summaryrefslogtreecommitdiff
path: root/src/python/m5/SimObject.py
blob: 00c18976d2a2e2e067034f26c0a7126993c3d5f7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
# Copyright (c) 2004-2006 The Regents of The University of Michigan
# Copyright (c) 2010 Advanced Micro Devices, Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Steve Reinhardt
#          Nathan Binkert

import sys
from types import FunctionType, MethodType

try:
    import pydot
except:
    pydot = False

import m5
from m5.util import *

# Have to import params up top since Param is referenced on initial
# load (when SimObject class references Param to create a class
# variable, the 'name' param)...
from m5.params import *
# There are a few things we need that aren't in params.__all__ since
# normal users don't need them
from m5.params import ParamDesc, VectorParamDesc, \
     isNullPointer, SimObjectVector

from m5.proxy import *
from m5.proxy import isproxy

#####################################################################
#
# M5 Python Configuration Utility
#
# The basic idea is to write simple Python programs that build Python
# objects corresponding to M5 SimObjects for the desired simulation
# configuration.  For now, the Python emits a .ini file that can be
# parsed by M5.  In the future, some tighter integration between M5
# and the Python interpreter may allow bypassing the .ini file.
#
# Each SimObject class in M5 is represented by a Python class with the
# same name.  The Python inheritance tree mirrors the M5 C++ tree
# (e.g., SimpleCPU derives from BaseCPU in both cases, and all
# SimObjects inherit from a single SimObject base class).  To specify
# an instance of an M5 SimObject in a configuration, the user simply
# instantiates the corresponding Python object.  The parameters for
# that SimObject are given by assigning to attributes of the Python
# object, either using keyword assignment in the constructor or in
# separate assignment statements.  For example:
#
# cache = BaseCache(size='64KB')
# cache.hit_latency = 3
# cache.assoc = 8
#
# The magic lies in the mapping of the Python attributes for SimObject
# classes to the actual SimObject parameter specifications.  This
# allows parameter validity checking in the Python code.  Continuing
# the example above, the statements "cache.blurfl=3" or
# "cache.assoc='hello'" would both result in runtime errors in Python,
# since the BaseCache object has no 'blurfl' parameter and the 'assoc'
# parameter requires an integer, respectively.  This magic is done
# primarily by overriding the special __setattr__ method that controls
# assignment to object attributes.
#
# Once a set of Python objects have been instantiated in a hierarchy,
# calling 'instantiate(obj)' (where obj is the root of the hierarchy)
# will generate a .ini file.
#
#####################################################################

# list of all SimObject classes
allClasses = {}

# dict to look up SimObjects based on path
instanceDict = {}

def default_cxx_predecls(cls, code):
    code('#include "params/$cls.hh"')

def default_swig_predecls(cls, code):
    code('%import "python/m5/internal/param_$cls.i"')

def default_swig_objdecls(cls, code):
    class_path = cls.cxx_class.split('::')
    classname = class_path[-1]
    namespaces = class_path[:-1]

    for ns in namespaces:
        code('namespace $ns {')

    if namespaces:
        code('// avoid name conflicts')
        sep_string = '_COLONS_'
        flat_name = sep_string.join(class_path)
        code('%rename($flat_name) $classname;')

    code()
    code('// stop swig from creating/wrapping default ctor/dtor')
    code('%nodefault $classname;')
    code('class $classname')
    if cls._base:
        code('    : public ${{cls._base.cxx_class}}')
    code('{};')

    for ns in reversed(namespaces):
        code('} // namespace $ns')

def public_value(key, value):
    return key.startswith('_') or \
               isinstance(value, (FunctionType, MethodType, classmethod, type))

# The metaclass for SimObject.  This class controls how new classes
# that derive from SimObject are instantiated, and provides inherited
# class behavior (just like a class controls how instances of that
# class are instantiated, and provides inherited instance behavior).
class MetaSimObject(type):
    # Attributes that can be set only at initialization time
    init_keywords = { 'abstract' : bool,
                      'cxx_class' : str,
                      'cxx_type' : str,
                      'cxx_predecls'  : MethodType,
                      'swig_objdecls' : MethodType,
                      'swig_predecls' : MethodType,
                      'type' : str }
    # Attributes that can be set any time
    keywords = { 'check' : FunctionType }

