1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
|
/*
* Copyright (c) 2010-2013, 2015 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2001-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ron Dreslinski
* Ali Saidi
* Andreas Hansson
*/
#include "mem/simple_mem.hh"
#include "base/random.hh"
#include "base/trace.hh"
#include "debug/Drain.hh"
SimpleMemory::SimpleMemory(const SimpleMemoryParams* p) :
AbstractMemory(p),
port(name() + ".port", *this), latency(p->latency),
latency_var(p->latency_var), bandwidth(p->bandwidth), isBusy(false),
retryReq(false), retryResp(false),
releaseEvent([this]{ release(); }, name()),
dequeueEvent([this]{ dequeue(); }, name())
{
}
void
SimpleMemory::init()
{
AbstractMemory::init();
// allow unconnected memories as this is used in several ruby
// systems at the moment
if (port.isConnected()) {
port.sendRangeChange();
}
}
Tick
SimpleMemory::recvAtomic(PacketPtr pkt)
{
panic_if(pkt->cacheResponding(), "Should not see packets where cache "
"is responding");
access(pkt);
return getLatency();
}
Tick
SimpleMemory::recvAtomicBackdoor(PacketPtr pkt, MemBackdoorPtr &_backdoor)
{
Tick latency = recvAtomic(pkt);
if (backdoor.ptr())
_backdoor = &backdoor;
return latency;
}
void
SimpleMemory::recvFunctional(PacketPtr pkt)
{
pkt->pushLabel(name());
functionalAccess(pkt);
bool done = false;
auto p = packetQueue.begin();
// potentially update the packets in our packet queue as well
while (!done && p != packetQueue.end()) {
done = pkt->trySatisfyFunctional(p->pkt);
++p;
}
pkt->popLabel();
}
bool
SimpleMemory::recvTimingReq(PacketPtr pkt)
{
panic_if(pkt->cacheResponding(), "Should not see packets where cache "
"is responding");
panic_if(!(pkt->isRead() || pkt->isWrite()),
"Should only see read and writes at memory controller, "
"saw %s to %#llx\n", pkt->cmdString(), pkt->getAddr());
// we should not get a new request after committing to retry the
// current one, but unfortunately the CPU violates this rule, so
// simply ignore it for now
if (retryReq)
return false;
// if we are busy with a read or write, remember that we have to
// retry
if (isBusy) {
retryReq = true;
return false;
}
// technically the packet only reaches us after the header delay,
// and since this is a memory controller we also need to
// deserialise the payload before performing any write operation
Tick receive_delay = pkt->headerDelay + pkt->payloadDelay;
pkt->headerDelay = pkt->payloadDelay = 0;
// update the release time according to the bandwidth limit, and
// do so with respect to the time it takes to finish this request
// rather than long term as it is the short term data rate that is
// limited for any real memory
// calculate an appropriate tick to release to not exceed
// the bandwidth limit
Tick duration = pkt->getSize() * bandwidth;
// only consider ourselves busy if there is any need to wait
// to avoid extra events being scheduled for (infinitely) fast
// memories
if (duration != 0) {
schedule(releaseEvent, curTick() + duration);
isBusy = true;
}
// go ahead and deal with the packet and put the response in the
// queue if there is one
bool needsResponse = pkt->needsResponse();
recvAtomic(pkt);
// turn packet around to go back to requester if response expected
if (needsResponse) {
// recvAtomic() should already have turned packet into
// atomic response
assert(pkt->isResponse());
Tick when_to_send = curTick() + receive_delay + getLatency();
// typically this should be added at the end, so start the
// insertion sort with the last element, also make sure not to
// re-order in front of some existing packet with the same
// address, the latter is important as this memory effectively
// hands out exclusive copies (shared is not asserted)
auto i = packetQueue.end();
--i;
while (i != packetQueue.begin() && when_to_send < i->tick &&
!i->pkt->matchAddr(pkt))
--i;
// emplace inserts the element before the position pointed to by
// the iterator, so advance it one step
packetQueue.emplace(++i, pkt, when_to_send);
if (!retryResp && !dequeueEvent.scheduled())
schedule(dequeueEvent, packetQueue.back().tick);
} else {
pendingDelete.reset(pkt);
}
return true;
}
void
SimpleMemory::release()
{
assert(isBusy);
isBusy = false;
if (retryReq) {
retryReq = false;
port.sendRetryReq();
}
}
void
SimpleMemory::dequeue()
{
assert(!packetQueue.empty());
DeferredPacket deferred_pkt = packetQueue.front();
retryResp = !port.sendTimingResp(deferred_pkt.pkt);
if (!retryResp) {
packetQueue.pop_front();
// if the queue is not empty, schedule the next dequeue event,
// otherwise signal that we are drained if we were asked to do so
if (!packetQueue.empty()) {
// if there were packets that got in-between then we
// already have an event scheduled, so use re-schedule
reschedule(dequeueEvent,
std::max(packetQueue.front().tick, curTick()), true);
} else if (drainState() == DrainState::Draining) {
DPRINTF(Drain, "Draining of SimpleMemory complete\n");
signalDrainDone();
}
}
}
Tick
SimpleMemory::getLatency() const
{
return latency +
(latency_var ? random_mt.random<Tick>(0, latency_var) : 0);
}
void
SimpleMemory::recvRespRetry()
{
assert(retryResp);
dequeue();
}
Port &
SimpleMemory::getPort(const std::string &if_name, PortID idx)
{
if (if_name != "port") {
return AbstractMemory::getPort(if_name, idx);
} else {
return port;
}
}
DrainState
SimpleMemory::drain()
{
if (!packetQueue.empty()) {
DPRINTF(Drain, "SimpleMemory Queue has requests, waiting to drain\n");
return DrainState::Draining;
} else {
return DrainState::Drained;
}
}
SimpleMemory::MemoryPort::MemoryPort(const std::string& _name,
SimpleMemory& _memory)
: SlavePort(_name, &_memory), memory(_memory)
{ }
AddrRangeList
SimpleMemory::MemoryPort::getAddrRanges() const
{
AddrRangeList ranges;
ranges.push_back(memory.getAddrRange());
return ranges;
}
Tick
SimpleMemory::MemoryPort::recvAtomic(PacketPtr pkt)
{
return memory.recvAtomic(pkt);
}
Tick
SimpleMemory::MemoryPort::recvAtomicBackdoor(
PacketPtr pkt, MemBackdoorPtr &_backdoor)
{
return memory.recvAtomicBackdoor(pkt, _backdoor);
}
void
SimpleMemory::MemoryPort::recvFunctional(PacketPtr pkt)
{
memory.recvFunctional(pkt);
}
bool
SimpleMemory::MemoryPort::recvTimingReq(PacketPtr pkt)
{
return memory.recvTimingReq(pkt);
}
void
SimpleMemory::MemoryPort::recvRespRetry()
{
memory.recvRespRetry();
}
SimpleMemory*
SimpleMemoryParams::create()
{
return new SimpleMemory(this);
}
|