1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
|
/*
* Copyright (c) 2010-2013 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2013 Amin Farmahini-Farahani
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Andreas Hansson
* Ani Udipi
* Neha Agarwal
*/
#include "base/trace.hh"
#include "base/bitfield.hh"
#include "debug/Drain.hh"
#include "debug/DRAM.hh"
#include "mem/simple_dram.hh"
#include "sim/system.hh"
using namespace std;
SimpleDRAM::SimpleDRAM(const SimpleDRAMParams* p) :
AbstractMemory(p),
port(name() + ".port", *this),
retryRdReq(false), retryWrReq(false),
rowHitFlag(false), stopReads(false),
writeEvent(this), respondEvent(this),
refreshEvent(this), nextReqEvent(this), drainManager(NULL),
deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
deviceRowBufferSize(p->device_rowbuffer_size),
devicesPerRank(p->devices_per_rank),
burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
rowBufferSize(devicesPerRank * deviceRowBufferSize),
ranksPerChannel(p->ranks_per_channel),
banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
readBufferSize(p->read_buffer_size),
writeBufferSize(p->write_buffer_size),
writeHighThresholdPerc(p->write_high_thresh_perc),
writeLowThresholdPerc(p->write_low_thresh_perc),
tWTR(p->tWTR), tBURST(p->tBURST),
tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
tXAW(p->tXAW), activationLimit(p->activation_limit),
memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
pageMgmt(p->page_policy),
frontendLatency(p->static_frontend_latency),
backendLatency(p->static_backend_latency),
busBusyUntil(0), writeStartTime(0),
prevArrival(0), numReqs(0),
numWritesThisTime(0), newTime(0)
{
// create the bank states based on the dimensions of the ranks and
// banks
banks.resize(ranksPerChannel);
actTicks.resize(ranksPerChannel);
for (size_t c = 0; c < ranksPerChannel; ++c) {
banks[c].resize(banksPerRank);
actTicks[c].resize(activationLimit, 0);
}
// round the write thresholds percent to a whole number of entries
// in the buffer.
writeHighThreshold = writeBufferSize * writeHighThresholdPerc / 100.0;
writeLowThreshold = writeBufferSize * writeLowThresholdPerc / 100.0;
}
void
SimpleDRAM::init()
{
if (!port.isConnected()) {
fatal("SimpleDRAM %s is unconnected!\n", name());
} else {
port.sendRangeChange();
}
// we could deal with plenty options here, but for now do a quick
// sanity check
DPRINTF(DRAM, "Burst size %d bytes\n", burstSize);
// determine the rows per bank by looking at the total capacity
uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
AbstractMemory::size());
columnsPerRowBuffer = rowBufferSize / burstSize;
DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
rowBufferSize, columnsPerRowBuffer);
rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
if (range.interleaved()) {
if (channels != range.stripes())
panic("%s has %d interleaved address stripes but %d channel(s)\n",
name(), range.stripes(), channels);
if (addrMapping == Enums::RaBaChCo) {
if (rowBufferSize != range.granularity()) {
panic("Interleaving of %s doesn't match RaBaChCo address map\n",
name());
}
} else if (addrMapping == Enums::RaBaCoCh) {
if (burstSize != range.granularity()) {
panic("Interleaving of %s doesn't match RaBaCoCh address map\n",
name());
}
} else if (addrMapping == Enums::CoRaBaCh) {
if (burstSize != range.granularity())
panic("Interleaving of %s doesn't match CoRaBaCh address map\n",
name());
}
}
}
void
SimpleDRAM::startup()
{
// print the configuration of the controller
printParams();
// kick off the refresh
schedule(refreshEvent, curTick() + tREFI);
}
Tick
SimpleDRAM::recvAtomic(PacketPtr pkt)
{
DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
// do the actual memory access and turn the packet into a response
access(pkt);
Tick latency = 0;
if (!pkt->memInhibitAsserted() && pkt->hasData()) {
// this value is not supposed to be accurate, just enough to
// keep things going, mimic a closed page
latency = tRP + tRCD + tCL;
}
return latency;
}
bool
SimpleDRAM::readQueueFull(unsigned int neededEntries) const
{
DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
readBufferSize, readQueue.size() + respQueue.size(),
neededEntries);
return
(readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
}
bool
SimpleDRAM::writeQueueFull(unsigned int neededEntries) const
{
DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
writeBufferSize, writeQueue.size(), neededEntries);
return (writeQueue.size() + neededEntries) > writeBufferSize;
}
SimpleDRAM::DRAMPacket*
SimpleDRAM::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size, bool isRead)
{
// decode the address based on the address mapping scheme, with
// Ra, Co, Ba and Ch denoting rank, column, bank and channel,
// respectively
uint8_t rank;
uint8_t bank;
uint16_t row;
// truncate the address to the access granularity
Addr addr = dramPktAddr / burstSize;
// we have removed the lowest order address bits that denote the
// position within the column
if (addrMapping == Enums::RaBaChCo) {
// the lowest order bits denote the column to ensure that
// sequential cache lines occupy the same row
addr = addr / columnsPerRowBuffer;
// take out the channel part of the address
addr = addr / channels;
// after the channel bits, get the bank bits to interleave
