summaryrefslogtreecommitdiff
path: root/src/python/m5/config.py
blob: f23fd2c6fa37d834d32332cbf350243a5f952911 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
# Copyright (c) 2004-2005 The Regents of The University of Michigan
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Steve Reinhardt
#          Nathan Binkert

import os, re, sys, types, inspect

import m5
from m5 import panic
from convert import *
from multidict import multidict

noDot = False
try:
    import pydot
except:
    noDot = True

class Singleton(type):
    def __call__(cls, *args, **kwargs):
        if hasattr(cls, '_instance'):
            return cls._instance

        cls._instance = super(Singleton, cls).__call__(*args, **kwargs)
        return cls._instance

#####################################################################
#
# M5 Python Configuration Utility
#
# The basic idea is to write simple Python programs that build Python
# objects corresponding to M5 SimObjects for the desired simulation
# configuration.  For now, the Python emits a .ini file that can be
# parsed by M5.  In the future, some tighter integration between M5
# and the Python interpreter may allow bypassing the .ini file.
#
# Each SimObject class in M5 is represented by a Python class with the
# same name.  The Python inheritance tree mirrors the M5 C++ tree
# (e.g., SimpleCPU derives from BaseCPU in both cases, and all
# SimObjects inherit from a single SimObject base class).  To specify
# an instance of an M5 SimObject in a configuration, the user simply
# instantiates the corresponding Python object.  The parameters for
# that SimObject are given by assigning to attributes of the Python
# object, either using keyword assignment in the constructor or in
# separate assignment statements.  For example:
#
# cache = BaseCache(size='64KB')
# cache.hit_latency = 3
# cache.assoc = 8
#
# The magic lies in the mapping of the Python attributes for SimObject
# classes to the actual SimObject parameter specifications.  This
# allows parameter validity checking in the Python code.  Continuing
# the example above, the statements "cache.blurfl=3" or
# "cache.assoc='hello'" would both result in runtime errors in Python,
# since the BaseCache object has no 'blurfl' parameter and the 'assoc'
# parameter requires an integer, respectively.  This magic is done
# primarily by overriding the special __setattr__ method that controls
# assignment to object attributes.
#
# Once a set of Python objects have been instantiated in a hierarchy,
# calling 'instantiate(obj)' (where obj is the root of the hierarchy)
# will generate a .ini file.  See simple-4cpu.py for an example
# (corresponding to m5-test/simple-4cpu.ini).
#
#####################################################################

#####################################################################
#
# ConfigNode/SimObject classes
#
# The Python class hierarchy rooted by ConfigNode (which is the base
# class of SimObject, which in turn is the base class of all other M5
# SimObject classes) has special attribute behavior.  In general, an
# object in this hierarchy has three categories of attribute-like
# things:
#
# 1. Regular Python methods and variables.  These must start with an
# underscore to be treated normally.
#
# 2. SimObject parameters.  These values are stored as normal Python
# attributes, but all assignments to these attributes are checked
# against the pre-defined set of parameters stored in the class's
# _params dictionary.  Assignments to attributes that do not
# correspond to predefined parameters, or that are not of the correct
# type, incur runtime errors.
#
# 3. Hierarchy children.  The child nodes of a ConfigNode are stored
# in the node's _children dictionary, but can be accessed using the
# Python attribute dot-notation (just as they are printed out by the
# simulator).  Children cannot be created using attribute assigment;
# they must be added by specifying the parent node in the child's
# constructor or using the '+=' operator.

# The SimObject parameters are the most complex, for a few reasons.
# First, both parameter descriptions and parameter values are
# inherited.  Thus parameter description lookup must go up the
# inheritance chain like normal attribute lookup, but this behavior
# must be explicitly coded since the lookup occurs in each class's
# _params attribute.  Second, because parameter values can be set
# on SimObject classes (to implement default values), the parameter
# checking behavior must be enforced on class attribute assignments as
# well as instance attribute assignments.  Finally, because we allow
# class specialization via inheritance (e.g., see the L1Cache class in
# the simple-4cpu.py example), we must do parameter checking even on
# class instantiation.  To provide all these features, we use a
# metaclass to define most of the SimObject parameter behavior for
# this class hierarchy.
#
#####################################################################


# dict to look up SimObjects based on path
instanceDict = {}

def isSimObject(value):
    return isinstance(value, SimObject)

def isSimObjectClass(value):
    try:
        return issubclass(value, SimObject)
    except TypeError:
        # happens if value is not a class at all
        return False

def isSimObjectSequence(value):
    if not isinstance(value, (list, tuple)) or len(value) == 0:
        return False

    for val in value:
        if not isNullPointer(val) and not isSimObject(val):
            return False

    return True

def isSimObjectClassSequence(value):
    if not isinstance(value, (list, tuple)) or len(value) == 0:
        return False

    for val in value:
        if not isNullPointer(val) and not isSimObjectClass(val):
            return False

    return True

def isSimObjectOrSequence(value):
    return isSimObject(value) or isSimObjectSequence(value)

def isSimObjectClassOrSequence(value):
    return isSimObjectClass(value) or isSimObjectClassSequence(value)

def isNullPointer(value):
    return isinstance(value, NullSimObject)

# Apply method to object.
# applyMethod(obj, 'meth', <args>) is equivalent to obj.meth(<args>)
def applyMethod(obj, meth, *args, **kwargs):
    return getattr(obj, meth)(*args, **kwargs)

# If the first argument is an (non-sequence) object, apply the named
# method with the given arguments.  If the first argument is a
# sequence, apply the method to each element of the sequence (a la
# 'map').
def applyOrMap(objOrSeq, meth, *args, **kwargs):
    if not isinstance(objOrSeq, (list, tuple)):
        return applyMethod(objOrSeq, meth, *args, **kwargs)
    else:
        return [applyMethod(o, meth, *args, **kwargs) for o in objOrSeq]