    # __new__ is called before __init__, and is where the statements
    # in the body of the class definition get loaded into the class's
    # __dict__.  We intercept this to filter out parameter & port assignments
    # and only allow "private" attributes to be passed to the base
    # __new__ (starting with underscore).
    def __new__(mcls, name, bases, dict):
        assert name not in allClasses, "SimObject %s already present" % name

        # Copy "private" attributes, functions, and classes to the
        # official dict.  Everything else goes in _init_dict to be
        # filtered in __init__.
        cls_dict = {}
        value_dict = {}
        for key,val in dict.items():
            if public_value(key, val):
                cls_dict[key] = val
            else:
                # must be a param/port setting
                value_dict[key] = val
        if 'abstract' not in value_dict:
            value_dict['abstract'] = False
        cls_dict['_value_dict'] = value_dict
        cls = super(MetaSimObject, mcls).__new__(mcls, name, bases, cls_dict)
        if 'type' in value_dict:
            allClasses[name] = cls
        return cls

    # subclass initialization
    def __init__(cls, name, bases, dict):
        # calls type.__init__()... I think that's a no-op, but leave
        # it here just in case it's not.
        super(MetaSimObject, cls).__init__(name, bases, dict)

        # initialize required attributes

        # class-only attributes
        cls._params = multidict() # param descriptions
        cls._ports = multidict()  # port descriptions

        # class or instance attributes
        cls._values = multidict()   # param values
        cls._children = multidict() # SimObject children
        cls._port_refs = multidict() # port ref objects
        cls._instantiated = False # really instantiated, cloned, or subclassed

        # We don't support multiple inheritance.  If you want to, you
        # must fix multidict to deal with it properly.
        if len(bases) > 1:
            raise TypeError, "SimObjects do not support multiple inheritance"

        base = bases[0]

        # Set up general inheritance via multidicts.  A subclass will
        # inherit all its settings from the base class.  The only time
        # the following is not true is when we define the SimObject
        # class itself (in which case the multidicts have no parent).
        if isinstance(base, MetaSimObject):
            cls._base = base
            cls._params.parent = base._params
            cls._ports.parent = base._ports
            cls._values.parent = base._values
            cls._children.parent = base._children
            cls._port_refs.parent = base._port_refs
            # mark base as having been subclassed
            base._instantiated = True
        else:
            cls._base = None

        # default keyword values
        if 'type' in cls._value_dict:
            if 'cxx_class' not in cls._value_dict:
                cls._value_dict['cxx_class'] = cls._value_dict['type']

            cls._value_dict['cxx_type'] = '%s *' % cls._value_dict['cxx_class']
                
            if 'cxx_predecls' not in cls.__dict__:
                m = MethodType(default_cxx_predecls, cls, MetaSimObject)
                setattr(cls, 'cxx_predecls', m)

            if 'swig_predecls' not in cls.__dict__:
                m = MethodType(default_swig_predecls, cls, MetaSimObject)
                setattr(cls, 'swig_predecls', m)

        if 'swig_objdecls' not in cls.__dict__:
            m = MethodType(default_swig_objdecls, cls, MetaSimObject)
            setattr(cls, 'swig_objdecls', m)

        # Now process the _value_dict items.  They could be defining
        # new (or overriding existing) parameters or ports, setting
        # class keywords (e.g., 'abstract'), or setting parameter
        # values or port bindings.  The first 3 can only be set when
        # the class is defined, so we handle them here.  The others
        # can be set later too, so just emulate that by calling
        # setattr().
        for key,val in cls._value_dict.items():
            # param descriptions
            if isinstance(val, ParamDesc):
                cls._new_param(key, val)

            # port objects
            elif isinstance(val, Port):
                cls._new_port(key, val)

            # init-time-only keywords
            elif cls.init_keywords.has_key(key):
                cls._set_keyword(key, val, cls.init_keywords[key])