// over the banks
bank = addr % banksPerRank;
addr = addr / banksPerRank;
// after the bank, we get the rank bits which thus interleaves
// over the ranks
rank = addr % ranksPerChannel;
addr = addr / ranksPerChannel;
// lastly, get the row bits
row = addr % rowsPerBank;
addr = addr / rowsPerBank;
} else if (addrMapping == Enums::RaBaCoCh) {
// take out the channel part of the address
addr = addr / channels;
// next, the column
addr = addr / columnsPerRowBuffer;
// after the column bits, we get the bank bits to interleave
// over the banks
bank = addr % banksPerRank;
addr = addr / banksPerRank;
// after the bank, we get the rank bits which thus interleaves
// over the ranks
rank = addr % ranksPerChannel;
addr = addr / ranksPerChannel;
// lastly, get the row bits
row = addr % rowsPerBank;
addr = addr / rowsPerBank;
} else if (addrMapping == Enums::CoRaBaCh) {
// optimise for closed page mode and utilise maximum
// parallelism of the DRAM (at the cost of power)
// take out the channel part of the address, not that this has
// to match with how accesses are interleaved between the
// controllers in the address mapping
addr = addr / channels;
// start with the bank bits, as this provides the maximum
// opportunity for parallelism between requests
bank = addr % banksPerRank;
addr = addr / banksPerRank;
// next get the rank bits
rank = addr % ranksPerChannel;
addr = addr / ranksPerChannel;
// next the column bits which we do not need to keep track of
// and simply skip past
addr = addr / columnsPerRowBuffer;
// lastly, get the row bits
row = addr % rowsPerBank;
addr = addr / rowsPerBank;
} else
panic("Unknown address mapping policy chosen!");
assert(rank < ranksPerChannel);
assert(bank < banksPerRank);
assert(row < rowsPerBank);
DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
dramPktAddr, rank, bank, row);
// create the corresponding DRAM packet with the entry time and
// ready time set to the current tick, the latter will be updated
// later
uint16_t bank_id = banksPerRank * rank + bank;
return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
size, banks[rank][bank]);
}
void
SimpleDRAM::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
{
// only add to the read queue here. whenever the request is
// eventually done, set the readyTime, and call schedule()
assert(!pkt->isWrite());
assert(pktCount != 0);
// if the request size is larger than burst size, the pkt is split into
// multiple DRAM packets
// Note if the pkt starting address is not aligened to burst size, the
// address of first DRAM packet is kept unaliged. Subsequent DRAM packets
// are aligned to burst size boundaries. This is to ensure we accurately
// check read packets against packets in write queue.
Addr addr = pkt->getAddr();
unsigned pktsServicedByWrQ = 0;
BurstHelper* burst_helper = NULL;
for (int cnt = 0; cnt < pktCount; ++cnt) {
unsigned size = std::min((addr | (burstSize - 1)) + 1,
pkt->getAddr() + pkt->getSize()) - addr;
readPktSize[ceilLog2(size)]++;
readBursts++;
// First check write buffer to see if the data is already at
// the controller
bool foundInWrQ = false;
for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
// check if the read is subsumed in the write entry we are
// looking at
if ((*i)->addr <= addr &&
(addr + size) <= ((*i)->addr + (*i)->size)) {
foundInWrQ = true;
servicedByWrQ++;
pktsServicedByWrQ++;
DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
"write queue\n", addr, size);
bytesRead += burstSize;
bytesConsumedRd += size;
break;
}
}
// If not found in the write q, make a DRAM packet and
// push it onto the read queue
if (!foundInWrQ) {
// Make the burst helper for split packets
if (pktCount > 1 && burst_helper == NULL) {
DPRINTF(DRAM, "Read to addr %lld translates to %d "
"dram requests\n", pkt->getAddr(), pktCount);
burst_helper = new BurstHelper(pktCount);
}
DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
dram_pkt->burstHelper = burst_helper;
assert(!readQueueFull(1));
rdQLenPdf[readQueue.size() + respQueue.size()]++;
DPRINTF(DRAM, "Adding to read queue\n");
readQueue.push_back(dram_pkt);
// Update stats
assert(dram_pkt->bankId < ranksPerChannel * banksPerRank);
perBankRdReqs[dram_pkt->bankId]++;
avgRdQLen = readQueue.size() + respQueue.size();
}
// Starting address of next dram pkt (aligend to burstSize boundary)
addr = (addr | (burstSize - 1)) + 1;
}
// If all packets are serviced by write queue, we send the repsonse back
if (pktsServicedByWrQ == pktCount) {
accessAndRespond(pkt, frontendLatency);
return;
}
// Update how many split packets are serviced by write queue
if (burst_helper != NULL)
burst_helper->burstsServiced = pktsServicedByWrQ;
// If we are not already scheduled to get the read request out of
// the queue, do so now
if (!nextReqEvent.scheduled() && !stopReads) {
DPRINTF(DRAM, "Request scheduled immediately\n");
schedule(nextReqEvent, curTick());
}
}
void
SimpleDRAM::processWriteEvent()
{
assert(!writeQueue.empty());
DPRINTF(DRAM, "Beginning DRAM Write\n");
Tick temp1 M5_VAR_USED = std::max(curTick(), busBusyUntil);
Tick temp2 M5_VAR_USED = std::max(curTick(), maxBankFreeAt());
chooseNextWrite();
DRAMPacket* dram_pkt = writeQueue.front();
// sanity check