# The metaclass for ConfigNode (and thus for everything that derives
# from ConfigNode, including SimObject).  This class controls how new
# classes that derive from ConfigNode are instantiated, and provides
# inherited class behavior (just like a class controls how instances
# of that class are instantiated, and provides inherited instance
# behavior).
class MetaSimObject(type):
    # Attributes that can be set only at initialization time
    init_keywords = { 'abstract' : types.BooleanType,
                      'type' : types.StringType }
    # Attributes that can be set any time
    keywords = { 'check' : types.FunctionType,
                 'children' : types.ListType,
                 'ccObject' : types.ObjectType }

    # __new__ is called before __init__, and is where the statements
    # in the body of the class definition get loaded into the class's
    # __dict__.  We intercept this to filter out parameter assignments
    # and only allow "private" attributes to be passed to the base
    # __new__ (starting with underscore).
    def __new__(mcls, name, bases, dict):
        if dict.has_key('_init_dict'):
            # must have been called from makeSubclass() rather than
            # via Python class declaration; bypass filtering process.
            cls_dict = dict
        else:
            # Copy "private" attributes (including special methods
            # such as __new__) to the official dict.  Everything else
            # goes in _init_dict to be filtered in __init__.
            cls_dict = {}
            for key,val in dict.items():
                if key.startswith('_'):
                    cls_dict[key] = val
                    del dict[key]
            cls_dict['_init_dict'] = dict
        return super(MetaSimObject, mcls).__new__(mcls, name, bases, cls_dict)

    # subclass initialization
    def __init__(cls, name, bases, dict):
        # calls type.__init__()... I think that's a no-op, but leave
        # it here just in case it's not.
        super(MetaSimObject, cls).__init__(name, bases, dict)

        # initialize required attributes
        cls._params = multidict()
        cls._values = multidict()
        cls._ports = multidict()
        cls._instantiated = False # really instantiated or subclassed
        cls._anon_subclass_counter = 0

        # We don't support multiple inheritance.  If you want to, you
        # must fix multidict to deal with it properly.
        if len(bases) > 1:
            raise TypeError, "SimObjects do not support multiple inheritance"

        base = bases[0]

        # the only time the following is not true is when we define
        # the SimObject class itself
        if isinstance(base, MetaSimObject):
            cls._params.parent = base._params
            cls._values.parent = base._values
            cls._ports.parent = base._ports
            base._instantiated = True

        # now process the _init_dict items
        for key,val in cls._init_dict.items():
            if isinstance(val, (types.FunctionType, types.TypeType)):
                type.__setattr__(cls, key, val)

            # param descriptions
            elif isinstance(val, ParamDesc):
                cls._new_param(key, val)

            # port objects
            elif isinstance(val, Port):
                cls._ports[key] = val

            # init-time-only keywords
            elif cls.init_keywords.has_key(key):
                cls._set_keyword(key, val, cls.init_keywords[key])

            # default: use normal path (ends up in __setattr__)
            else:
                setattr(cls, key, val)

        # Pull the deep-copy memoization dict out of the class dict if
        # it's there...
        memo = cls.__dict__.get('_memo', {})

        # Handle SimObject values
        for key,val in cls._values.iteritems():
            # SimObject instances need to be promoted to classes.
            # Existing classes should not have any instance values, so
            # these can only occur at the lowest level dict (the
            # parameters just being set in this class definition).
            if isSimObjectOrSequence(val):
                assert(val == cls._values.local[key])
                cls._values[key] = applyOrMap(val, 'makeClass', memo)
            # SimObject classes need to be subclassed so that
            # parameters that get set at this level only affect this
            # level and derivatives.
            elif isSimObjectClassOrSequence(val):
                assert(not cls._values.local.has_key(key))
                cls._values[key] = applyOrMap(val, 'makeSubclass', {}, memo)


    def _set_keyword(cls, keyword, val, kwtype):
        if not isinstance(val, kwtype):
            raise TypeError, 'keyword %s has bad type %s (expecting %s)' % \
                  (keyword, type(val), kwtype)
        if isinstance(val, types.FunctionType):
            val = classmethod(val)
        type.__setattr__(cls, keyword, val)

    def _new_param(cls, name, value):
        cls._params[name] = value
        if hasattr(value, 'default'):
            setattr(cls, name, value.default)

    # Set attribute (called on foo.attr = value when foo is an
    # instance of class cls).
    def __setattr__(cls, attr, value):
        # normal processing for private attributes
        if attr.startswith('_'):
            type.__setattr__(cls, attr, value)
            return

        if cls.keywords.has_key(attr):
            cls._set_keyword(attr, value, cls.keywords[attr])
            return

        if cls._ports.has_key(attr):
            self._ports[attr].connect(self, attr, value)
            return

        # must be SimObject param
        param = cls._params.get(attr, None)
        if param:
            # It's ok: set attribute by delegating to 'object' class.
            if isSimObjectOrSequence(value) and cls._instantiated:
                raise AttributeError, \
                  "Cannot set SimObject parameter '%s' after\n" \
                  "    class %s has been instantiated or subclassed" \
                  % (attr, cls.__name__)
            try:
                cls._values[attr] = param.convert(value)
            except Exception, e:
                msg = "%s\nError setting param %s.%s to %s\n" % \
                      (e, cls.__name__, attr, value)
                e.args = (msg, )
                raise
        # I would love to get rid of this
        elif isSimObjectOrSequence(value):
           cls._values[attr] = value
        else:
            raise AttributeError, \
                  "Class %s has no parameter %s" % (cls.__name__, attr)

    def __getattr__(cls, attr):
        if cls._values.has_key(attr):
            return cls._values[attr]

        raise AttributeError, \
              "object '%s' has no attribute '%s'" % (cls.__name__, attr)

    # Create a subclass of this class.  Basically a function interface
    # to the standard Python class definition mechanism, primarily for
    # internal use.  'memo' dict param supports "deep copy" (really
    # "deep subclass") operations... within a given operation,
    # multiple references to a class should result in a single
    # subclass object with multiple references to it (as opposed to
    # mutiple unique subclasses).
    def makeSubclass(cls, init_dict, memo = {}):
        subcls = memo.get(cls)
        if not subcls:
            name = cls.__name__ + '_' + str(cls._anon_subclass_counter)
            cls._anon_subclass_counter += 1
            subcls = MetaSimObject(name, (cls,),
                                   { '_init_dict': init_dict, '_memo': memo })
        return subcls