            # default: use normal path (ends up in __setattr__)
            else:
                setattr(cls, key, val)

    def _set_keyword(cls, keyword, val, kwtype):
        if not isinstance(val, kwtype):
            raise TypeError, 'keyword %s has bad type %s (expecting %s)' % \
                  (keyword, type(val), kwtype)
        if isinstance(val, FunctionType):
            val = classmethod(val)
        type.__setattr__(cls, keyword, val)

    def _new_param(cls, name, pdesc):
        # each param desc should be uniquely assigned to one variable
        assert(not hasattr(pdesc, 'name'))
        pdesc.name = name
        cls._params[name] = pdesc
        if hasattr(pdesc, 'default'):
            cls._set_param(name, pdesc.default, pdesc)

    def _set_param(cls, name, value, param):
        assert(param.name == name)
        try:
            cls._values[name] = param.convert(value)
        except Exception, e:
            msg = "%s\nError setting param %s.%s to %s\n" % \
                  (e, cls.__name__, name, value)
            e.args = (msg, )
            raise

    def _new_port(cls, name, port):
        # each port should be uniquely assigned to one variable
        assert(not hasattr(port, 'name'))
        port.name = name
        cls._ports[name] = port
        if hasattr(port, 'default'):
            cls._cls_get_port_ref(name).connect(port.default)

    # same as _get_port_ref, effectively, but for classes
    def _cls_get_port_ref(cls, attr):
        # Return reference that can be assigned to another port
        # via __setattr__.  There is only ever one reference
        # object per port, but we create them lazily here.
        ref = cls._port_refs.get(attr)
        if not ref:
            ref = cls._ports[attr].makeRef(cls)
            cls._port_refs[attr] = ref
        return ref

    # Set attribute (called on foo.attr = value when foo is an
    # instance of class cls).
    def __setattr__(cls, attr, value):
        # normal processing for private attributes
        if public_value(attr, value):
            type.__setattr__(cls, attr, value)
            return

        if cls.keywords.has_key(attr):
            cls._set_keyword(attr, value, cls.keywords[attr])
            return

        if cls._ports.has_key(attr):
            cls._cls_get_port_ref(attr).connect(value)
            return

        if isSimObjectOrSequence(value) and cls._instantiated:
            raise RuntimeError, \
                  "cannot set SimObject parameter '%s' after\n" \
                  "    class %s has been instantiated or subclassed" \
                  % (attr, cls.__name__)

        # check for param
        param = cls._params.get(attr)
        if param:
            cls._set_param(attr, value, param)
            return

        if isSimObjectOrSequence(value):
            # If RHS is a SimObject, it's an implicit child assignment.
            cls._children[attr] = coerceSimObjectOrVector(value)
            return

        # no valid assignment... raise exception
        raise AttributeError, \
              "Class %s has no parameter \'%s\'" % (cls.__name__, attr)

    def __getattr__(cls, attr):
        if attr == 'cxx_class_path':
            return cls.cxx_class.split('::')

        if attr == 'cxx_class_name':
            return cls.cxx_class_path[-1]

        if attr == 'cxx_namespaces':
            return cls.cxx_class_path[:-1]

        if cls._values.has_key(attr):
            return cls._values[attr]

        if cls._children.has_key(attr):
            return cls._children[attr]

        raise AttributeError, \
              "object '%s' has no attribute '%s'" % (cls.__name__, attr)

    def __str__(cls):
        return cls.__name__

    def cxx_decl(cls, code):
        # The 'dict' attribute restricts us to the params declared in
        # the object itself, not including inherited params (which
        # will also be inherited from the base class's param struct
        # here).
        params = cls._params.local.values()
        try:
            ptypes = [p.ptype for p in params]
        except:
            print cls, p, p.ptype_str
            print params
            raise

        class_path = cls._value_dict['cxx_class'].split('::')

        code('''\
#ifndef __PARAMS__${cls}__
#define __PARAMS__${cls}__

''')

        # A forward class declaration is sufficient since we are just
        # declaring a pointer.
        for ns in class_path[:-1]:
            code('namespace $ns {')
        code('class $0;', class_path[-1])
        for ns in reversed(class_path[:-1]):
            code('} // namespace $ns')
        code()

        for param in params:
            param.cxx_predecls(code)
        code()

        if cls._base:
            code('#include "params/${{cls._base.type}}.hh"')
            code()

        for ptype in ptypes:
            if issubclass(ptype, Enum):
                code('#include "enums/${{ptype.__name__}}.hh"')
                code()

        cls.cxx_struct(code, cls._base, params)

        code()
        code('#endif // __PARAMS__${cls}__')
        return code

    def cxx_struct(cls, code, base, params):
        if cls == SimObject:
            code('#include "sim/sim_object_params.hh"')
            return