assert(dram_pkt->size <= burstSize);
doDRAMAccess(dram_pkt);
writeQueue.pop_front();
delete dram_pkt;
numWritesThisTime++;
DPRINTF(DRAM, "Completed %d writes, bus busy for %lld ticks,"\
"banks busy for %lld ticks\n", numWritesThisTime,
busBusyUntil - temp1, maxBankFreeAt() - temp2);
// Update stats
avgWrQLen = writeQueue.size();
if (numWritesThisTime >= writeHighThreshold) {
DPRINTF(DRAM, "Hit write threshold %d\n", writeHighThreshold);
}
// If number of writes in the queue fall below the low thresholds and
// read queue is not empty then schedule a request event else continue
// with writes. The retry above could already have caused it to be
// scheduled, so first check
if (((writeQueue.size() <= writeLowThreshold) && !readQueue.empty()) ||
writeQueue.empty()) {
numWritesThisTime = 0;
// turn the bus back around for reads again
busBusyUntil += tWTR;
stopReads = false;
if (!nextReqEvent.scheduled())
schedule(nextReqEvent, busBusyUntil);
} else {
assert(!writeEvent.scheduled());
DPRINTF(DRAM, "Next write scheduled at %lld\n", newTime);
schedule(writeEvent, newTime);
}
if (retryWrReq) {
retryWrReq = false;
port.sendRetry();
}
// if there is nothing left in any queue, signal a drain
if (writeQueue.empty() && readQueue.empty() &&
respQueue.empty () && drainManager) {
drainManager->signalDrainDone();
drainManager = NULL;
}
}
void
SimpleDRAM::triggerWrites()
{
DPRINTF(DRAM, "Writes triggered at %lld\n", curTick());
// Flag variable to stop any more read scheduling
stopReads = true;
writeStartTime = std::max(busBusyUntil, curTick()) + tWTR;
DPRINTF(DRAM, "Writes scheduled at %lld\n", writeStartTime);
assert(writeStartTime >= curTick());
assert(!writeEvent.scheduled());
schedule(writeEvent, writeStartTime);
}
void
SimpleDRAM::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
{
// only add to the write queue here. whenever the request is
// eventually done, set the readyTime, and call schedule()
assert(pkt->isWrite());
// if the request size is larger than burst size, the pkt is split into
// multiple DRAM packets
Addr addr = pkt->getAddr();
for (int cnt = 0; cnt < pktCount; ++cnt) {
unsigned size = std::min((addr | (burstSize - 1)) + 1,
pkt->getAddr() + pkt->getSize()) - addr;
writePktSize[ceilLog2(size)]++;
writeBursts++;
// see if we can merge with an existing item in the write
// queue and keep track of whether we have merged or not so we
// can stop at that point and also avoid enqueueing a new
// request
bool merged = false;
auto w = writeQueue.begin();
while(!merged && w != writeQueue.end()) {
// either of the two could be first, if they are the same
// it does not matter which way we go
if ((*w)->addr >= addr) {
// the existing one starts after the new one, figure
// out where the new one ends with respect to the
// existing one
if ((addr + size) >= ((*w)->addr + (*w)->size)) {
// check if the existing one is completely
// subsumed in the new one
DPRINTF(DRAM, "Merging write covering existing burst\n");
merged = true;
// update both the address and the size
(*w)->addr = addr;
(*w)->size = size;
} else if ((addr + size) >= (*w)->addr &&
((*w)->addr + (*w)->size - addr) <= burstSize) {
// the new one is just before or partially
// overlapping with the existing one, and together
// they fit within a burst
DPRINTF(DRAM, "Merging write before existing burst\n");
merged = true;
// the existing queue item needs to be adjusted with
// respect to both address and size
(*w)->addr = addr;
(*w)->size = (*w)->addr + (*w)->size - addr;
}
} else {
// the new one starts after the current one, figure
// out where the existing one ends with respect to the
// new one
if (((*w)->addr + (*w)->size) >= (addr + size)) {
// check if the new one is completely subsumed in the
// existing one
DPRINTF(DRAM, "Merging write into existing burst\n");
merged = true;
// no adjustments necessary
} else if (((*w)->addr + (*w)->size) >= addr &&
(addr + size - (*w)->addr) <= burstSize) {
// the existing one is just before or partially
// overlapping with the new one, and together
// they fit within a burst
DPRINTF(DRAM, "Merging write after existing burst\n");
merged = true;
// the address is right, and only the size has
// to be adjusted
(*w)->size = addr + size - (*w)->addr;
}
}
++w;
}
// if the item was not merged we need to create a new write
// and enqueue it
if (!merged) {
DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
assert(writeQueue.size() < writeBufferSize);
wrQLenPdf[writeQueue.size()]++;
DPRINTF(DRAM, "Adding to write queue\n");
writeQueue.push_back(dram_pkt);
// Update stats
assert(dram_pkt->bankId < ranksPerChannel * banksPerRank);
perBankWrReqs[dram_pkt->bankId]++;
avgWrQLen = writeQueue.size();
}
bytesConsumedWr += size;
bytesWritten += burstSize;
// Starting address of next dram pkt (aligend to burstSize boundary)
addr = (addr | (burstSize - 1)) + 1;
}
// we do not wait for the writes to be send to the actual memory,
// but instead take responsibility for the consistency here and
// snoop the write queue for any upcoming reads
// @todo, if a pkt size is larger than burst size, we might need a
// different front end latency
accessAndRespond(pkt, frontendLatency);
// If your write buffer is starting to fill up, drain it!
