranges
slavePort.sendRangeChange();
}
bool
SerialLink::SerialLinkSlavePort::respQueueFull() const
{
return outstandingResponses == respQueueLimit;
}
bool
SerialLink::SerialLinkMasterPort::reqQueueFull() const
{
return transmitList.size() == reqQueueLimit;
}
bool
SerialLink::SerialLinkMasterPort::recvTimingResp(PacketPtr pkt)
{
// all checks are done when the request is accepted on the slave
// side, so we are guaranteed to have space for the response
DPRINTF(SerialLink, "recvTimingResp: %s addr 0x%x\n",
pkt->cmdString(), pkt->getAddr());
DPRINTF(SerialLink, "Request queue size: %d\n", transmitList.size());
// @todo: We need to pay for this and not just zero it out
pkt->headerDelay = pkt->payloadDelay = 0;
// This is similar to what happens for the request packets:
// The serializer will start serialization as soon as it receives the
// first flit, but the deserializer (at the host side in this case), will
// have to wait to receive the whole packet. So we only account for the
// deserialization latency.
Cycles cycles = delay;
cycles += Cycles(divCeil(pkt->getSize() * 8, serial_link.num_lanes
* serial_link.link_speed));
Tick t = serial_link.clockEdge(cycles);
//@todo: If the processor sends two uncached requests towards HMC and the
// second one is smaller than the first one. It may happen that the second
// one crosses this link faster than the first one (because the packet
// waits in the link based on its size). This can reorder the received
// response.
slavePort.schedTimingResp(pkt, t);
return true;
}
bool
SerialLink::SerialLinkSlavePort::recvTimingReq(PacketPtr pkt)
{
DPRINTF(SerialLink, "recvTimingReq: %s addr 0x%x\n",
pkt->cmdString(), pkt->getAddr());
// we should not see a timing request if we are already in a retry
assert(!retryReq);
DPRINTF(SerialLink, "Response queue size: %d outresp: %d\n",
transmitList.size(), outstandingResponses);
// if the request queue is full then there is no hope
if (masterPort.reqQueueFull()) {
DPRINTF(SerialLink, "Request queue full\n");
retryReq = true;
} else if ( !retryReq ) {
// look at the response queue if we expect to see a response
bool expects_response = pkt->needsResponse() &&
!pkt->cacheResponding();
if (expects_response) {
if (respQueueFull()) {
DPRINTF(SerialLink, "Response queue full\n");
retryReq = true;
} else {
// ok to send the request with space for the response
DPRINTF(SerialLink, "Reserving space for response\n");
assert(outstandingResponses != respQueueLimit);
++outstandingResponses;
// no need to set retryReq to false as this is already the
// case
}
}
if (!retryReq) {
// @todo: We need to pay for this and not just zero it out
pkt->headerDelay = pkt->payloadDelay = 0;
// We assume that the serializer component at the transmitter side
// does not need to receive the whole packet to start the
// serialization (this assumption is consistent with the HMC
// standard). But the deserializer waits for the complete packet
// to check its integrity first. So everytime a packet crosses a
// serial link, we should account for its deserialization latency
// only.
Cycles cycles = delay;
cycles += Cycles(divCeil(pkt->getSize() * 8,
serial_link.num_lanes * serial_link.link_speed));
Tick t = serial_link.clockEdge(cycles);
//@todo: If the processor sends two uncached requests towards HMC
// and the second one is smaller than the first one. It may happen
// that the second one crosses this link faster than the first one
// (because the packet waits in the link based on its size).
// This can reorder the received response.
masterPort.schedTimingReq(pkt, t);
}
}
// remember that we are now stalling a packet and that we have to
// tell the sending master to retry once space becomes available,
// we make no distinction whether the stalling is due to the
// request queue or response queue being full
return !retryReq;
}
void
SerialLink::SerialLinkSlavePort::retryStalledReq()
{
if (retryReq) {
DPRINTF(SerialLink, "Request waiting for retry, now retrying\n");
retryReq = false;
sendRetryReq();
}
}
void
SerialLink::SerialLinkMasterPort::schedTimingReq(PacketPtr pkt, Tick when)
{
// If we're about to put this packet at the head of the queue, we
// need to schedule an event to do the transmit. Otherwise there
// should already be an event scheduled for sending the head
// packet.
if (transmitList.empty()) {
serial_link.schedule(sendEvent, when);
}
assert(transmitList.size() != reqQueueLimit);
transmitList.emplace_back(DeferredPacket(pkt, when));
}
void
SerialLink::SerialLinkSlavePort::schedTimingResp(PacketPtr pkt, Tick when)
{
// If we're about to put this packet at the head of the queue, we
// need to schedule an event to do the transmit. Otherwise there
// should already be an event scheduled for sending the head
// packet.