        # now generate the actual param struct
        code("struct ${cls}Params")
        if base:
            code("    : public ${{base.type}}Params")
        code("{")
        if not hasattr(cls, 'abstract') or not cls.abstract:
            if 'type' in cls.__dict__:
                code("    ${{cls.cxx_type}} create();")

        code.indent()
        for param in params:
            param.cxx_decl(code)
        code.dedent()
        code('};')

    def swig_decl(cls, code):
        code('''\
%module $cls

%{
#include "params/$cls.hh"
%}

''')

        # The 'dict' attribute restricts us to the params declared in
        # the object itself, not including inherited params (which
        # will also be inherited from the base class's param struct
        # here).
        params = cls._params.local.values()
        ptypes = [p.ptype for p in params]

        # get all predeclarations
        for param in params:
            param.swig_predecls(code)
        code()

        if cls._base:
            code('%import "python/m5/internal/param_${{cls._base.type}}.i"')
            code()

        for ptype in ptypes:
            if issubclass(ptype, Enum):
                code('%import "enums/${{ptype.__name__}}.hh"')
                code()

        code('%import "params/${cls}_type.hh"')
        code('%include "params/${cls}.hh"')

# The SimObject class is the root of the special hierarchy.  Most of
# the code in this class deals with the configuration hierarchy itself
# (parent/child node relationships).
class SimObject(object):
    # Specify metaclass.  Any class inheriting from SimObject will
    # get this metaclass.
    __metaclass__ = MetaSimObject
    type = 'SimObject'
    abstract = True

    @classmethod
    def swig_objdecls(cls, code):
        code('%include "python/swig/sim_object.i"')

    # Initialize new instance.  For objects with SimObject-valued
    # children, we need to recursively clone the classes represented
    # by those param values as well in a consistent "deep copy"-style
    # fashion.  That is, we want to make sure that each instance is
    # cloned only once, and that if there are multiple references to
    # the same original object, we end up with the corresponding
    # cloned references all pointing to the same cloned instance.
    def __init__(self, **kwargs):
        ancestor = kwargs.get('_ancestor')
        memo_dict = kwargs.get('_memo')
        if memo_dict is None:
            # prepare to memoize any recursively instantiated objects
            memo_dict = {}
        elif ancestor:
            # memoize me now to avoid problems with recursive calls
            memo_dict[ancestor] = self

        if not ancestor:
            ancestor = self.__class__
        ancestor._instantiated = True

        # initialize required attributes
        self._parent = None
        self._name = None
        self._ccObject = None  # pointer to C++ object
        self._ccParams = None
        self._instantiated = False # really "cloned"

        # Inherit parameter values from class using multidict so
        # individual value settings can be overridden but we still
        # inherit late changes to non-overridden class values.
        self._values = multidict(ancestor._values)
        # clone SimObject-valued parameters
        for key,val in ancestor._values.iteritems():
            val = tryAsSimObjectOrVector(val)
            if val is not None:
                self._values[key] = val(_memo=memo_dict)

        # Clone children specified at class level.  No need for a
        # multidict here since we will be cloning everything.
        self._children = {}
        for key,val in ancestor._children.iteritems():
            self.add_child(key, val(_memo=memo_dict))

        # clone port references.  no need to use a multidict here
        # since we will be creating new references for all ports.
        self._port_refs = {}
        for key,val in ancestor._port_refs.iteritems():
            self._port_refs[key] = val.clone(self, memo_dict)
        # apply attribute assignments from keyword args, if any
        for key,val in kwargs.iteritems():
            setattr(self, key, val)