if (writeQueue.size() >= writeHighThreshold && !stopReads){
triggerWrites();
}
}
void
SimpleDRAM::printParams() const
{
// Sanity check print of important parameters
DPRINTF(DRAM,
"Memory controller %s physical organization\n" \
"Number of devices per rank %d\n" \
"Device bus width (in bits) %d\n" \
"DRAM data bus burst %d\n" \
"Row buffer size %d\n" \
"Columns per row buffer %d\n" \
"Rows per bank %d\n" \
"Banks per rank %d\n" \
"Ranks per channel %d\n" \
"Total mem capacity %u\n",
name(), devicesPerRank, deviceBusWidth, burstSize, rowBufferSize,
columnsPerRowBuffer, rowsPerBank, banksPerRank, ranksPerChannel,
rowBufferSize * rowsPerBank * banksPerRank * ranksPerChannel);
string scheduler = memSchedPolicy == Enums::fcfs ? "FCFS" : "FR-FCFS";
string address_mapping = addrMapping == Enums::RaBaChCo ? "RaBaChCo" :
(addrMapping == Enums::RaBaCoCh ? "RaBaCoCh" : "CoRaBaCh");
string page_policy = pageMgmt == Enums::open ? "OPEN" : "CLOSE";
DPRINTF(DRAM,
"Memory controller %s characteristics\n" \
"Read buffer size %d\n" \
"Write buffer size %d\n" \
"Write buffer thresh %d\n" \
"Scheduler %s\n" \
"Address mapping %s\n" \
"Page policy %s\n",
name(), readBufferSize, writeBufferSize, writeHighThreshold,
scheduler, address_mapping, page_policy);
DPRINTF(DRAM, "Memory controller %s timing specs\n" \
"tRCD %d ticks\n" \
"tCL %d ticks\n" \
"tRP %d ticks\n" \
"tBURST %d ticks\n" \
"tRFC %d ticks\n" \
"tREFI %d ticks\n" \
"tWTR %d ticks\n" \
"tXAW (%d) %d ticks\n",
name(), tRCD, tCL, tRP, tBURST, tRFC, tREFI, tWTR,
activationLimit, tXAW);
}
void
SimpleDRAM::printQs() const {
DPRINTF(DRAM, "===READ QUEUE===\n\n");
for (auto i = readQueue.begin() ; i != readQueue.end() ; ++i) {
DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
}
DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
for (auto i = respQueue.begin() ; i != respQueue.end() ; ++i) {
DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
}
DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
for (auto i = writeQueue.begin() ; i != writeQueue.end() ; ++i) {
DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
}
}
bool
SimpleDRAM::recvTimingReq(PacketPtr pkt)
{
/// @todo temporary hack to deal with memory corruption issues until
/// 4-phase transactions are complete
for (int x = 0; x < pendingDelete.size(); x++)
delete pendingDelete[x];
pendingDelete.clear();
// This is where we enter from the outside world
DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
pkt->cmdString(), pkt->getAddr(), pkt->getSize());
// simply drop inhibited packets for now
if (pkt->memInhibitAsserted()) {
DPRINTF(DRAM,"Inhibited packet -- Dropping it now\n");
pendingDelete.push_back(pkt);
return true;
}
// Every million accesses, print the state of the queues
if (numReqs % 1000000 == 0)
printQs();
// Calc avg gap between requests
if (prevArrival != 0) {
totGap += curTick() - prevArrival;
}
prevArrival = curTick();
// Find out how many dram packets a pkt translates to
// If the burst size is equal or larger than the pkt size, then a pkt
// translates to only one dram packet. Otherwise, a pkt translates to
// multiple dram packets
unsigned size = pkt->getSize();
unsigned offset = pkt->getAddr() & (burstSize - 1);
unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
// check local buffers and do not accept if full
if (pkt->isRead()) {
assert(size != 0);
if (readQueueFull(dram_pkt_count)) {
DPRINTF(DRAM, "Read queue full, not accepting\n");
// remember that we have to retry this port
retryRdReq = true;
numRdRetry++;
return false;
} else {
addToReadQueue(pkt, dram_pkt_count);
readReqs++;
numReqs++;
}
} else if (pkt->isWrite()) {
assert(size != 0);
if (writeQueueFull(dram_pkt_count)) {
DPRINTF(DRAM, "Write queue full, not accepting\n");
// remember that we have to retry this port
retryWrReq = true;
numWrRetry++;
return false;
} else {
addToWriteQueue(pkt, dram_pkt_count);
writeReqs++;
numReqs++;
}
} else {
DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
neitherReadNorWrite++;
accessAndRespond(pkt, 1);
}
retryRdReq = false;
retryWrReq = false;
return true;
}
void
SimpleDRAM::processRespondEvent()
{
DPRINTF(DRAM,
"processRespondEvent(): Some req has reached its readyTime\n");
DRAMPacket* dram_pkt = respQueue.front();
// Actually responds to the requestor
bytesConsumedRd += dram_pkt->size;
bytesRead += burstSize;
if (dram_pkt->burstHelper) {
// it is a split packet
dram_pkt->burstHelper->burstsServiced++;
if (dram_pkt->burstHelper->burstsServiced ==
dram_pkt->burstHelper->burstCount) {
// we have now serviced all children packets of a system packet
// so we can now respond to the requester
// @todo we probably want to have a different front end and back
// end latency for split packets
accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
delete dram_pkt->burstHelper;
dram_pkt->burstHelper = NULL;
}
} else {
// it is not a split packet
accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
}
delete respQueue.front();
respQueue.pop_front();
// Update stats
avgRdQLen = readQueue.size() + respQueue.size();
if (!respQueue.empty()) {
assert(respQueue.front()->readyTime >= curTick());
assert(!respondEvent.scheduled());
schedule(respondEvent, respQueue.front()->readyTime);
} else {
// if there is nothing left in any queue, signal a drain
