summaryrefslogtreecommitdiff
path: root/src/mem/simple_mem.cc
blob: 4e1020de59c71eb5c490225567d9c9d8472a4f45 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
/*
 * Copyright (c) 2010-2013 ARM Limited
 * All rights reserved
 *
 * The license below extends only to copyright in the software and shall
 * not be construed as granting a license to any other intellectual
 * property including but not limited to intellectual property relating
 * to a hardware implementation of the functionality of the software
 * licensed hereunder.  You may use the software subject to the license
 * terms below provided that you ensure that this notice is replicated
 * unmodified and in its entirety in all distributions of the software,
 * modified or unmodified, in source code or in binary form.
 *
 * Copyright (c) 2001-2005 The Regents of The University of Michigan
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Ron Dreslinski
 *          Ali Saidi
 *          Andreas Hansson
 */

#include "base/random.hh"
#include "mem/simple_mem.hh"
#include "debug/Drain.hh"

using namespace std;

SimpleMemory::SimpleMemory(const SimpleMemoryParams* p) :
    AbstractMemory(p),
    port(name() + ".port", *this), latency(p->latency),
    latency_var(p->latency_var), bandwidth(p->bandwidth), isBusy(false),
    retryReq(false), retryResp(false),
    releaseEvent(this), dequeueEvent(this), drainManager(NULL)
{
}

void
SimpleMemory::init()
{
    AbstractMemory::init();

    // allow unconnected memories as this is used in several ruby
    // systems at the moment
    if (port.isConnected()) {
        port.sendRangeChange();
    }
}

Tick
SimpleMemory::recvAtomic(PacketPtr pkt)
{
    access(pkt);
    return pkt->memInhibitAsserted() ? 0 : getLatency();
}

void
SimpleMemory::recvFunctional(PacketPtr pkt)
{
    pkt->pushLabel(name());

    functionalAccess(pkt);

    bool done = false;
    auto p = packetQueue.begin();
    // potentially update the packets in our packet queue as well
    while (!done && p != packetQueue.end()) {
        done = pkt->checkFunctional(p->pkt);
        ++p;
    }

    pkt->popLabel();
}

bool
SimpleMemory::recvTimingReq(PacketPtr pkt)
{
    /// @todo temporary hack to deal with memory corruption issues until
    /// 4-phase transactions are complete
    for (int x = 0; x < pendingDelete.size(); x++)
        delete pendingDelete[x];
    pendingDelete.clear();

    if (pkt->memInhibitAsserted()) {
        // snooper will supply based on copy of packet
        // still target's responsibility to delete packet
        pendingDelete.push_back(pkt);
        return true;
    }

    // we should never get a new request after committing to retry the
    // current one, the bus violates the rule as it simply sends a
    // retry to the next one waiting on the retry list, so simply
    // ignore it
    if (retryReq)
        return false;

    // if we are busy with a read or write, remember that we have to
    // retry
    if (isBusy) {
        retryReq = true;
        return false;
    }

    // @todo someone should pay for this
    pkt->firstWordDelay = pkt->lastWordDelay = 0;

    // update the release time according to the bandwidth limit, and
    // do so with respect to the time it takes to finish this request
    // rather than long term as it is the short term data rate that is
    // limited for any real memory

    // only look at reads and writes when determining if we are busy,
    // and for how long, as it is not clear what to regulate for the
    // other types of commands
    if (pkt->isRead() || pkt->isWrite()) {
        // calculate an appropriate tick to release to not exceed
        // the bandwidth limit
        Tick duration = pkt->getSize() * bandwidth;

        // only consider ourselves busy if there is any need to wait
        // to avoid extra events being scheduled for (infinitely) fast
        // memories
        if (duration != 0) {
            schedule(releaseEvent, curTick() + duration);
            isBusy = true;
        }
    }

    // go ahead and deal with the packet and put the response in the
    // queue if there is one
    bool needsResponse = pkt->needsResponse();
    recvAtomic(pkt);
    // turn packet around to go back to requester if response expected
    if (needsResponse) {
        // recvAtomic() should already have turned packet into
        // atomic response
        assert(pkt->isResponse());
        // to keep things simple (and in order), we put the packet at
        // the end even if the latency suggests it should be sent
        // before the packet(s) before it
        packetQueue.push_back(DeferredPacket(pkt, curTick() + getLatency()));
        if (!retryResp && !dequeueEvent.scheduled())
            schedule(dequeueEvent, packetQueue.back().tick);
    } else {
        pendingDelete.push_back(pkt);
    }

    return true;
}

void
SimpleMemory::release()
{
    assert(isBusy);
    isBusy = false;
    if (retryReq) {
        retryReq = false;
        port.sendRetry();
    }
}

void
SimpleMemory::dequeue()
{
    assert(!packetQueue.empty());
    DeferredPacket deferred_pkt = packetQueue.front();

    retryResp = !port.sendTimingResp(deferred_pkt.pkt);

    if (!retryResp) {
        packetQueue.pop_front();

        // if the queue is not empty, schedule the next dequeue event,
        // otherwise signal that we are drained if we were asked to do so
        if (!packetQueue.empty()) {
            // if there were packets that got in-between then we
            // already have an event scheduled, so use re-schedule
            reschedule(dequeueEvent,
                       std::max(packetQueue.front().tick, curTick()), true);
        } else if (drainManager) {
            DPRINTF(Drain, "Drainng of SimpleMemory complete\n");
            drainManager->signalDrainDone();
            drainManager = NULL;
        }
    }
}

Tick
SimpleMemory::getLatency() const
{
    return latency +
        (latency_var ? random_mt.random<Tick>(0, latency_var) : 0);
}

void
SimpleMemory::recvRetry()
{
    assert(retryResp);

    dequeue();
}

BaseSlavePort &
SimpleMemory::getSlavePort(const std::string &if_name, PortID idx)
{
    if (if_name != "port") {
        return MemObject::getSlavePort(if_name, idx);
    } else {
        return port;
    }
}

unsigned int
SimpleMemory::drain(DrainManager *dm)
{
    int count = 0;

    // also track our internal queue
    if (!packetQueue.empty()) {
        count += 1;
        drainManager = dm;
        DPRINTF(Drain, "SimpleMemory Queue has requests, waiting to drain\n");
     }

    if (count)
        setDrainState(Drainable::Draining);
    else
        setDrainState(Drainable::Drained);
    return count;
}

SimpleMemory::MemoryPort::MemoryPort(const std::string& _name,
                                     SimpleMemory& _memory)
    : SlavePort(_name, &_memory), memory(_memory)
{ }

AddrRangeList
SimpleMemory::MemoryPort::getAddrRanges() const
{
    AddrRangeList ranges;
    ranges.push_back(memory.getAddrRange());
    return ranges;
}

Tick
SimpleMemory::MemoryPort::recvAtomic(PacketPtr pkt)
{
    return memory.recvAtomic(pkt);
}

void
SimpleMemory::MemoryPort::recvFunctional(PacketPtr pkt)
{
    memory.recvFunctional(pkt);
}

bool
SimpleMemory::MemoryPort::recvTimingReq(PacketPtr pkt)
{
    return memory.recvTimingReq(pkt);
}

void
SimpleMemory::MemoryPort::recvRetry()
{
    memory.recvRetry();
}

SimpleMemory*
SimpleMemoryParams::create()
{
    return new SimpleMemory(this);
}