1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
|
# Copyright (c) 2004-2006 The Regents of The University of Michigan
# Copyright (c) 2010 Advanced Micro Devices, Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Steve Reinhardt
# Nathan Binkert
#####################################################################
#
# Parameter description classes
#
# The _params dictionary in each class maps parameter names to either
# a Param or a VectorParam object. These objects contain the
# parameter description string, the parameter type, and the default
# value (if any). The convert() method on these objects is used to
# force whatever value is assigned to the parameter to the appropriate
# type.
#
# Note that the default values are loaded into the class's attribute
# space when the parameter dictionary is initialized (in
# MetaSimObject._new_param()); after that point they aren't used.
#
#####################################################################
import copy
import datetime
import re
import sys
import time
import math
import proxy
import ticks
from util import *
def isSimObject(*args, **kwargs):
return SimObject.isSimObject(*args, **kwargs)
def isSimObjectSequence(*args, **kwargs):
return SimObject.isSimObjectSequence(*args, **kwargs)
def isSimObjectClass(*args, **kwargs):
return SimObject.isSimObjectClass(*args, **kwargs)
allParams = {}
class MetaParamValue(type):
def __new__(mcls, name, bases, dct):
cls = super(MetaParamValue, mcls).__new__(mcls, name, bases, dct)
assert name not in allParams
allParams[name] = cls
return cls
# Dummy base class to identify types that are legitimate for SimObject
# parameters.
class ParamValue(object):
__metaclass__ = MetaParamValue
@classmethod
def cxx_predecls(cls, code):
pass
@classmethod
def swig_predecls(cls, code):
pass
# default for printing to .ini file is regular string conversion.
# will be overridden in some cases
def ini_str(self):
return str(self)
# allows us to blithely call unproxy() on things without checking
# if they're really proxies or not
def unproxy(self, base):
return self
# Regular parameter description.
class ParamDesc(object):
file_ext = 'ptype'
def __init__(self, ptype_str, ptype, *args, **kwargs):
self.ptype_str = ptype_str
# remember ptype only if it is provided
if ptype != None:
self.ptype = ptype
if args:
if len(args) == 1:
self.desc = args[0]
elif len(args) == 2:
self.default = args[0]
self.desc = args[1]
else:
raise TypeError, 'too many arguments'
if kwargs.has_key('desc'):
assert(not hasattr(self, 'desc'))
self.desc = kwargs['desc']
del kwargs['desc']
if kwargs.has_key('default'):
assert(not hasattr(self, 'default'))
self.default = kwargs['default']
del kwargs['default']
if kwargs:
raise TypeError, 'extra unknown kwargs %s' % kwargs
if not hasattr(self, 'desc'):
raise TypeError, 'desc attribute missing'
def __getattr__(self, attr):
if attr == 'ptype':
ptype = SimObject.allClasses[self.ptype_str]
assert isSimObjectClass(ptype)
self.ptype = ptype
return ptype
raise AttributeError, "'%s' object has no attribute '%s'" % \
(type(self).__name__, attr)
def convert(self, value):
if isinstance(value, proxy.BaseProxy):
value.set_param_desc(self)
return value
if not hasattr(self, 'ptype') and isNullPointer(value):
# deferred evaluation of SimObject; continue to defer if
# we're just assigning a null pointer
return value
if isinstance(value, self.ptype):
return value
if isNullPointer(value) and isSimObjectClass(self.ptype):
return value
return self.ptype(value)
def cxx_predecls(self, code):
self.ptype.cxx_predecls(code)
def swig_predecls(self, code):
self.ptype.swig_predecls(code)
def cxx_decl(self, code):
code('${{self.ptype.cxx_type}} ${{self.name}};')
# Vector-valued parameter description. Just like ParamDesc, except
# that the value is a vector (list) of the specified type instead of a
# single value.
class VectorParamValue(list):
__metaclass__ = MetaParamValue
def __setattr__(self, attr, value):
raise AttributeError, \
"Not allowed to set %s on '%s'" % (attr, type(self).__name__)
def ini_str(self):
return ' '.join([v.ini_str() for v in self])
def getValue(self):
return [ v.getValue() for v in self ]
def unproxy(self, base):
return [v.unproxy(base) for v in self]
class SimObjectVector(VectorParamValue):
# support clone operation
def __call__(self, **kwargs):
return SimObjectVector([v(**kwargs) for v in self])
def clear_parent(self, old_parent):
for v in self:
v.clear_parent(old_parent)
def set_parent(self, parent, name):
if len(self) == 1:
self[0].set_parent(parent, name)
else:
width = int(math.ceil(math.log(len(self))/math.log(10)))
for i,v in enumerate(self):
v.set_parent(parent, "%s%0*d" % (name, width, i))
def get_parent(self):
parent_set = set(v._parent for v in self)
if len(parent_set) != 1:
raise RuntimeError, \
"SimObjectVector elements have inconsistent parent value."