# The ConfigNode class is the root of the special hierarchy.  Most of
# the code in this class deals with the configuration hierarchy itself
# (parent/child node relationships).
class SimObject(object):
    # Specify metaclass.  Any class inheriting from SimObject will
    # get this metaclass.
    __metaclass__ = MetaSimObject

    # __new__ operator allocates new instances of the class.  We
    # override it here just to support "deep instantiation" operation
    # via the _memo dict.  When recursively instantiating an object
    # hierarchy we want to make sure that each class is instantiated
    # only once, and that if there are multiple references to the same
    # original class, we end up with the corresponding instantiated
    # references all pointing to the same instance.
    def __new__(cls, _memo = None, **kwargs):
        if _memo is not None and _memo.has_key(cls):
            # return previously instantiated object
            assert(len(kwargs) == 0)
            return _memo[cls]
        else:
            # Need a new one... if it needs to be memoized, this will
            # happen in __init__.  We defer the insertion until then
            # so __init__ can use the memo dict to tell whether or not
            # to perform the initialization.
            return super(SimObject, cls).__new__(cls, **kwargs)

    # Initialize new instance previously allocated by __new__.  For
    # objects with SimObject-valued params, we need to recursively
    # instantiate the classes represented by those param values as
    # well (in a consistent "deep copy"-style fashion; see comment
    # above).
    def __init__(self, _memo = None, **kwargs):
        if _memo is not None:
            # We're inside a "deep instantiation"
            assert(isinstance(_memo, dict))
            assert(len(kwargs) == 0)
            if _memo.has_key(self.__class__):
                # __new__ returned an existing, already initialized
                # instance, so there's nothing to do here
                assert(_memo[self.__class__] == self)
                return
            # no pre-existing object, so remember this one here
            _memo[self.__class__] = self
        else:
            # This is a new top-level instantiation... don't memoize
            # this objcet, but prepare to memoize any recursively
            # instantiated objects.
            _memo = {}

        self.__class__._instantiated = True

        self._children = {}
        # Inherit parameter values from class using multidict so
        # individual value settings can be overridden.
        self._values = multidict(self.__class__._values)
        # For SimObject-valued parameters, the class should have
        # classes (not instances) for the values.  We need to
        # instantiate these classes rather than just inheriting the
        # class object.
        for key,val in self.__class__._values.iteritems():
            if isSimObjectClass(val):
                setattr(self, key, val(_memo))
            elif isSimObjectClassSequence(val) and len(val):
                setattr(self, key, [ v(_memo) for v in val ])
        # apply attribute assignments from keyword args, if any
        for key,val in kwargs.iteritems():
            setattr(self, key, val)

        self._ccObject = None  # pointer to C++ object
        self._port_map = {}    # map of port connections

    # Use this instance as a template to create a new class.
    def makeClass(self, memo = {}):
        cls = memo.get(self)
        if not cls:
            cls =  self.__class__.makeSubclass(self._values.local)
            memo[self] = cls
        return cls

    # Direct instantiation of instances (cloning) is no longer
    # allowed; must generate class from instance first.
    def __call__(self, **kwargs):
        raise TypeError, "cannot instantiate SimObject; "\
              "use makeClass() to make class first"

    def __getattr__(self, attr):
        if self._ports.has_key(attr):
            # return reference that can be assigned to another port
            # via __setattr__
            return self._ports[attr].makeRef(self, attr)

        if self._values.has_key(attr):
            return self._values[attr]

        raise AttributeError, "object '%s' has no attribute '%s'" \
              % (self.__class__.__name__, attr)

    # Set attribute (called on foo.attr = value when foo is an
    # instance of class cls).
    def __setattr__(self, attr, value):
        # normal processing for private attributes
        if attr.startswith('_'):
            object.__setattr__(self, attr, value)
            return

        if self._ports.has_key(attr):
            # set up port connection
            self._ports[attr].connect(self, attr, value)
            return

        # must be SimObject param
        param = self._params.get(attr, None)
        if param:
            # It's ok: set attribute by delegating to 'object' class.
            try:
                value = param.convert(value)
            except Exception, e:
                msg = "%s\nError setting param %s.%s to %s\n" % \
                      (e, self.__class__.__name__, attr, value)
                e.args = (msg, )
                raise
        # I would love to get rid of this
        elif isSimObjectOrSequence(value):
            pass
        else:
            raise AttributeError, "Class %s has no parameter %s" \
                  % (self.__class__.__name__, attr)

        # clear out old child with this name, if any
        self.clear_child(attr)

        if isSimObject(value):
            value.set_path(self, attr)
        elif isSimObjectSequence(value):
            value = SimObjVector(value)
            [v.set_path(self, "%s%d" % (attr, i)) for i,v in enumerate(value)]

        self._values[attr] = value

    # this hack allows tacking a '[0]' onto parameters that may or may
    # not be vectors, and always getting the first element (e.g. cpus)
    def __getitem__(self, key):
        if key == 0:
            return self
        raise TypeError, "Non-zero index '%s' to SimObject" % key