    # "Clone" the current instance by creating another instance of
    # this instance's class, but that inherits its parameter values
    # and port mappings from the current instance.  If we're in a
    # "deep copy" recursive clone, check the _memo dict to see if
    # we've already cloned this instance.
    def __call__(self, **kwargs):
        memo_dict = kwargs.get('_memo')
        if memo_dict is None:
            # no memo_dict: must be top-level clone operation.
            # this is only allowed at the root of a hierarchy
            if self._parent:
                raise RuntimeError, "attempt to clone object %s " \
                      "not at the root of a tree (parent = %s)" \
                      % (self, self._parent)
            # create a new dict and use that.
            memo_dict = {}
            kwargs['_memo'] = memo_dict
        elif memo_dict.has_key(self):
            # clone already done & memoized
            return memo_dict[self]
        return self.__class__(_ancestor = self, **kwargs)

    def _get_port_ref(self, attr):
        # Return reference that can be assigned to another port
        # via __setattr__.  There is only ever one reference
        # object per port, but we create them lazily here.
        ref = self._port_refs.get(attr)
        if not ref:
            ref = self._ports[attr].makeRef(self)
            self._port_refs[attr] = ref
        return ref

    def __getattr__(self, attr):
        if self._ports.has_key(attr):
            return self._get_port_ref(attr)

        if self._values.has_key(attr):
            return self._values[attr]

        if self._children.has_key(attr):
            return self._children[attr]

        # If the attribute exists on the C++ object, transparently
        # forward the reference there.  This is typically used for
        # SWIG-wrapped methods such as init(), regStats(),
        # regFormulas(), resetStats(), startup(), drain(), and
        # resume().
        if self._ccObject and hasattr(self._ccObject, attr):
            return getattr(self._ccObject, attr)

        raise AttributeError, "object '%s' has no attribute '%s'" \
              % (self.__class__.__name__, attr)

    # Set attribute (called on foo.attr = value when foo is an
    # instance of class cls).
    def __setattr__(self, attr, value):
        # normal processing for private attributes
        if attr.startswith('_'):
            object.__setattr__(self, attr, value)
            return

        if self._ports.has_key(attr):
            # set up port connection
            self._get_port_ref(attr).connect(value)
            return

        if isSimObjectOrSequence(value) and self._instantiated:
            raise RuntimeError, \
                  "cannot set SimObject parameter '%s' after\n" \
                  "    instance been cloned %s" % (attr, `self`)

        param = self._params.get(attr)
        if param:
            try:
                value = param.convert(value)
            except Exception, e:
                msg = "%s\nError setting param %s.%s to %s\n" % \
                      (e, self.__class__.__name__, attr, value)
                e.args = (msg, )
                raise
            self._values[attr] = value
            return

        # if RHS is a SimObject, it's an implicit child assignment
        if isSimObjectOrSequence(value):
            self.add_child(attr, value)
            return

        # no valid assignment... raise exception
        raise AttributeError, "Class %s has no parameter %s" \
              % (self.__class__.__name__, attr)


    # this hack allows tacking a '[0]' onto parameters that may or may
    # not be vectors, and always getting the first element (e.g. cpus)
    def __getitem__(self, key):
        if key == 0:
            return self
        raise TypeError, "Non-zero index '%s' to SimObject" % key

    # Also implemented by SimObjectVector
    def clear_parent(self, old_parent):
        assert self._parent is old_parent
        self._parent = None

    # Also implemented by SimObjectVector
    def set_parent(self, parent, name):
        self._parent = parent
        self._name = name

    # Also implemented by SimObjectVector
    def get_name(self):
        return self._name

    # use this rather than directly accessing _parent for symmetry
    # with SimObjectVector
    def get_parent(self):
        return self._parent

    # clear out child with given name. This code is not likely to be exercised.
    # See comment in add_child.
    def clear_child(self, name):
        child = self._children[name]
        child.clear_parent(self)
        del self._children[name]

    # Add a new child to this object.
    def add_child(self, name, child):
        child = coerceSimObjectOrVector(child)
        if child.get_parent():
            raise RuntimeError, \
                  "add_child('%s'): child '%s' already has parent '%s'" % \
                  (name, child._name, child._parent)
        if self._children.has_key(name):
            # This code path had an undiscovered bug that would make it fail
            # at runtime. It had been here for a long time and was only
            # exposed by a buggy script. Changes here will probably not be
            # exercised without specialized testing.
            self.clear_child(name)
        child.set_parent(self, name)
        self._children[name] = child