return parent_set.pop()
# return 'cpu0 cpu1' etc. for print_ini()
def get_name(self):
return ' '.join([v._name for v in self])
# By iterating through the constituent members of the vector here
# we can nicely handle iterating over all a SimObject's children
# without having to provide lots of special functions on
# SimObjectVector directly.
def descendants(self):
for v in self:
for obj in v.descendants():
yield obj
class VectorParamDesc(ParamDesc):
file_ext = 'vptype'
# Convert assigned value to appropriate type. If the RHS is not a
# list or tuple, it generates a single-element list.
def convert(self, value):
if isinstance(value, (list, tuple)):
# list: coerce each element into new list
tmp_list = [ ParamDesc.convert(self, v) for v in value ]
else:
# singleton: coerce to a single-element list
tmp_list = [ ParamDesc.convert(self, value) ]
if isSimObjectSequence(tmp_list):
return SimObjectVector(tmp_list)
else:
return VectorParamValue(tmp_list)
def swig_predecls(self, code):
code('%include "${{self.ptype_str}}_vptype.i"')
def swig_decl(self, code):
cxx_type = re.sub('std::', '', self.ptype.cxx_type)
code('%include "std_vector.i"')
self.ptype.swig_predecls(code)
code('''\
namespace std {
%template(vector_${{self.ptype_str}}) vector< $cxx_type >;
}
''')
def cxx_predecls(self, code):
code('#include <vector>')
self.ptype.cxx_predecls(code)
def cxx_decl(self, code):
code('std::vector< ${{self.ptype.cxx_type}} > ${{self.name}};')
class ParamFactory(object):
def __init__(self, param_desc_class, ptype_str = None):
self.param_desc_class = param_desc_class
self.ptype_str = ptype_str
def __getattr__(self, attr):
if self.ptype_str:
attr = self.ptype_str + '.' + attr
return ParamFactory(self.param_desc_class, attr)
# E.g., Param.Int(5, "number of widgets")
def __call__(self, *args, **kwargs):
ptype = None
try:
ptype = allParams[self.ptype_str]
except KeyError:
# if name isn't defined yet, assume it's a SimObject, and
# try to resolve it later
pass
return self.param_desc_class(self.ptype_str, ptype, *args, **kwargs)
Param = ParamFactory(ParamDesc)
VectorParam = ParamFactory(VectorParamDesc)
#####################################################################
#
# Parameter Types
#
# Though native Python types could be used to specify parameter types
# (the 'ptype' field of the Param and VectorParam classes), it's more
# flexible to define our own set of types. This gives us more control
# over how Python expressions are converted to values (via the
# __init__() constructor) and how these values are printed out (via
# the __str__() conversion method).
#
#####################################################################
# String-valued parameter. Just mixin the ParamValue class with the
# built-in str class.
class String(ParamValue,str):
cxx_type = 'std::string'
@classmethod
def cxx_predecls(self, code):
code('#include <string>')
@classmethod
def swig_predecls(cls, code):
code('%include "std_string.i"')
def getValue(self):
return self
# superclass for "numeric" parameter values, to emulate math
# operations in a type-safe way. e.g., a Latency times an int returns
# a new Latency object.
class NumericParamValue(ParamValue):
def __str__(self):
return str(self.value)
def __float__(self):
return float(self.value)
def __long__(self):
return long(self.value)
def __int__(self):
return int(self.value)
# hook for bounds checking
def _check(self):
return
def __mul__(self, other):
newobj = self.__class__(self)
newobj.value *= other
newobj._check()
return newobj
__rmul__ = __mul__
def __div__(self, other):
newobj = self.__class__(self)
newobj.value /= other
newobj._check()
return newobj
def __sub__(self, other):
newobj = self.__class__(self)
newobj.value -= other
newobj._check()