    # clear out children with given name, even if it's a vector
    def clear_child(self, name):
        if not self._children.has_key(name):
            return
        child = self._children[name]
        if isinstance(child, SimObjVector):
            for i in xrange(len(child)):
                del self._children["s%d" % (name, i)]
        del self._children[name]

    def add_child(self, name, value):
        self._children[name] = value

    def set_path(self, parent, name):
        if not hasattr(self, '_parent'):
            self._parent = parent
            self._name = name
            parent.add_child(name, self)

    def path(self):
        if not hasattr(self, '_parent'):
            return 'root'
        ppath = self._parent.path()
        if ppath == 'root':
            return self._name
        return ppath + "." + self._name

    def __str__(self):
        return self.path()

    def ini_str(self):
        return self.path()

    def find_any(self, ptype):
        if isinstance(self, ptype):
            return self, True

        found_obj = None
        for child in self._children.itervalues():
            if isinstance(child, ptype):
                if found_obj != None and child != found_obj:
                    raise AttributeError, \
                          'parent.any matched more than one: %s %s' % \
                          (found_obj.path, child.path)
                found_obj = child
        # search param space
        for pname,pdesc in self._params.iteritems():
            if issubclass(pdesc.ptype, ptype):
                match_obj = self._values[pname]
                if found_obj != None and found_obj != match_obj:
                    raise AttributeError, \
                          'parent.any matched more than one: %s' % obj.path
                found_obj = match_obj
        return found_obj, found_obj != None

    def unproxy(self, base):
        return self

    def print_ini(self):
        print '[' + self.path() + ']'	# .ini section header

        instanceDict[self.path()] = self

        if hasattr(self, 'type') and not isinstance(self, ParamContext):
            print 'type=%s' % self.type

        child_names = self._children.keys()
        child_names.sort()
        np_child_names = [c for c in child_names \
                          if not isinstance(self._children[c], ParamContext)]
        if len(np_child_names):
            print 'children=%s' % ' '.join(np_child_names)

        param_names = self._params.keys()
        param_names.sort()
        for param in param_names:
            value = self._values.get(param, None)
            if value != None:
                if isproxy(value):
                    try:
                        value = value.unproxy(self)
                    except:
                        print >> sys.stderr, \
                              "Error in unproxying param '%s' of %s" % \
                              (param, self.path())
                        raise
                    setattr(self, param, value)
                print '%s=%s' % (param, self._values[param].ini_str())

        print	# blank line between objects

        for child in child_names:
            self._children[child].print_ini()

    # Call C++ to create C++ object corresponding to this object and
    # (recursively) all its children
    def createCCObject(self):
        if self._ccObject:
            return
        self._ccObject = -1
        self._ccObject = m5.main.createSimObject(self.path())
        for child in self._children.itervalues():
            child.createCCObject()

    # Create C++ port connections corresponding to the connections in
    # _port_map (& recursively for all children)
    def connectPorts(self):
        for portRef in self._port_map.itervalues():
            applyOrMap(portRef, 'ccConnect')
        for child in self._children.itervalues():
            child.connectPorts()

    # generate output file for 'dot' to display as a pretty graph.
    # this code is currently broken.
    def outputDot(self, dot):
        label = "{%s|" % self.path
        if isSimObject(self.realtype):
            label +=  '%s|' % self.type

        if self.children:
            # instantiate children in same order they were added for
            # backward compatibility (else we can end up with cpu1
            # before cpu0).
            for c in self.children:
                dot.add_edge(pydot.Edge(self.path,c.path, style="bold"))

        simobjs = []
        for param in self.params:
            try:
                if param.value is None:
                    raise AttributeError, 'Parameter with no value'

                value = param.value
                string = param.string(value)
            except Exception, e:
                msg = 'exception in %s:%s\n%s' % (self.name, param.name, e)
                e.args = (msg, )
                raise

            if isSimObject(param.ptype) and string != "Null":
                simobjs.append(string)
            else:
                label += '%s = %s\\n' % (param.name, string)

        for so in simobjs:
            label += "|<%s> %s" % (so, so)
            dot.add_edge(pydot.Edge("%s:%s" % (self.path, so), so,
                                    tailport="w"))
        label += '}'
        dot.add_node(pydot.Node(self.path,shape="Mrecord",label=label))

        # recursively dump out children
        for c in self.children:
            c.outputDot(dot)

class ParamContext(SimObject):
    pass

#####################################################################
#
# Proxy object support.
#
#####################################################################

class BaseProxy(object):
    def __init__(self, search_self, search_up):
        self._search_self = search_self
        self._search_up = search_up
        self._multiplier = None

    def __setattr__(self, attr, value):
        if not attr.startswith('_'):
            raise AttributeError, 'cannot set attribute on proxy object'
        super(BaseProxy, self).__setattr__(attr, value)

    # support multiplying proxies by constants
    def __mul__(self, other):
        if not isinstance(other, (int, long, float)):
            raise TypeError, "Proxy multiplier must be integer"
        if self._multiplier == None:
            self._multiplier = other
        else:
            # support chained multipliers
            self._multiplier *= other
        return self

    __rmul__ = __mul__

    def _mulcheck(self, result):
        if self._multiplier == None:
            return result
        return result * self._multiplier

    def unproxy(self, base):
        obj = base
        done = False

        if self._search_self:
            result, done = self.find(obj)

        if self._search_up:
            while not done:
                try: obj = obj._parent
                except: break

                result, done = self.find(obj)

        if not done:
            raise AttributeError, "Can't resolve proxy '%s' from '%s'" % \
                  (self.path(), base.path())

        if isinstance(result, BaseProxy):
            if result == self:
                raise RuntimeError, "Cycle in unproxy"
            result = result.unproxy(obj)

        return self._mulcheck(result)

    def getindex(obj, index):
        if index == None:
            return obj
        try:
            obj = obj[index]
        except TypeError:
            if index != 0:
                raise
            # if index is 0 and item is not subscriptable, just
            # use item itself (so cpu[0] works on uniprocessors)
        return obj
    getindex = staticmethod(getindex)

    def set_param_desc(self, pdesc):
        self._pdesc = pdesc

class AttrProxy(BaseProxy):
    def __init__(self, search_self, search_up, attr):
        super(AttrProxy, self).__init__(search_self, search_up)
        self._attr = attr
        self._modifiers = []

    def __getattr__(self, attr):
        # python uses __bases__ internally for inheritance
        if attr.startswith('_'):
            return super(AttrProxy, self).__getattr__(self, attr)
        if hasattr(self, '_pdesc'):
            raise AttributeError, "Attribute reference on bound proxy"
        self._modifiers.append(attr)
        return self

