1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
|
/*
* Copyright (c) 2011-2013 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2006 The Regents of The University of Michigan
* Copyright (c) 2015 The University of Bologna
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ali Saidi
* Steve Reinhardt
* Andreas Hansson
* Erfan Azarkhish
*/
/**
* @file
* Declaration of the SerialLink Class, modeling Hybrid-Memory-Cube's serial
* interface.
*/
#ifndef __MEM_SERIAL_LINK_HH__
#define __MEM_SERIAL_LINK_HH__
#include <deque>
#include "base/types.hh"
#include "mem/mem_object.hh"
#include "params/SerialLink.hh"
/**
* SerialLink is a simple variation of the Bridge class, with the ability to
* account for the latency of packet serialization. We assume that the
* serializer component at the transmitter side does not need to receive the
* whole packet to start the serialization. But the deserializer waits for the
* complete packet to check its integrity first.
*/
class SerialLink : public MemObject
{
protected:
/**
* A deferred packet stores a packet along with its scheduled
* transmission time
*/
class DeferredPacket
{
public:
const Tick tick;
const PacketPtr pkt;
DeferredPacket(PacketPtr _pkt, Tick _tick) : tick(_tick), pkt(_pkt)
{ }
};
// Forward declaration to allow the slave port to have a pointer
class SerialLinkMasterPort;
/**
* The port on the side that receives requests and sends
* responses. The slave port has a set of address ranges that it
* is responsible for. The slave port also has a buffer for the
* responses not yet sent.
*/
class SerialLinkSlavePort : public SlavePort
{
private:
/** The serial_link to which this port belongs. */
SerialLink& serial_link;
/**
* Master port on the other side of the serial_link.
*/
SerialLinkMasterPort& masterPort;
/** Minimum request delay though this serial_link. */
const Cycles delay;
/** Address ranges to pass through the serial_link */
const AddrRangeList ranges;
/**
* Response packet queue. Response packets are held in this
* queue for a specified delay to model the processing delay
* of the serial_link. We use a deque as we need to iterate over
* the items for functional accesses.
*/
std::deque<DeferredPacket> transmitList;
/** Counter to track the outstanding responses. */
unsigned int outstandingResponses;
/** If we should send a retry when space becomes available. */
bool retryReq;
/** Max queue size for reserved responses. */
unsigned int respQueueLimit;
/**
* Is this side blocked from accepting new response packets.
*
* @return true if the reserved space has reached the set limit
*/
bool respQueueFull() const;
/**
* Handle send event, scheduled when the packet at the head of
* the response queue is ready to transmit (for timing
* accesses only).
*/
void trySendTiming();
/** Send event for the response queue. */
EventFunctionWrapper sendEvent;
public:
/**
* Constructor for the SerialLinkSlavePort.
*
* @param _name the port name including the owner
* @param _serial_link the structural owner
* @param _masterPort the master port on the other side of the
* serial_link
* @param _delay the delay in cycles from receiving to sending
* @param _resp_limit the size of the response queue
* @param _ranges a number of address ranges to forward
*/
SerialLinkSlavePort(const std::string& _name, SerialLink&
_serial_link, SerialLinkMasterPort& _masterPort,
Cycles _delay, int _resp_limit, const
std::vector<AddrRange>& _ranges);
/**
* Queue a response packet to be sent out later and also schedule
* a send if necessary.
*
* @param pkt a response to send out after a delay
* @param when tick when response packet should be sent
*/
void schedTimingResp(PacketPtr pkt, Tick when);
/**
* Retry any stalled request that we have failed to accept at
* an earlier point in time. This call will do nothing if no
* request is waiting.
*/
void retryStalledReq();
protected:
/** When receiving a timing request from the peer port,
pass it to the serial_link. */
bool recvTimingReq(PacketPtr pkt);
/** When receiving a retry request from the peer port,
pass it to the serial_link. */
void recvRespRetry();
/** When receiving a Atomic requestfrom the peer port,
pass it to the serial_link. */
Tick recvAtomic(PacketPtr pkt);
/** When receiving a Functional request from the peer port,
pass it to the serial_link. */
void recvFunctional(PacketPtr pkt);
/** When receiving a address range request the peer port,
pass it to the serial_link. */
AddrRangeList getAddrRanges() const;
};
/**
* Port on the side that forwards requests and receives
* responses. The master port has a buffer for the requests not
* yet sent.
*/
class SerialLinkMasterPort : public MasterPort
{
private:
/** The serial_link to which this port belongs. */
SerialLink& serial_link;
/**
* The slave port on the other side of the serial_link.
*/
SerialLinkSlavePort& slavePort;
/** Minimum delay though this serial_link. */
const Cycles delay;
/**
* Request packet queue. Request packets are held in this
* queue for a specified delay to model the processing delay
* of the serial_link. We use a deque as we need to iterate over
* the items for functional accesses.
*/
std::deque<DeferredPacket> transmitList;
/** Max queue size for request packets */
const unsigned int reqQueueLimit;
/**
* Handle send event, scheduled when the packet at the head of
* the outbound queue is ready to transmit (for timing
* accesses only).
*/
void trySendTiming();
/** Send event for the request queue. */
EventFunctionWrapper sendEvent;
public:
/**
* Constructor for the SerialLinkMasterPort.
*
* @param _name the port name including the owner
* @param _serial_link the structural owner
* @param _slavePort the slave port on the other side of the
* serial_link
* @param _delay the delay in cycles from receiving to sending
* @param _req_limit the size of the request queue
*/
SerialLinkMasterPort(const std::string& _name, SerialLink&
_serial_link, SerialLinkSlavePort& _slavePort, Cycles
_delay, int _req_limit);
/**
* Is this side blocked from accepting new request packets.
*
* @return true if the occupied space has reached the set limit
*/
bool reqQueueFull() const;
/**
* Queue a request packet to be sent out later and also schedule
* a send if necessary.
*
* @param pkt a request to send out after a delay
* @param when tick when response packet should be sent
*/
void schedTimingReq(PacketPtr pkt, Tick when);
/**
* Check a functional request against the packets in our
* request queue.
*
* @param pkt packet to check against
*
* @return true if we find a match
*/
bool checkFunctional(PacketPtr pkt);
protected:
/** When receiving a timing request from the peer port,
pass it to the serial_link. */
bool recvTimingResp(PacketPtr pkt);
/** When receiving a retry request from the peer port,
pass it to the serial_link. */
void recvReqRetry();
};
/** Slave port of the serial_link. */
SerialLinkSlavePort slavePort;
/** Master port of the serial_link. */
SerialLinkMasterPort masterPort;
/** Number of parallel lanes in this serial link */
unsigned num_lanes;
/** Speed of each link (Gb/s) in this serial link */
uint64_t link_speed;
public:
virtual BaseMasterPort& getMasterPort(const std::string& if_name,
PortID idx = InvalidPortID);
virtual BaseSlavePort& getSlavePort(const std::string& if_name,
PortID idx = InvalidPortID);
virtual void init();
typedef SerialLinkParams Params;
SerialLink(SerialLinkParams *p);
};
#endif //__MEM_SERIAL_LINK_HH__
|