return newobj
# Metaclass for bounds-checked integer parameters. See CheckedInt.
class CheckedIntType(MetaParamValue):
def __init__(cls, name, bases, dict):
super(CheckedIntType, cls).__init__(name, bases, dict)
# CheckedInt is an abstract base class, so we actually don't
# want to do any processing on it... the rest of this code is
# just for classes that derive from CheckedInt.
if name == 'CheckedInt':
return
if not (hasattr(cls, 'min') and hasattr(cls, 'max')):
if not (hasattr(cls, 'size') and hasattr(cls, 'unsigned')):
panic("CheckedInt subclass %s must define either\n" \
" 'min' and 'max' or 'size' and 'unsigned'\n",
name);
if cls.unsigned:
cls.min = 0
cls.max = 2 ** cls.size - 1
else:
cls.min = -(2 ** (cls.size - 1))
cls.max = (2 ** (cls.size - 1)) - 1
# Abstract superclass for bounds-checked integer parameters. This
# class is subclassed to generate parameter classes with specific
# bounds. Initialization of the min and max bounds is done in the
# metaclass CheckedIntType.__init__.
class CheckedInt(NumericParamValue):
__metaclass__ = CheckedIntType
def _check(self):
if not self.min <= self.value <= self.max:
raise TypeError, 'Integer param out of bounds %d < %d < %d' % \
(self.min, self.value, self.max)
def __init__(self, value):
if isinstance(value, str):
self.value = convert.toInteger(value)
elif isinstance(value, (int, long, float, NumericParamValue)):
self.value = long(value)
else:
raise TypeError, "Can't convert object of type %s to CheckedInt" \
% type(value).__name__
self._check()
@classmethod
def cxx_predecls(cls, code):
# most derived types require this, so we just do it here once
code('#include "base/types.hh"')
@classmethod
def swig_predecls(cls, code):
# most derived types require this, so we just do it here once
code('%import "stdint.i"')
code('%import "base/types.hh"')
def getValue(self):
return long(self.value)
class Int(CheckedInt): cxx_type = 'int'; size = 32; unsigned = False
class Unsigned(CheckedInt): cxx_type = 'unsigned'; size = 32; unsigned = True
class Int8(CheckedInt): cxx_type = 'int8_t'; size = 8; unsigned = False
class UInt8(CheckedInt): cxx_type = 'uint8_t'; size = 8; unsigned = True
class Int16(CheckedInt): cxx_type = 'int16_t'; size = 16; unsigned = False
class UInt16(CheckedInt): cxx_type = 'uint16_t'; size = 16; unsigned = True
class Int32(CheckedInt): cxx_type = 'int32_t'; size = 32; unsigned = False
class UInt32(CheckedInt): cxx_type = 'uint32_t'; size = 32; unsigned = True
class Int64(CheckedInt): cxx_type = 'int64_t'; size = 64; unsigned = False
class UInt64(CheckedInt): cxx_type = 'uint64_t'; size = 64; unsigned = True
class Counter(CheckedInt): cxx_type = 'Counter'; size = 64; unsigned = True
class Tick(CheckedInt): cxx_type = 'Tick'; size = 64; unsigned = True
class TcpPort(CheckedInt): cxx_type = 'uint16_t'; size = 16; unsigned = True
class UdpPort(CheckedInt): cxx_type = 'uint16_t'; size = 16; unsigned = True
class Percent(CheckedInt): cxx_type = 'int'; min = 0; max = 100
class Float(ParamValue, float):
cxx_type = 'double'
def __init__(self, value):
if isinstance(value, (int, long, float, NumericParamValue, Float)):
self.value = float(value)
else:
raise TypeError, "Can't convert object of type %s to Float" \
% type(value).__name__
def getValue(self):
return float(self.value)
class MemorySize(CheckedInt):
cxx_type = 'uint64_t'
size = 64
unsigned = True
def __init__(self, value):
if isinstance(value, MemorySize):
self.value = value.value
else:
self.value = convert.toMemorySize(value)
self._check()
class MemorySize32(CheckedInt):
cxx_type = 'uint32_t'
size = 32
unsigned = True
def __init__(self, value):
if isinstance(value, MemorySize):
self.value = value.value
else:
self.value = convert.toMemorySize(value)
self._check()
class Addr(CheckedInt):
cxx_type = 'Addr'
size = 64
unsigned = True
def __init__(self, value):