    # Take SimObject-valued parameters that haven't been explicitly
    # assigned as children and make them children of the object that
    # they were assigned to as a parameter value.  This guarantees
    # that when we instantiate all the parameter objects we're still
    # inside the configuration hierarchy.
    def adoptOrphanParams(self):
        for key,val in self._values.iteritems():
            if not isSimObjectVector(val) and isSimObjectSequence(val):
                # need to convert raw SimObject sequences to
                # SimObjectVector class so we can call get_parent()
                val = SimObjectVector(val)
                self._values[key] = val
            if isSimObjectOrVector(val) and not val.get_parent():
                self.add_child(key, val)

    def path(self):
        if not self._parent:
            return '(orphan)'
        ppath = self._parent.path()
        if ppath == 'root':
            return self._name
        return ppath + "." + self._name

    def __str__(self):
        return self.path()

    def ini_str(self):
        return self.path()

    def find_any(self, ptype):
        if isinstance(self, ptype):
            return self, True

        found_obj = None
        for child in self._children.itervalues():
            if isinstance(child, ptype):
                if found_obj != None and child != found_obj:
                    raise AttributeError, \
                          'parent.any matched more than one: %s %s' % \
                          (found_obj.path, child.path)
                found_obj = child
        # search param space
        for pname,pdesc in self._params.iteritems():
            if issubclass(pdesc.ptype, ptype):
                match_obj = self._values[pname]
                if found_obj != None and found_obj != match_obj:
                    raise AttributeError, \
                          'parent.any matched more than one: %s and %s' % (found_obj.path, match_obj.path)
                found_obj = match_obj
        return found_obj, found_obj != None

    def unproxy(self, base):
        return self

    def unproxyParams(self):
        for param in self._params.iterkeys():
            value = self._values.get(param)
            if value != None and isproxy(value):
                try:
                    value = value.unproxy(self)
                except:
                    print "Error in unproxying param '%s' of %s" % \
                          (param, self.path())
                    raise
                setattr(self, param, value)

        # Unproxy ports in sorted order so that 'append' operations on
        # vector ports are done in a deterministic fashion.
        port_names = self._ports.keys()
        port_names.sort()
        for port_name in port_names:
            port = self._port_refs.get(port_name)
            if port != None:
                port.unproxy(self)

    def print_ini(self, ini_file):
        print >>ini_file, '[' + self.path() + ']'       # .ini section header

        instanceDict[self.path()] = self

        if hasattr(self, 'type'):
            print >>ini_file, 'type=%s' % self.type

        child_names = self._children.keys()
        child_names.sort()
        if len(child_names):
            print >>ini_file, 'children=%s' % \
                  ' '.join(self._children[n].get_name() for n in child_names)

        param_names = self._params.keys()
        param_names.sort()
        for param in param_names:
            value = self._values.get(param)
            if value != None:
                print >>ini_file, '%s=%s' % (param,
                                             self._values[param].ini_str())

        port_names = self._ports.keys()
        port_names.sort()
        for port_name in port_names:
            port = self._port_refs.get(port_name, None)
            if port != None:
                print >>ini_file, '%s=%s' % (port_name, port.ini_str())

        print >>ini_file        # blank line between objects

    def getCCParams(self):
        if self._ccParams:
            return self._ccParams

        cc_params_struct = getattr(m5.internal.params, '%sParams' % self.type)
        cc_params = cc_params_struct()
        cc_params.pyobj = self
        cc_params.name = str(self)

        param_names = self._params.keys()
        param_names.sort()
        for param in param_names:
            value = self._values.get(param)
            if value is None:
                fatal("%s.%s without default or user set value",
                      self.path(), param)

            value = value.getValue()
            if isinstance(self._params[param], VectorParamDesc):
                assert isinstance(value, list)
                vec = getattr(cc_params, param)
                assert not len(vec)
                for v in value:
                    vec.append(v)
            else:
                setattr(cc_params, param, value)

        port_names = self._ports.keys()
        port_names.sort()
        for port_name in port_names:
            port = self._port_refs.get(port_name, None)
            if port != None:
                setattr(cc_params, port_name, port)
        self._ccParams = cc_params
        return self._ccParams