if (writeQueue.empty() && readQueue.empty() &&
drainManager) {
drainManager->signalDrainDone();
drainManager = NULL;
}
}
// We have made a location in the queue available at this point,
// so if there is a read that was forced to wait, retry now
if (retryRdReq) {
retryRdReq = false;
port.sendRetry();
}
}
void
SimpleDRAM::chooseNextWrite()
{
// This method does the arbitration between write requests. The
// chosen packet is simply moved to the head of the write
// queue. The other methods know that this is the place to
// look. For example, with FCFS, this method does nothing
assert(!writeQueue.empty());
if (writeQueue.size() == 1) {
DPRINTF(DRAM, "Single write request, nothing to do\n");
return;
}
if (memSchedPolicy == Enums::fcfs) {
// Do nothing, since the correct request is already head
} else if (memSchedPolicy == Enums::frfcfs) {
// Only determine bank availability when needed
uint64_t earliest_banks = 0;
auto i = writeQueue.begin();
bool foundRowHit = false;
while (!foundRowHit && i != writeQueue.end()) {
DRAMPacket* dram_pkt = *i;
const Bank& bank = dram_pkt->bankRef;
if (bank.openRow == dram_pkt->row) {
DPRINTF(DRAM, "Write row buffer hit\n");
writeQueue.erase(i);
writeQueue.push_front(dram_pkt);
foundRowHit = true;
} else {
// No row hit, go for first ready
if (earliest_banks == 0)
earliest_banks = minBankFreeAt(writeQueue);
// Bank is ready or is one of the first available bank
if (bank.freeAt <= curTick() ||
bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
writeQueue.erase(i);
writeQueue.push_front(dram_pkt);
break;
}
}
++i;
}
} else
panic("No scheduling policy chosen\n");
DPRINTF(DRAM, "Selected next write request\n");
}
bool
SimpleDRAM::chooseNextRead()
{
// This method does the arbitration between read requests. The
// chosen packet is simply moved to the head of the queue. The
// other methods know that this is the place to look. For example,
// with FCFS, this method does nothing
if (readQueue.empty()) {
DPRINTF(DRAM, "No read request to select\n");
return false;
}
// If there is only one request then there is nothing left to do
if (readQueue.size() == 1)
return true;
if (memSchedPolicy == Enums::fcfs) {
// Do nothing, since the request to serve is already the first
// one in the read queue
} else if (memSchedPolicy == Enums::frfcfs) {
// Only determine this when needed
uint64_t earliest_banks = 0;
for (auto i = readQueue.begin(); i != readQueue.end() ; ++i) {
DRAMPacket* dram_pkt = *i;
const Bank& bank = dram_pkt->bankRef;
// Check if it is a row hit
if (bank.openRow == dram_pkt->row) {
DPRINTF(DRAM, "Row buffer hit\n");
readQueue.erase(i);
readQueue.push_front(dram_pkt);
break;
} else {
// No row hit, go for first ready
if (earliest_banks == 0)
earliest_banks = minBankFreeAt(readQueue);
// Bank is ready or is the first available bank
if (bank.freeAt <= curTick() ||
bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
readQueue.erase(i);
readQueue.push_front(dram_pkt);
break;
}
}
}
} else
panic("No scheduling policy chosen!\n");
DPRINTF(DRAM, "Selected next read request\n");
return true;
}
void
SimpleDRAM::accessAndRespond(PacketPtr pkt, Tick static_latency)
{
DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
bool needsResponse = pkt->needsResponse();
// do the actual memory access which also turns the packet into a
// response
access(pkt);
// turn packet around to go back to requester if response expected
if (needsResponse) {
// access already turned the packet into a response
assert(pkt->isResponse());
// @todo someone should pay for this
pkt->busFirstWordDelay = pkt->busLastWordDelay = 0;
// queue the packet in the response queue to be sent out after
// the static latency has passed
port.schedTimingResp(pkt, curTick() + static_latency);
} else {
// @todo the packet is going to be deleted, and the DRAMPacket
// is still having a pointer to it
pendingDelete.push_back(pkt);
}
DPRINTF(DRAM, "Done\n");
return;
}
pair<Tick, Tick>
SimpleDRAM::estimateLatency(DRAMPacket* dram_pkt, Tick inTime)
{
// If a request reaches a bank at tick 'inTime', how much time
// *after* that does it take to finish the request, depending
// on bank status and page open policy. Note that this method
// considers only the time taken for the actual read or write
// to complete, NOT any additional time thereafter for tRAS or
// tRP.
Tick accLat = 0;
Tick bankLat = 0;
rowHitFlag = false;
Tick potentialActTick;
const Bank& bank = dram_pkt->bankRef;
if (pageMgmt == Enums::open) { // open-page policy
if (bank.openRow == dram_pkt->row) {
// When we have a row-buffer hit,
// we don't care about tRAS having expired or not,
// but do care about bank being free for access
rowHitFlag = true;
// When a series of requests arrive to the same row,
// DDR systems are capable of streaming data continuously
// at maximum bandwidth (subject to tCCD). Here, we approximate
// this condition, and assume that if whenever a bank is already
// busy and a new request comes in, it can be completed with no
// penalty beyond waiting for the existing read to complete.
if (bank.freeAt > inTime) {
accLat += bank.freeAt - inTime;
bankLat += 0;
} else {
// CAS latency only
accLat += tCL;
bankLat += tCL;
}
} else {
// Row-buffer miss, need to close existing row
// once tRAS has expired, then open the new one,
// then add cas latency.