if isinstance(value, Addr):
self.value = value.value
else:
try:
self.value = convert.toMemorySize(value)
except TypeError:
self.value = long(value)
self._check()
def __add__(self, other):
if isinstance(other, Addr):
return self.value + other.value
else:
return self.value + other
class MetaRange(MetaParamValue):
def __init__(cls, name, bases, dict):
super(MetaRange, cls).__init__(name, bases, dict)
if name == 'Range':
return
cls.cxx_type = 'Range< %s >' % cls.type.cxx_type
class Range(ParamValue):
__metaclass__ = MetaRange
type = Int # default; can be overridden in subclasses
def __init__(self, *args, **kwargs):
def handle_kwargs(self, kwargs):
if 'end' in kwargs:
self.second = self.type(kwargs.pop('end'))
elif 'size' in kwargs:
self.second = self.first + self.type(kwargs.pop('size')) - 1
else:
raise TypeError, "Either end or size must be specified"
if len(args) == 0:
self.first = self.type(kwargs.pop('start'))
handle_kwargs(self, kwargs)
elif len(args) == 1:
if kwargs:
self.first = self.type(args[0])
handle_kwargs(self, kwargs)
elif isinstance(args[0], Range):
self.first = self.type(args[0].first)
self.second = self.type(args[0].second)
elif isinstance(args[0], (list, tuple)):
self.first = self.type(args[0][0])
self.second = self.type(args[0][1])
else:
self.first = self.type(0)
self.second = self.type(args[0]) - 1
elif len(args) == 2:
self.first = self.type(args[0])
self.second = self.type(args[1])
else:
raise TypeError, "Too many arguments specified"
if kwargs:
raise TypeError, "too many keywords: %s" % kwargs.keys()
def __str__(self):
return '%s:%s' % (self.first, self.second)
@classmethod
def cxx_predecls(cls, code):
code('#include "base/range.hh"')
cls.type.cxx_predecls(code)
class AddrRange(Range):
type = Addr
@classmethod
def swig_predecls(cls, code):
code('%include "python/swig/range.i"')
def getValue(self):
from m5.objects.params import AddrRange
value = AddrRange()
value.start = long(self.first)
value.end = long(self.second)
return value
class TickRange(Range):
type = Tick
@classmethod
def swig_predecls(cls, code):
code('%include "python/swig/range.i"')
def getValue(self):
from m5.objects.params import TickRange
value = TickRange()
value.start = long(self.first)
value.end = long(self.second)
return value
# Boolean parameter type. Python doesn't let you subclass bool, since
# it doesn't want to let you create multiple instances of True and
# False. Thus this is a little more complicated than String.
class Bool(ParamValue):
cxx_type = 'bool'
def __init__(self, value):
try:
self.value = convert.toBool(value)
except TypeError:
self.value = bool(value)
def getValue(self):
return bool(self.value)
def __str__(self):
return str(self.value)
def ini_str(self):
if self.value:
return 'true'
return 'false'
def IncEthernetAddr(addr, val = 1):
bytes = map(lambda x: int(x, 16), addr.split(':'))
bytes[5] += val
for i in (5, 4, 3, 2, 1):
val,rem = divmod(bytes[i], 256)
bytes[i] = rem
if val == 0:
break
bytes[i - 1] += val
assert(bytes[0] <= 255)
return ':'.join(map(lambda x: '%02x' % x, bytes))
_NextEthernetAddr = "00:90:00:00:00:01"
def NextEthernetAddr():
global _NextEthernetAddr
value = _NextEthernetAddr
_NextEthernetAddr = IncEthernetAddr(_NextEthernetAddr, 1)
return value
class EthernetAddr(ParamValue):
cxx_type = 'Net::EthAddr'
@classmethod
def cxx_predecls(cls, code):
code('#include "base/inet.hh"')
@classmethod
def swig_predecls(cls, code):
code('%include "python/swig/inet.i"')
def __init__(self, value):
if value == NextEthernetAddr:
self.value = value
return
if not isinstance(value, str):
raise TypeError, "expected an ethernet address and didn't get one"
bytes = value.split(':')
if len(bytes) != 6:
raise TypeError, 'invalid ethernet address %s' % value
for byte in bytes:
if not 0 <= int(byte) <= 256:
raise TypeError, 'invalid ethernet address %s' % value
self.value = value