    # support indexing on proxies (e.g., Self.cpu[0])
    def __getitem__(self, key):
        if not isinstance(key, int):
            raise TypeError, "Proxy object requires integer index"
        self._modifiers.append(key)
        return self

    def find(self, obj):
        try:
            val = getattr(obj, self._attr)
        except:
            return None, False
        while isproxy(val):
            val = val.unproxy(obj)
        for m in self._modifiers:
            if isinstance(m, str):
                val = getattr(val, m)
            elif isinstance(m, int):
                val = val[m]
            else:
                assert("Item must be string or integer")
            while isproxy(val):
                val = val.unproxy(obj)
        return val, True

    def path(self):
        p = self._attr
        for m in self._modifiers:
            if isinstance(m, str):
                p += '.%s' % m
            elif isinstance(m, int):
                p += '[%d]' % m
            else:
                assert("Item must be string or integer")
        return p

class AnyProxy(BaseProxy):
    def find(self, obj):
        return obj.find_any(self._pdesc.ptype)

    def path(self):
        return 'any'

def isproxy(obj):
    if isinstance(obj, (BaseProxy, EthernetAddr)):
        return True
    elif isinstance(obj, (list, tuple)):
        for v in obj:
            if isproxy(v):
                return True
    return False

class ProxyFactory(object):
    def __init__(self, search_self, search_up):
        self.search_self = search_self
        self.search_up = search_up

    def __getattr__(self, attr):
        if attr == 'any':
            return AnyProxy(self.search_self, self.search_up)
        else:
            return AttrProxy(self.search_self, self.search_up, attr)

# global objects for handling proxies
Parent = ProxyFactory(search_self = False, search_up = True)
Self = ProxyFactory(search_self = True, search_up = False)

#####################################################################
#
# Parameter description classes
#
# The _params dictionary in each class maps parameter names to
# either a Param or a VectorParam object.  These objects contain the
# parameter description string, the parameter type, and the default
# value (loaded from the PARAM section of the .odesc files).  The
# _convert() method on these objects is used to force whatever value
# is assigned to the parameter to the appropriate type.
#
# Note that the default values are loaded into the class's attribute
# space when the parameter dictionary is initialized (in
# MetaConfigNode._setparams()); after that point they aren't used.
#
#####################################################################

# Dummy base class to identify types that are legitimate for SimObject
# parameters.
class ParamValue(object):

    # default for printing to .ini file is regular string conversion.
    # will be overridden in some cases
    def ini_str(self):
        return str(self)

    # allows us to blithely call unproxy() on things without checking
    # if they're really proxies or not
    def unproxy(self, base):
        return self

# Regular parameter description.
class ParamDesc(object):
    def __init__(self, ptype_str, ptype, *args, **kwargs):
        self.ptype_str = ptype_str
        # remember ptype only if it is provided
        if ptype != None:
            self.ptype = ptype

        if args:
            if len(args) == 1:
                self.desc = args[0]
            elif len(args) == 2:
                self.default = args[0]
                self.desc = args[1]
            else:
                raise TypeError, 'too many arguments'

        if kwargs.has_key('desc'):
            assert(not hasattr(self, 'desc'))
            self.desc = kwargs['desc']
            del kwargs['desc']

        if kwargs.has_key('default'):
            assert(not hasattr(self, 'default'))
            self.default = kwargs['default']
            del kwargs['default']

        if kwargs:
            raise TypeError, 'extra unknown kwargs %s' % kwargs

        if not hasattr(self, 'desc'):
            raise TypeError, 'desc attribute missing'

    def __getattr__(self, attr):
        if attr == 'ptype':
            try:
                ptype = eval(self.ptype_str, m5.objects.__dict__)
                if not isinstance(ptype, type):
                    panic("Param qualifier is not a type: %s" % self.ptype)
                self.ptype = ptype
                return ptype
            except NameError:
                pass
        raise AttributeError, "'%s' object has no attribute '%s'" % \
              (type(self).__name__, attr)

    def convert(self, value):
        if isinstance(value, BaseProxy):
            value.set_param_desc(self)
            return value
        if not hasattr(self, 'ptype') and isNullPointer(value):
            # deferred evaluation of SimObject; continue to defer if
            # we're just assigning a null pointer
            return value
        if isinstance(value, self.ptype):
            return value
        if isNullPointer(value) and issubclass(self.ptype, SimObject):
            return value
        return self.ptype(value)

# Vector-valued parameter description.  Just like ParamDesc, except
# that the value is a vector (list) of the specified type instead of a
# single value.

class VectorParamValue(list):
    def ini_str(self):
        return ' '.join([v.ini_str() for v in self])

    def unproxy(self, base):
        return [v.unproxy(base) for v in self]

class SimObjVector(VectorParamValue):
    def print_ini(self):
        for v in self:
            v.print_ini()

class VectorParamDesc(ParamDesc):
    # Convert assigned value to appropriate type.  If the RHS is not a
    # list or tuple, it generates a single-element list.
    def convert(self, value):
        if isinstance(value, (list, tuple)):
            # list: coerce each element into new list
            tmp_list = [ ParamDesc.convert(self, v) for v in value ]
            if isSimObjectSequence(tmp_list):
                return SimObjVector(tmp_list)
            else:
                return VectorParamValue(tmp_list)
        else:
            # singleton: leave it be (could coerce to a single-element
            # list here, but for some historical reason we don't...
            return ParamDesc.convert(self, value)


class ParamFactory(object):
    def __init__(self, param_desc_class, ptype_str = None):
        self.param_desc_class = param_desc_class
        self.ptype_str = ptype_str

    def __getattr__(self, attr):
        if self.ptype_str:
            attr = self.ptype_str + '.' + attr
        return ParamFactory(self.param_desc_class, attr)

