1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
|
# Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
# Copyright (c) 2009 The Hewlett-Packard Development Company
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from slicc.ast.ExprAST import ExprAST
class MethodCallExprAST(ExprAST):
def __init__(self, slicc, proc_name, expr_ast_vec):
super(MethodCallExprAST, self).__init__(slicc)
self.proc_name = proc_name
self.expr_ast_vec = expr_ast_vec
def generate(self, code):
tmp = self.slicc.codeFormatter()
paramTypes = []
for expr_ast in self.expr_ast_vec:
return_type = expr_ast.generate(tmp)
paramTypes.append(return_type)
obj_type, methodId, prefix = self.generate_prefix(paramTypes)
# generate code
params = []
for expr_ast in self.expr_ast_vec:
return_type,tcode = expr_ast.inline(True)
params.append(str(tcode))
fix = code.nofix()
code("$prefix${{self.proc_name}}(${{', '.join(params)}}))")
code.fix(fix)
# Verify that this is a method of the object
if methodId not in obj_type.methods:
self.error("Invalid method call: Type '%s' does not have a method '%s'",
obj_type, methodId)
if len(self.expr_ast_vec) != \
len(obj_type.methods[methodId].param_types):
# Right number of parameters
self.error("Wrong number of parameters for function name: '%s', " + \
"expected: , actual: ", proc_name,
len(obj_type.methods[methodId].param_types),
len(self.expr_ast_vec))
for actual_type, expected_type in \
zip(paramTypes, obj_type.methods[methodId].param_types):
if actual_type != expected_type and \
str(actual_type["interface"]) != str(expected_type):
self.error("Type mismatch: expected: %s actual: %s",
expected_type, actual_type)
# Return the return type of the method
return obj_type.methods[methodId].return_type
def findResources(self, resources):
pass
class MemberMethodCallExprAST(MethodCallExprAST):
def __init__(self, slicc, obj_expr_ast, proc_name, expr_ast_vec):
s = super(MemberMethodCallExprAST, self)
s.__init__(slicc, proc_name, expr_ast_vec)
self.obj_expr_ast = obj_expr_ast
def __repr__(self):
return "[MethodCallExpr: %r%r %r]" % (self.proc_name,
self.obj_expr_ast,
self.expr_ast_vec)
def generate_prefix(self, paramTypes):
code = self.slicc.codeFormatter()
# member method call
obj_type = self.obj_expr_ast.generate(code)
methodId = obj_type.methodId(self.proc_name, paramTypes)
prefix = ""
implements_interface = False
if methodId in obj_type.methods:
return_type = obj_type.methods[methodId].return_type
else:
#
# Check whether the method is implemented by the super class
if "interface" in obj_type:
interface_type = self.symtab.find(obj_type["interface"]);
if methodId in interface_type.methods:
return_type = interface_type.methods[methodId].return_type
obj_type = interface_type
else:
self.error("Invalid method call: " \
"Type '%s' does not have a method %s, '%s'",
obj_type, self.proc_name, methodId)
else:
#
# The initial method check has failed, but before generating an
# error we must check whether any of the paramTypes implement
# an interface. If so, we must check if the method ids using
# the inherited types exist.
#
# This code is a temporary fix and only checks for the methodId
# where all paramTypes are converted to their inherited type. The
# right way to do this is to replace slicc's simple string
# comparison for determining the correct overloaded method, with a
# more robust param by param check.
#
implemented_paramTypes = []
for paramType in paramTypes:
implemented_paramType = paramType
if paramType.isInterface:
implements_interface = True
implemented_paramType.abstract_ident = paramType["interface"]
else:
implemented_paramType.abstract_ident = paramType.c_ident
implemented_paramTypes.append(implemented_paramType)
if implements_interface:
implementedMethodId = obj_type.methodIdAbstract(self.proc_name,
implemented_paramTypes)
else:
implementedMethodId = ""
if implementedMethodId not in obj_type.methods:
self.error("Invalid method call: " \
"Type '%s' does not have a method %s, '%s' nor '%s'",
obj_type, self.proc_name, methodId, implementedMethodId)
else:
#
# Replace the methodId with the implementedMethodId found in
# the method list.
#
methodId = implementedMethodId
return_type = obj_type.methods[methodId].return_type
if return_type.isInterface:
prefix = "static_cast<%s &>" % return_type.c_ident
prefix = "%s((%s)." % (prefix, code)
return obj_type, methodId, prefix
class ClassMethodCallExprAST(MethodCallExprAST):
def __init__(self, slicc, type_ast, proc_name, expr_ast_vec):
s = super(ClassMethodCallExprAST, self)
s.__init__(slicc, proc_name, expr_ast_vec)
self.type_ast = type_ast
def __repr__(self):
return "[MethodCallExpr: %r %r]" % (self.proc_name, self.expr_ast_vec)
def generate_prefix(self, paramTypes):
# class method call
prefix = "(%s::" % self.type_ast
obj_type = self.type_ast.type
methodId = obj_type.methodId(self.proc_name, paramTypes)
return obj_type, methodId, prefix
__all__ = [ "MemberMethodCallExprAST", "ClassMethodCallExprAST" ]
|