Tick freeTime = std::max(bank.tRASDoneAt, bank.freeAt);
if (freeTime > inTime)
accLat += freeTime - inTime;
//The bank is free, and you may be able to activate
potentialActTick = inTime + accLat + tRP;
if (potentialActTick < bank.actAllowedAt)
accLat += bank.actAllowedAt - potentialActTick;
accLat += tRP + tRCD + tCL;
bankLat += tRP + tRCD + tCL;
}
} else if (pageMgmt == Enums::close) {
// With a close page policy, no notion of
// bank.tRASDoneAt
if (bank.freeAt > inTime)
accLat += bank.freeAt - inTime;
//The bank is free, and you may be able to activate
potentialActTick = inTime + accLat;
if (potentialActTick < bank.actAllowedAt)
accLat += bank.actAllowedAt - potentialActTick;
// page already closed, simply open the row, and
// add cas latency
accLat += tRCD + tCL;
bankLat += tRCD + tCL;
} else
panic("No page management policy chosen\n");
DPRINTF(DRAM, "Returning < %lld, %lld > from estimateLatency()\n",
bankLat, accLat);
return make_pair(bankLat, accLat);
}
void
SimpleDRAM::processNextReqEvent()
{
scheduleNextReq();
}
void
SimpleDRAM::recordActivate(Tick act_tick, uint8_t rank, uint8_t bank)
{
assert(0 <= rank && rank < ranksPerChannel);
assert(actTicks[rank].size() == activationLimit);
DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
// start by enforcing tRRD
for(int i = 0; i < banksPerRank; i++) {
// next activate must not happen before tRRD
banks[rank][i].actAllowedAt = act_tick + tRRD;
}
// tRC should be added to activation tick of the bank currently accessed,
// where tRC = tRAS + tRP, this is just for a check as actAllowedAt for same
// bank is already captured by bank.freeAt and bank.tRASDoneAt
banks[rank][bank].actAllowedAt = act_tick + tRAS + tRP;
// next, we deal with tXAW, if the activation limit is disabled
// then we are done
if (actTicks[rank].empty())
return;
// sanity check
if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
// @todo For now, stick with a warning
warn("Got %d activates in window %d (%d - %d) which is smaller "
"than %d\n", activationLimit, act_tick - actTicks[rank].back(),
act_tick, actTicks[rank].back(), tXAW);
}
// shift the times used for the book keeping, the last element
// (highest index) is the oldest one and hence the lowest value
actTicks[rank].pop_back();
// record an new activation (in the future)
actTicks[rank].push_front(act_tick);
// cannot activate more than X times in time window tXAW, push the
// next one (the X + 1'st activate) to be tXAW away from the
// oldest in our window of X
if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier "
"than %d\n", activationLimit, actTicks[rank].back() + tXAW);
for(int j = 0; j < banksPerRank; j++)
// next activate must not happen before end of window
banks[rank][j].actAllowedAt = actTicks[rank].back() + tXAW;
}
}
void
SimpleDRAM::doDRAMAccess(DRAMPacket* dram_pkt)
{
DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
// estimate the bank and access latency
pair<Tick, Tick> lat = estimateLatency(dram_pkt, curTick());
Tick bankLat = lat.first;
Tick accessLat = lat.second;
Tick actTick;
// This request was woken up at this time based on a prior call
// to estimateLatency(). However, between then and now, both the
// accessLatency and/or busBusyUntil may have changed. We need
// to correct for that.
Tick addDelay = (curTick() + accessLat < busBusyUntil) ?
busBusyUntil - (curTick() + accessLat) : 0;
Bank& bank = dram_pkt->bankRef;
// Update bank state
if (pageMgmt == Enums::open) {
bank.openRow = dram_pkt->row;
bank.freeAt = curTick() + addDelay + accessLat;
bank.bytesAccessed += burstSize;
// If you activated a new row do to this access, the next access
// will have to respect tRAS for this bank.
if (!rowHitFlag) {
// any waiting for banks account for in freeAt
actTick = bank.freeAt - tCL - tRCD;
bank.tRASDoneAt = actTick + tRAS;
recordActivate(actTick, dram_pkt->rank, dram_pkt->bank);
// sample the number of bytes accessed and reset it as
// we are now closing this row
bytesPerActivate.sample(bank.bytesAccessed);
bank.bytesAccessed = 0;
}
DPRINTF(DRAM, "doDRAMAccess::bank.freeAt is %lld\n", bank.freeAt);
} else if (pageMgmt == Enums::close) {
actTick = curTick() + addDelay + accessLat - tRCD - tCL;
recordActivate(actTick, dram_pkt->rank, dram_pkt->bank);
// If the DRAM has a very quick tRAS, bank can be made free
// after consecutive tCL,tRCD,tRP times. In general, however,
// an additional wait is required to respect tRAS.
bank.freeAt = std::max(actTick + tRAS + tRP,
actTick + tRCD + tCL + tRP);
DPRINTF(DRAM, "doDRAMAccess::bank.freeAt is %lld\n", bank.freeAt);
bytesPerActivate.sample(burstSize);
} else
panic("No page management policy chosen\n");
// Update request parameters
dram_pkt->readyTime = curTick() + addDelay + accessLat + tBURST;
DPRINTF(DRAM, "Req %lld: curtick is %lld accessLat is %d " \
"readytime is %lld busbusyuntil is %lld. " \
"Scheduling at readyTime\n", dram_pkt->addr,
curTick(), accessLat, dram_pkt->readyTime, busBusyUntil);
// Make sure requests are not overlapping on the databus
assert (dram_pkt->readyTime - busBusyUntil >= tBURST);
// Update bus state
busBusyUntil = dram_pkt->readyTime;
DPRINTF(DRAM,"Access time is %lld\n",
dram_pkt->readyTime - dram_pkt->entryTime);
if (rowHitFlag) {
if(dram_pkt->isRead)
readRowHits++;
else
writeRowHits++;
}
// Update the minimum timing between the requests
newTime = (busBusyUntil > tRP + tRCD + tCL) ?
std::max(busBusyUntil - (tRP + tRCD + tCL), curTick()) : curTick();
// At this point, commonality between reads and writes ends.