    # Get C++ object corresponding to this object, calling C++ if
    # necessary to construct it.  Does *not* recursively create
    # children.
    def getCCObject(self):
        if not self._ccObject:
            # Make sure this object is in the configuration hierarchy
            if not self._parent and not isRoot(self):
                raise RuntimeError, "Attempt to instantiate orphan node"
            # Cycles in the configuration hierarchy are not supported. This
            # will catch the resulting recursion and stop.
            self._ccObject = -1
            params = self.getCCParams()
            self._ccObject = params.create()
        elif self._ccObject == -1:
            raise RuntimeError, "%s: Cycle found in configuration hierarchy." \
                  % self.path()
        return self._ccObject

    def descendants(self):
        yield self
        for child in self._children.itervalues():
            for obj in child.descendants():
                yield obj

    # Call C++ to create C++ object corresponding to this object
    def createCCObject(self):
        self.getCCParams()
        self.getCCObject() # force creation

    def getValue(self):
        return self.getCCObject()

    # Create C++ port connections corresponding to the connections in
    # _port_refs
    def connectPorts(self):
        for portRef in self._port_refs.itervalues():
            portRef.ccConnect()

    def getMemoryMode(self):
        if not isinstance(self, m5.objects.System):
            return None

        return self._ccObject.getMemoryMode()

    def changeTiming(self, mode):
        if isinstance(self, m5.objects.System):
            # i don't know if there's a better way to do this - calling
            # setMemoryMode directly from self._ccObject results in calling
            # SimObject::setMemoryMode, not the System::setMemoryMode
            self._ccObject.setMemoryMode(mode)

    def takeOverFrom(self, old_cpu):
        self._ccObject.takeOverFrom(old_cpu._ccObject)

    # generate output file for 'dot' to display as a pretty graph.
    # this code is currently broken.
    def outputDot(self, dot):
        label = "{%s|" % self.path
        if isSimObject(self.realtype):
            label +=  '%s|' % self.type

        if self.children:
            # instantiate children in same order they were added for
            # backward compatibility (else we can end up with cpu1
            # before cpu0).
            for c in self.children:
                dot.add_edge(pydot.Edge(self.path,c.path, style="bold"))

        simobjs = []
        for param in self.params:
            try:
                if param.value is None:
                    raise AttributeError, 'Parameter with no value'

                value = param.value
                string = param.string(value)
            except Exception, e:
                msg = 'exception in %s:%s\n%s' % (self.name, param.name, e)
                e.args = (msg, )
                raise

            if isSimObject(param.ptype) and string != "Null":
                simobjs.append(string)
            else:
                label += '%s = %s\\n' % (param.name, string)

        for so in simobjs:
            label += "|<%s> %s" % (so, so)
            dot.add_edge(pydot.Edge("%s:%s" % (self.path, so), so,
                                    tailport="w"))
        label += '}'
        dot.add_node(pydot.Node(self.path,shape="Mrecord",label=label))

        # recursively dump out children
        for c in self.children:
            c.outputDot(dot)

# Function to provide to C++ so it can look up instances based on paths
def resolveSimObject(name):
    obj = instanceDict[name]
    return obj.getCCObject()

def isSimObject(value):
    return isinstance(value, SimObject)

def isSimObjectClass(value):
    return issubclass(value, SimObject)

def isSimObjectVector(value):
    return isinstance(value, SimObjectVector)

def isSimObjectSequence(value):
    if not isinstance(value, (list, tuple)) or len(value) == 0:
        return False

    for val in value:
        if not isNullPointer(val) and not isSimObject(val):
            return False

    return True

def isSimObjectOrSequence(value):
    return isSimObject(value) or isSimObjectSequence(value)

def isRoot(obj):
    from m5.objects import Root
    return obj and obj is Root.getInstance()

def isSimObjectOrVector(value):
    return isSimObject(value) or isSimObjectVector(value)

def tryAsSimObjectOrVector(value):
    if isSimObjectOrVector(value):
        return value
    if isSimObjectSequence(value):
        return SimObjectVector(value)
    return None

def coerceSimObjectOrVector(value):
    value = tryAsSimObjectOrVector(value)
    if value is None:
        raise TypeError, "SimObject or SimObjectVector expected"
    return value

baseClasses = allClasses.copy()
baseInstances = instanceDict.copy()

def clear():
    global allClasses, instanceDict

    allClasses = baseClasses.copy()
    instanceDict = baseInstances.copy()

# __all__ defines the list of symbols that get exported when
# 'from config import *' is invoked.  Try to keep this reasonably
# short to avoid polluting other namespaces.
__all__ = [ 'SimObject' ]