if (transmitList.empty()) {
serial_link.schedule(sendEvent, when);
}
transmitList.emplace_back(DeferredPacket(pkt, when));
}
void
SerialLink::SerialLinkMasterPort::trySendTiming()
{
assert(!transmitList.empty());
DeferredPacket req = transmitList.front();
assert(req.tick <= curTick());
PacketPtr pkt = req.pkt;
DPRINTF(SerialLink, "trySend request addr 0x%x, queue size %d\n",
pkt->getAddr(), transmitList.size());
if (sendTimingReq(pkt)) {
// send successful
transmitList.pop_front();
DPRINTF(SerialLink, "trySend request successful\n");
// If there are more packets to send, schedule event to try again.
if (!transmitList.empty()) {
DeferredPacket next_req = transmitList.front();
DPRINTF(SerialLink, "Scheduling next send\n");
// Make sure bandwidth limitation is met
Cycles cycles = Cycles(divCeil(pkt->getSize() * 8,
serial_link.num_lanes * serial_link.link_speed));
Tick t = serial_link.clockEdge(cycles);
serial_link.schedule(sendEvent, std::max(next_req.tick, t));
}
// if we have stalled a request due to a full request queue,
// then send a retry at this point, also note that if the
// request we stalled was waiting for the response queue
// rather than the request queue we might stall it again
slavePort.retryStalledReq();
}
// if the send failed, then we try again once we receive a retry,
// and therefore there is no need to take any action
}
void
SerialLink::SerialLinkSlavePort::trySendTiming()
{
assert(!transmitList.empty());
DeferredPacket resp = transmitList.front();
assert(resp.tick <= curTick());
PacketPtr pkt = resp.pkt;
DPRINTF(SerialLink, "trySend response addr 0x%x, outstanding %d\n",
pkt->getAddr(), outstandingResponses);
if (sendTimingResp(pkt)) {
// send successful
transmitList.pop_front();
DPRINTF(SerialLink, "trySend response successful\n");
assert(outstandingResponses != 0);
--outstandingResponses;
// If there are more packets to send, schedule event to try again.
if (!transmitList.empty()) {
DeferredPacket next_resp = transmitList.front();
DPRINTF(SerialLink, "Scheduling next send\n");
// Make sure bandwidth limitation is met
Cycles cycles = Cycles(divCeil(pkt->getSize() * 8,
serial_link.num_lanes * serial_link.link_speed));
Tick t = serial_link.clockEdge(cycles);
serial_link.schedule(sendEvent, std::max(next_resp.tick, t));
}
// if there is space in the request queue and we were stalling
// a request, it will definitely be possible to accept it now
// since there is guaranteed space in the response queue
if (!masterPort.reqQueueFull() && retryReq) {
DPRINTF(SerialLink, "Request waiting for retry, now retrying\n");
retryReq = false;
sendRetryReq();
}
}
// if the send failed, then we try again once we receive a retry,
// and therefore there is no need to take any action
}
void
SerialLink::SerialLinkMasterPort::recvReqRetry()
{
trySendTiming();
}
void
SerialLink::SerialLinkSlavePort::recvRespRetry()
{
trySendTiming();
}
Tick
SerialLink::SerialLinkSlavePort::recvAtomic(PacketPtr pkt)
{
return delay * serial_link.clockPeriod() + masterPort.sendAtomic(pkt);
}
void
SerialLink::SerialLinkSlavePort::recvFunctional(PacketPtr pkt)
{
pkt->pushLabel(name());
// check the response queue
for (auto i = transmitList.begin(); i != transmitList.end(); ++i) {
if (pkt->checkFunctional((*i).pkt)) {
pkt->makeResponse();
return;
}
}
// also check the master port's request queue
if (masterPort.checkFunctional(pkt)) {
return;
}
pkt->popLabel();
// fall through if pkt still not satisfied
masterPort.sendFunctional(pkt);
}
bool
SerialLink::SerialLinkMasterPort::checkFunctional(PacketPtr pkt)
{
bool found = false;
auto i = transmitList.begin();
while (i != transmitList.end() && !found) {
if (pkt->checkFunctional((*i).pkt)) {
pkt->makeResponse();
found = true;
}
++i;
}
return found;
}
AddrRangeList
SerialLink::SerialLinkSlavePort::getAddrRanges() const
{
return ranges;
}
SerialLink *
SerialLinkParams::create()
{
return new SerialLink(this);
}
|