// For writes, we are done since we long ago responded to the
// requestor. We also don't care about stats for writes. For
// reads, we still need to figure out respoding to the requestor,
// and capture stats.
if (!dram_pkt->isRead) {
return;
}
// Update stats
totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
totBankLat += bankLat;
totBusLat += tBURST;
totQLat += dram_pkt->readyTime - dram_pkt->entryTime - bankLat - tBURST;
// At this point we're done dealing with the request
// It will be moved to a separate response queue with a
// correct readyTime, and eventually be sent back at that
//time
moveToRespQ();
// Schedule the next read event
if (!nextReqEvent.scheduled() && !stopReads){
schedule(nextReqEvent, newTime);
} else {
if (newTime < nextReqEvent.when())
reschedule(nextReqEvent, newTime);
}
}
void
SimpleDRAM::moveToRespQ()
{
// Remove from read queue
DRAMPacket* dram_pkt = readQueue.front();
readQueue.pop_front();
// sanity check
assert(dram_pkt->size <= burstSize);
// Insert into response queue sorted by readyTime
// It will be sent back to the requestor at its
// readyTime
if (respQueue.empty()) {
respQueue.push_front(dram_pkt);
assert(!respondEvent.scheduled());
assert(dram_pkt->readyTime >= curTick());
schedule(respondEvent, dram_pkt->readyTime);
} else {
bool done = false;
auto i = respQueue.begin();
while (!done && i != respQueue.end()) {
if ((*i)->readyTime > dram_pkt->readyTime) {
respQueue.insert(i, dram_pkt);
done = true;
}
++i;
}
if (!done)
respQueue.push_back(dram_pkt);
assert(respondEvent.scheduled());
if (respQueue.front()->readyTime < respondEvent.when()) {
assert(respQueue.front()->readyTime >= curTick());
reschedule(respondEvent, respQueue.front()->readyTime);
}
}
}
void
SimpleDRAM::scheduleNextReq()
{
DPRINTF(DRAM, "Reached scheduleNextReq()\n");
// Figure out which read request goes next, and move it to the
// front of the read queue
if (!chooseNextRead()) {
// In the case there is no read request to go next, see if we
// are asked to drain, and if so trigger writes, this also
// ensures that if we hit the write limit we will do this
// multiple times until we are completely drained
if (drainManager && !writeQueue.empty() && !writeEvent.scheduled())
triggerWrites();
} else {
doDRAMAccess(readQueue.front());
}
}
Tick
SimpleDRAM::maxBankFreeAt() const
{
Tick banksFree = 0;
for(int i = 0; i < ranksPerChannel; i++)
for(int j = 0; j < banksPerRank; j++)
banksFree = std::max(banks[i][j].freeAt, banksFree);
return banksFree;
}
uint64_t
SimpleDRAM::minBankFreeAt(const deque<DRAMPacket*>& queue) const
{
uint64_t bank_mask = 0;
Tick freeAt = MaxTick;
// detemrine if we have queued transactions targetting the
// bank in question
vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
for (auto p = queue.begin(); p != queue.end(); ++p) {
got_waiting[(*p)->bankId] = true;
}
for (int i = 0; i < ranksPerChannel; i++) {
for (int j = 0; j < banksPerRank; j++) {
// if we have waiting requests for the bank, and it is
// amongst the first available, update the mask
if (got_waiting[i * banksPerRank + j] &&
banks[i][j].freeAt <= freeAt) {
// reset bank mask if new minimum is found
if (banks[i][j].freeAt < freeAt)
bank_mask = 0;
// set the bit corresponding to the available bank
uint8_t bit_index = i * ranksPerChannel + j;
replaceBits(bank_mask, bit_index, bit_index, 1);
freeAt = banks[i][j].freeAt;
}
}
}
return bank_mask;
}
void
SimpleDRAM::processRefreshEvent()
{
DPRINTF(DRAM, "Refreshing at tick %ld\n", curTick());
Tick banksFree = std::max(curTick(), maxBankFreeAt()) + tRFC;
for(int i = 0; i < ranksPerChannel; i++)
for(int j = 0; j < banksPerRank; j++)
banks[i][j].freeAt = banksFree;
schedule(refreshEvent, curTick() + tREFI);
}
void
SimpleDRAM::regStats()
{
using namespace Stats;
AbstractMemory::regStats();
readReqs
.name(name() + ".readReqs")
.desc("Total number of read requests accepted by DRAM controller");
writeReqs
.name(name() + ".writeReqs")
.desc("Total number of write requests accepted by DRAM controller");
readBursts
.name(name() + ".readBursts")
.desc("Total number of DRAM read bursts. "
"Each DRAM read request translates to either one or multiple "
"DRAM read bursts");
writeBursts
.name(name() + ".writeBursts")
.desc("Total number of DRAM write bursts. "
"Each DRAM write request translates to either one or multiple "
"DRAM write bursts");
servicedByWrQ
.name(name() + ".servicedByWrQ")
.desc("Number of DRAM read bursts serviced by write Q");
neitherReadNorWrite
.name(name() + ".neitherReadNorWrite")
.desc("Reqs where no action is needed");
perBankRdReqs
.init(banksPerRank * ranksPerChannel)
.name(name() + ".perBankRdReqs")
.desc("Track reads on a per bank basis");
perBankWrReqs
.init(banksPerRank * ranksPerChannel)
.name(name() + ".perBankWrReqs")
.desc("Track writes on a per bank basis");
avgRdQLen
.name(name() + ".avgRdQLen")
.desc("Average read queue length over time")
.precision(2);
avgWrQLen
.name(name() + ".avgWrQLen")
.desc("Average write queue length over time")
.precision(2);
totQLat
.name(name() + ".totQLat")
.desc("Total cycles spent in queuing delays");
totBankLat
.name(name() + ".totBankLat")
.desc("Total cycles spent in bank access");
totBusLat
.name(name() + ".totBusLat")
.desc("Total cycles spent in databus access");
totMemAccLat
.name(name() + ".totMemAccLat")
.desc("Sum of mem lat for all requests");
avgQLat
.name(name() + ".avgQLat")
.desc("Average queueing delay per request")