    # E.g., Param.Int(5, "number of widgets")
    def __call__(self, *args, **kwargs):
        caller_frame = inspect.currentframe().f_back
        ptype = None
        try:
            ptype = eval(self.ptype_str,
                         caller_frame.f_globals, caller_frame.f_locals)
            if not isinstance(ptype, type):
                raise TypeError, \
                      "Param qualifier is not a type: %s" % ptype
        except NameError:
            # if name isn't defined yet, assume it's a SimObject, and
            # try to resolve it later
            pass
        return self.param_desc_class(self.ptype_str, ptype, *args, **kwargs)

Param = ParamFactory(ParamDesc)
VectorParam = ParamFactory(VectorParamDesc)

#####################################################################
#
# Parameter Types
#
# Though native Python types could be used to specify parameter types
# (the 'ptype' field of the Param and VectorParam classes), it's more
# flexible to define our own set of types.  This gives us more control
# over how Python expressions are converted to values (via the
# __init__() constructor) and how these values are printed out (via
# the __str__() conversion method).  Eventually we'll need these types
# to correspond to distinct C++ types as well.
#
#####################################################################

# superclass for "numeric" parameter values, to emulate math
# operations in a type-safe way.  e.g., a Latency times an int returns
# a new Latency object.
class NumericParamValue(ParamValue):
    def __str__(self):
        return str(self.value)

    def __float__(self):
        return float(self.value)

    # hook for bounds checking
    def _check(self):
        return

    def __mul__(self, other):
        newobj = self.__class__(self)
        newobj.value *= other
        newobj._check()
        return newobj

    __rmul__ = __mul__

    def __div__(self, other):
        newobj = self.__class__(self)
        newobj.value /= other
        newobj._check()
        return newobj

    def __sub__(self, other):
        newobj = self.__class__(self)
        newobj.value -= other
        newobj._check()
        return newobj

class Range(ParamValue):
    type = int # default; can be overridden in subclasses
    def __init__(self, *args, **kwargs):

        def handle_kwargs(self, kwargs):
            if 'end' in kwargs:
                self.second = self.type(kwargs.pop('end'))
            elif 'size' in kwargs:
                self.second = self.first + self.type(kwargs.pop('size')) - 1
            else:
                raise TypeError, "Either end or size must be specified"

        if len(args) == 0:
            self.first = self.type(kwargs.pop('start'))
            handle_kwargs(self, kwargs)

        elif len(args) == 1:
            if kwargs:
                self.first = self.type(args[0])
                handle_kwargs(self, kwargs)
            elif isinstance(args[0], Range):
                self.first = self.type(args[0].first)
                self.second = self.type(args[0].second)
            else:
                self.first = self.type(0)
                self.second = self.type(args[0]) - 1

        elif len(args) == 2:
            self.first = self.type(args[0])
            self.second = self.type(args[1])
        else:
            raise TypeError, "Too many arguments specified"

        if kwargs:
            raise TypeError, "too many keywords: %s" % kwargs.keys()

    def __str__(self):
        return '%s:%s' % (self.first, self.second)

# Metaclass for bounds-checked integer parameters.  See CheckedInt.
class CheckedIntType(type):
    def __init__(cls, name, bases, dict):
        super(CheckedIntType, cls).__init__(name, bases, dict)

        # CheckedInt is an abstract base class, so we actually don't
        # want to do any processing on it... the rest of this code is
        # just for classes that derive from CheckedInt.
        if name == 'CheckedInt':
            return

        if not (hasattr(cls, 'min') and hasattr(cls, 'max')):
            if not (hasattr(cls, 'size') and hasattr(cls, 'unsigned')):
                panic("CheckedInt subclass %s must define either\n" \
                      "    'min' and 'max' or 'size' and 'unsigned'\n" \
                      % name);
            if cls.unsigned:
                cls.min = 0
                cls.max = 2 ** cls.size - 1
            else:
                cls.min = -(2 ** (cls.size - 1))
                cls.max = (2 ** (cls.size - 1)) - 1

# Abstract superclass for bounds-checked integer parameters.  This
# class is subclassed to generate parameter classes with specific
# bounds.  Initialization of the min and max bounds is done in the
# metaclass CheckedIntType.__init__.
class CheckedInt(NumericParamValue):
    __metaclass__ = CheckedIntType

    def _check(self):
        if not self.min <= self.value <= self.max:
            raise TypeError, 'Integer param out of bounds %d < %d < %d' % \
                  (self.min, self.value, self.max)

    def __init__(self, value):
        if isinstance(value, str):
            self.value = toInteger(value)
        elif isinstance(value, (int, long, float)):
            self.value = long(value)
        self._check()

class Int(CheckedInt):      size = 32; unsigned = False
class Unsigned(CheckedInt): size = 32; unsigned = True

class Int8(CheckedInt):     size =  8; unsigned = False
class UInt8(CheckedInt):    size =  8; unsigned = True
class Int16(CheckedInt):    size = 16; unsigned = False
class UInt16(CheckedInt):   size = 16; unsigned = True
class Int32(CheckedInt):    size = 32; unsigned = False
class UInt32(CheckedInt):   size = 32; unsigned = True
class Int64(CheckedInt):    size = 64; unsigned = False
class UInt64(CheckedInt):   size = 64; unsigned = True

class Counter(CheckedInt):  size = 64; unsigned = True
class Tick(CheckedInt):     size = 64; unsigned = True
class TcpPort(CheckedInt):  size = 16; unsigned = True
class UdpPort(CheckedInt):  size = 16; unsigned = True

class Percent(CheckedInt):  min = 0; max = 100

class Float(ParamValue, float):
    pass

class MemorySize(CheckedInt):
    size = 64
    unsigned = True
    def __init__(self, value):
        if isinstance(value, MemorySize):
            self.value = value.value
        else:
            self.value = toMemorySize(value)
        self._check()

class MemorySize32(CheckedInt):
    size = 32
    unsigned = True
    def __init__(self, value):
        if isinstance(value, MemorySize):
            self.value = value.value
        else:
            self.value = toMemorySize(value)
        self._check()

class Addr(CheckedInt):
    size = 64
    unsigned = True
    def __init__(self, value):
        if isinstance(value, Addr):
            self.value = value.value
        else:
            try:
                self.value = toMemorySize(value)
            except TypeError:
                self.value = long(value)
        self._check()

class AddrRange(Range):
    type = Addr

# String-valued parameter.  Just mixin the ParamValue class
# with the built-in str class.
class String(ParamValue,str):
    pass