.precision(2);
avgQLat = totQLat / (readBursts - servicedByWrQ);
avgBankLat
.name(name() + ".avgBankLat")
.desc("Average bank access latency per request")
.precision(2);
avgBankLat = totBankLat / (readBursts - servicedByWrQ);
avgBusLat
.name(name() + ".avgBusLat")
.desc("Average bus latency per request")
.precision(2);
avgBusLat = totBusLat / (readBursts - servicedByWrQ);
avgMemAccLat
.name(name() + ".avgMemAccLat")
.desc("Average memory access latency")
.precision(2);
avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
numRdRetry
.name(name() + ".numRdRetry")
.desc("Number of times rd buffer was full causing retry");
numWrRetry
.name(name() + ".numWrRetry")
.desc("Number of times wr buffer was full causing retry");
readRowHits
.name(name() + ".readRowHits")
.desc("Number of row buffer hits during reads");
writeRowHits
.name(name() + ".writeRowHits")
.desc("Number of row buffer hits during writes");
readRowHitRate
.name(name() + ".readRowHitRate")
.desc("Row buffer hit rate for reads")
.precision(2);
readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
writeRowHitRate
.name(name() + ".writeRowHitRate")
.desc("Row buffer hit rate for writes")
.precision(2);
writeRowHitRate = (writeRowHits / writeBursts) * 100;
readPktSize
.init(ceilLog2(burstSize) + 1)
.name(name() + ".readPktSize")
.desc("Categorize read packet sizes");
writePktSize
.init(ceilLog2(burstSize) + 1)
.name(name() + ".writePktSize")
.desc("Categorize write packet sizes");
rdQLenPdf
.init(readBufferSize)
.name(name() + ".rdQLenPdf")
.desc("What read queue length does an incoming req see");
wrQLenPdf
.init(writeBufferSize)
.name(name() + ".wrQLenPdf")
.desc("What write queue length does an incoming req see");
bytesPerActivate
.init(rowBufferSize)
.name(name() + ".bytesPerActivate")
.desc("Bytes accessed per row activation")
.flags(nozero);
bytesRead
.name(name() + ".bytesRead")
.desc("Total number of bytes read from memory");
bytesWritten
.name(name() + ".bytesWritten")
.desc("Total number of bytes written to memory");
bytesConsumedRd
.name(name() + ".bytesConsumedRd")
.desc("bytesRead derated as per pkt->getSize()");
bytesConsumedWr
.name(name() + ".bytesConsumedWr")
.desc("bytesWritten derated as per pkt->getSize()");
avgRdBW
.name(name() + ".avgRdBW")
.desc("Average achieved read bandwidth in MB/s")
.precision(2);
avgRdBW = (bytesRead / 1000000) / simSeconds;
avgWrBW
.name(name() + ".avgWrBW")
.desc("Average achieved write bandwidth in MB/s")
.precision(2);
avgWrBW = (bytesWritten / 1000000) / simSeconds;
avgConsumedRdBW
.name(name() + ".avgConsumedRdBW")
.desc("Average consumed read bandwidth in MB/s")
.precision(2);
avgConsumedRdBW = (bytesConsumedRd / 1000000) / simSeconds;
avgConsumedWrBW
.name(name() + ".avgConsumedWrBW")
.desc("Average consumed write bandwidth in MB/s")
.precision(2);
avgConsumedWrBW = (bytesConsumedWr / 1000000) / simSeconds;
peakBW
.name(name() + ".peakBW")
.desc("Theoretical peak bandwidth in MB/s")
.precision(2);
peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
busUtil
.name(name() + ".busUtil")
.desc("Data bus utilization in percentage")
.precision(2);
busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
totGap
.name(name() + ".totGap")
.desc("Total gap between requests");
avgGap
.name(name() + ".avgGap")
.desc("Average gap between requests")
.precision(2);
avgGap = totGap / (readReqs + writeReqs);
}
void
SimpleDRAM::recvFunctional(PacketPtr pkt)
{
// rely on the abstract memory
functionalAccess(pkt);
}
BaseSlavePort&
SimpleDRAM::getSlavePort(const string &if_name, PortID idx)
{
if (if_name != "port") {
return MemObject::getSlavePort(if_name, idx);
} else {
return port;
}
}
unsigned int
SimpleDRAM::drain(DrainManager *dm)
{
unsigned int count = port.drain(dm);
// if there is anything in any of our internal queues, keep track
// of that as well
if (!(writeQueue.empty() && readQueue.empty() &&
respQueue.empty())) {
DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
" resp: %d\n", writeQueue.size(), readQueue.size(),
respQueue.size());
++count;
drainManager = dm;
// the only part that is not drained automatically over time
// is the write queue, thus trigger writes if there are any
// waiting and no reads waiting, otherwise wait until the
// reads are done
if (readQueue.empty() && !writeQueue.empty() &&
!writeEvent.scheduled())
triggerWrites();
}
if (count)
setDrainState(Drainable::Draining);
else
setDrainState(Drainable::Drained);
return count;
}
SimpleDRAM::MemoryPort::MemoryPort(const std::string& name, SimpleDRAM& _memory)
: QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
memory(_memory)
{ }
AddrRangeList
SimpleDRAM::MemoryPort::getAddrRanges() const
{
AddrRangeList ranges;
ranges.push_back(memory.getAddrRange());
return ranges;
}
void
SimpleDRAM::MemoryPort::recvFunctional(PacketPtr pkt)
{
pkt->pushLabel(memory.name());
if (!queue.checkFunctional(pkt)) {
// Default implementation of SimpleTimingPort::recvFunctional()
// calls recvAtomic() and throws away the latency; we can save a
// little here by just not calculating the latency.
memory.recvFunctional(pkt);
}
pkt->popLabel();
}
Tick
SimpleDRAM::MemoryPort::recvAtomic(PacketPtr pkt)
{
return memory.recvAtomic(pkt);
}
bool
SimpleDRAM::MemoryPort::recvTimingReq(PacketPtr pkt)
{
// pass it to the memory controller
return memory.recvTimingReq(pkt);
}
SimpleDRAM*
SimpleDRAMParams::create()
{
return new SimpleDRAM(this);
}
|