# Boolean parameter type.  Python doesn't let you subclass bool, since
# it doesn't want to let you create multiple instances of True and
# False.  Thus this is a little more complicated than String.
class Bool(ParamValue):
    def __init__(self, value):
        try:
            self.value = toBool(value)
        except TypeError:
            self.value = bool(value)

    def __str__(self):
        return str(self.value)

    def ini_str(self):
        if self.value:
            return 'true'
        return 'false'

def IncEthernetAddr(addr, val = 1):
    bytes = map(lambda x: int(x, 16), addr.split(':'))
    bytes[5] += val
    for i in (5, 4, 3, 2, 1):
        val,rem = divmod(bytes[i], 256)
        bytes[i] = rem
        if val == 0:
            break
        bytes[i - 1] += val
    assert(bytes[0] <= 255)
    return ':'.join(map(lambda x: '%02x' % x, bytes))

class NextEthernetAddr(object):
    addr = "00:90:00:00:00:01"

    def __init__(self, inc = 1):
        self.value = NextEthernetAddr.addr
        NextEthernetAddr.addr = IncEthernetAddr(NextEthernetAddr.addr, inc)

class EthernetAddr(ParamValue):
    def __init__(self, value):
        if value == NextEthernetAddr:
            self.value = value
            return

        if not isinstance(value, str):
            raise TypeError, "expected an ethernet address and didn't get one"

        bytes = value.split(':')
        if len(bytes) != 6:
            raise TypeError, 'invalid ethernet address %s' % value

        for byte in bytes:
            if not 0 <= int(byte) <= 256:
                raise TypeError, 'invalid ethernet address %s' % value

        self.value = value

    def unproxy(self, base):
        if self.value == NextEthernetAddr:
            self.addr = self.value().value
        return self

    def __str__(self):
        if self.value == NextEthernetAddr:
            if hasattr(self, 'addr'):
                return self.addr
            else:
                return "NextEthernetAddr (unresolved)"
        else:
            return self.value

# Special class for NULL pointers.  Note the special check in
# make_param_value() above that lets these be assigned where a
# SimObject is required.
# only one copy of a particular node
class NullSimObject(object):
    __metaclass__ = Singleton

    def __call__(cls):
        return cls

    def _instantiate(self, parent = None, path = ''):
        pass

    def ini_str(self):
        return 'Null'

    def unproxy(self, base):
        return self

    def set_path(self, parent, name):
        pass
    def __str__(self):
        return 'Null'

# The only instance you'll ever need...
Null = NULL = NullSimObject()

# Enumerated types are a little more complex.  The user specifies the
# type as Enum(foo) where foo is either a list or dictionary of
# alternatives (typically strings, but not necessarily so).  (In the
# long run, the integer value of the parameter will be the list index
# or the corresponding dictionary value.  For now, since we only check
# that the alternative is valid and then spit it into a .ini file,
# there's not much point in using the dictionary.)

# What Enum() must do is generate a new type encapsulating the
# provided list/dictionary so that specific values of the parameter
# can be instances of that type.  We define two hidden internal
# classes (_ListEnum and _DictEnum) to serve as base classes, then
# derive the new type from the appropriate base class on the fly.


# Metaclass for Enum types
class MetaEnum(type):
    def __init__(cls, name, bases, init_dict):
        if init_dict.has_key('map'):
            if not isinstance(cls.map, dict):
                raise TypeError, "Enum-derived class attribute 'map' " \
                      "must be of type dict"
            # build list of value strings from map
            cls.vals = cls.map.keys()
            cls.vals.sort()
        elif init_dict.has_key('vals'):
            if not isinstance(cls.vals, list):
                raise TypeError, "Enum-derived class attribute 'vals' " \
                      "must be of type list"
            # build string->value map from vals sequence
            cls.map = {}
            for idx,val in enumerate(cls.vals):
                cls.map[val] = idx
        else:
            raise TypeError, "Enum-derived class must define "\
                  "attribute 'map' or 'vals'"

        super(MetaEnum, cls).__init__(name, bases, init_dict)

    def cpp_declare(cls):
        s = 'enum %s {\n    ' % cls.__name__
        s += ',\n    '.join(['%s = %d' % (v,cls.map[v]) for v in cls.vals])
        s += '\n};\n'
        return s

# Base class for enum types.
class Enum(ParamValue):
    __metaclass__ = MetaEnum
    vals = []

    def __init__(self, value):
        if value not in self.map:
            raise TypeError, "Enum param got bad value '%s' (not in %s)" \
                  % (value, self.vals)
        self.value = value

    def __str__(self):
        return self.value

ticks_per_sec = None

# how big does a rounding error need to be before we warn about it?
frequency_tolerance = 0.001  # 0.1%

# convert a floting-point # of ticks to integer, and warn if rounding
# discards too much precision
def tick_check(float_ticks):
    if float_ticks == 0:
        return 0
    int_ticks = int(round(float_ticks))
    err = (float_ticks - int_ticks) / float_ticks
    if err > frequency_tolerance:
        print >> sys.stderr, "Warning: rounding error > tolerance"
        print >> sys.stderr, "    %f rounded to %d" % (float_ticks, int_ticks)
        #raise ValueError
    return int_ticks

def getLatency(value):
    if isinstance(value, Latency) or isinstance(value, Clock):
        return value.value
    elif isinstance(value, Frequency) or isinstance(value, RootClock):
        return 1 / value.value
    elif isinstance(value, str):
        try:
            return toLatency(value)
        except ValueError:
            try:
                return 1 / toFrequency(value)
            except ValueError:
                pass # fall through
    raise ValueError, "Invalid Frequency/Latency value '%s'" % value


class Latency(NumericParamValue):
    def __init__(self, value):
        self.value = getLatency(value)

    def __getattr__(self, attr):
        if attr in ('latency', 'period'):
            return self
        if attr == 'frequency':
            return Frequency(self)
        raise AttributeError, "Latency object has no attribute '%s'" % attr

    # convert latency to ticks
    def ini_str(self):
        return str(tick_check(self.value * ticks_per_sec))

class Frequency(NumericParamValue):
    def __init__(self, value):
        self.value = 1 / getLatency(value)

    def __getattr__(self, attr):
        if attr == 'frequency':
            return self
        if attr in ('latency', 'period'):
            return Latency(self)
        raise AttributeError, "Frequency object has no attribute '%s'" % attr

    # convert frequency to ticks per period
    def ini_str(self):
        return self.period.ini_str()

# Just like Frequency, except ini_str() is absolute # of ticks per sec (Hz).
# We can't inherit from Frequency because we don't want it to be directly
# assignable to a regular Frequency parameter.
class RootClock(ParamValue):
    def __init__(self, value):
        self.value = 1 / getLatency(value)

    def __getattr__(self, attr):
        if attr == 'frequency':
            return Frequency(self)
        if attr in ('latency', 'period'):
            return Latency(self)
        raise AttributeError, "Frequency object has no attribute '%s'" % attr

    def ini_str(self):
        return str(tick_check(self.value))

# A generic frequency and/or Latency value.  Value is stored as a latency,
# but to avoid ambiguity this object does not support numeric ops (* or /).
# An explicit conversion to a Latency or Frequency must be made first.
class Clock(ParamValue):
    def __init__(self, value):
        self.value = getLatency(value)

    def __getattr__(self, attr):
        if attr == 'frequency':
            return Frequency(self)
        if attr in ('latency', 'period'):
            return Latency(self)
        raise AttributeError, "Frequency object has no attribute '%s'" % attr

    def ini_str(self):
        return self.period.ini_str()

class NetworkBandwidth(float,ParamValue):
    def __new__(cls, value):
        val = toNetworkBandwidth(value) / 8.0
        return super(cls, NetworkBandwidth).__new__(cls, val)

    def __str__(self):
        return str(self.val)

    def ini_str(self):
        return '%f' % (ticks_per_sec / float(self))

class MemoryBandwidth(float,ParamValue):
    def __new__(self, value):
        val = toMemoryBandwidth(value)
        return super(cls, MemoryBandwidth).__new__(cls, val)

    def __str__(self):
        return str(self.val)

    def ini_str(self):
        return '%f' % (ticks_per_sec / float(self))

#
# "Constants"... handy aliases for various values.
#

# Some memory range specifications use this as a default upper bound.
MaxAddr = Addr.max
MaxTick = Tick.max
AllMemory = AddrRange(0, MaxAddr)


#####################################################################
#
# Port objects
#
# Ports are used to interconnect objects in the memory system.
#
#####################################################################

# Port reference: encapsulates a reference to a particular port on a
# particular SimObject.
class PortRef(object):
    def __init__(self, simobj, name, isVec):
        self.simobj = simobj
        self.name = name
        self.index = -1
        self.isVec = isVec # is this a vector port?
        self.peer = None   # not associated with another port yet
        self.ccConnected = False # C++ port connection done?

    # Set peer port reference.  Called via __setattr__ as a result of
    # a port assignment, e.g., "obj1.port1 = obj2.port2".
    def setPeer(self, other):
        if self.isVec:
            curMap = self.simobj._port_map.get(self.name, [])
            self.index = len(curMap)
            curMap.append(other)
        else:
            curMap = self.simobj._port_map.get(self.name)
            if curMap and not self.isVec:
                print "warning: overwriting port", self.simobj, self.name
            curMap = other
        self.simobj._port_map[self.name] = curMap
        self.peer = other

    # Call C++ to create corresponding port connection between C++ objects
    def ccConnect(self):
        if self.ccConnected: # already done this
            return
        peer = self.peer
        m5.main.connectPorts(self.simobj._ccObject, self.name, self.index,
                             peer.simobj._ccObject, peer.name, peer.index)
        self.ccConnected = True
        peer.ccConnected = True

# Port description object.  Like a ParamDesc object, this represents a
# logical port in the SimObject class, not a particular port on a
# SimObject instance.  The latter are represented by PortRef objects.
class Port(object):
    def __init__(self, desc):
        self.desc = desc
        self.isVec = False

    # Generate a PortRef for this port on the given SimObject with the
    # given name
    def makeRef(self, simobj, name):
        return PortRef(simobj, name, self.isVec)

    # Connect an instance of this port (on the given SimObject with
    # the given name) with the port described by the supplied PortRef
    def connect(self, simobj, name, ref):
        myRef = self.makeRef(simobj, name)
        myRef.setPeer(ref)
        ref.setPeer(myRef)

# VectorPort description object.  Like Port, but represents a vector
# of connections (e.g., as on a Bus).
class VectorPort(Port):
    def __init__(self, desc):
        Port.__init__(self, desc)
        self.isVec = True

#####################################################################

# __all__ defines the list of symbols that get exported when
# 'from config import *' is invoked.  Try to keep this reasonably
# short to avoid polluting other namespaces.
__all__ = ['SimObject', 'ParamContext', 'Param', 'VectorParam',
           'Parent', 'Self',
           'Enum', 'Bool', 'String', 'Float',
           'Int', 'Unsigned', 'Int8', 'UInt8', 'Int16', 'UInt16',
           'Int32', 'UInt32', 'Int64', 'UInt64',
           'Counter', 'Addr', 'Tick', 'Percent',
           'TcpPort', 'UdpPort', 'EthernetAddr',
           'MemorySize', 'MemorySize32',
           'Latency', 'Frequency', 'RootClock', 'Clock',
           'NetworkBandwidth', 'MemoryBandwidth',
           'Range', 'AddrRange', 'MaxAddr', 'MaxTick', 'AllMemory',
           'Null', 'NULL',
           'NextEthernetAddr',
           'Port', 'VectorPort']