def unproxy(self, base):
if self.value == NextEthernetAddr:
return EthernetAddr(self.value())
return self
def getValue(self):
from m5.objects.params import EthAddr
return EthAddr(self.value)
def ini_str(self):
return self.value
time_formats = [ "%a %b %d %H:%M:%S %Z %Y",
"%a %b %d %H:%M:%S %Z %Y",
"%Y/%m/%d %H:%M:%S",
"%Y/%m/%d %H:%M",
"%Y/%m/%d",
"%m/%d/%Y %H:%M:%S",
"%m/%d/%Y %H:%M",
"%m/%d/%Y",
"%m/%d/%y %H:%M:%S",
"%m/%d/%y %H:%M",
"%m/%d/%y"]
def parse_time(value):
from time import gmtime, strptime, struct_time, time
from datetime import datetime, date
if isinstance(value, struct_time):
return value
if isinstance(value, (int, long)):
return gmtime(value)
if isinstance(value, (datetime, date)):
return value.timetuple()
if isinstance(value, str):
if value in ('Now', 'Today'):
return time.gmtime(time.time())
for format in time_formats:
try:
return strptime(value, format)
except ValueError:
pass
raise ValueError, "Could not parse '%s' as a time" % value
class Time(ParamValue):
cxx_type = 'tm'
@classmethod
def cxx_predecls(cls, code):
code('#include <time.h>')
@classmethod
def swig_predecls(cls, code):
code('%include "python/swig/time.i"')
def __init__(self, value):
self.value = parse_time(value)
def getValue(self):
from m5.objects.params import tm
c_time = tm()
py_time = self.value
# UNIX is years since 1900
c_time.tm_year = py_time.tm_year - 1900;
# Python starts at 1, UNIX starts at 0
c_time.tm_mon = py_time.tm_mon - 1;
c_time.tm_mday = py_time.tm_mday;
c_time.tm_hour = py_time.tm_hour;
c_time.tm_min = py_time.tm_min;
c_time.tm_sec = py_time.tm_sec;
# Python has 0 as Monday, UNIX is 0 as sunday
c_time.tm_wday = py_time.tm_wday + 1
if c_time.tm_wday > 6:
c_time.tm_wday -= 7;
# Python starts at 1, Unix starts at 0
c_time.tm_yday = py_time.tm_yday - 1;
return c_time
def __str__(self):
return time.asctime(self.value)
def ini_str(self):
return str(self)
# Enumerated types are a little more complex. The user specifies the
# type as Enum(foo) where foo is either a list or dictionary of
# alternatives (typically strings, but not necessarily so). (In the
# long run, the integer value of the parameter will be the list index
# or the corresponding dictionary value. For now, since we only check
# that the alternative is valid and then spit it into a .ini file,
# there's not much point in using the dictionary.)
# What Enum() must do is generate a new type encapsulating the
# provided list/dictionary so that specific values of the parameter
# can be instances of that type. We define two hidden internal
# classes (_ListEnum and _DictEnum) to serve as base classes, then
# derive the new type from the appropriate base class on the fly.
allEnums = {}
# Metaclass for Enum types
class MetaEnum(MetaParamValue):
def __new__(mcls, name, bases, dict):
assert name not in allEnums
cls = super(MetaEnum, mcls).__new__(mcls, name, bases, dict)
allEnums[name] = cls
return cls
def __init__(cls, name, bases, init_dict):
if init_dict.has_key('map'):
if not isinstance(cls.map, dict):
raise TypeError, "Enum-derived class attribute 'map' " \
"must be of type dict"
# build list of value strings from map
cls.vals = cls.map.keys()
cls.vals.sort()
elif init_dict.has_key('vals'):
if not isinstance(cls.vals, list):
raise TypeError, "Enum-derived class attribute 'vals' " \
"must be of type list"
# build string->value map from vals sequence
cls.map = {}
for idx,val in enumerate(cls.vals):
cls.map[val] = idx
else:
raise TypeError, "Enum-derived class must define "\
"attribute 'map' or 'vals'"
cls.cxx_type = 'Enums::%s' % name
super(MetaEnum, cls).__init__(name, bases, init_dict)
# Generate C++ class declaration for this enum type.
# Note that we wrap the enum in a class/struct to act as a namespace,
# so that the enum strings can be brief w/o worrying about collisions.
def cxx_decl(cls, code):
name = cls.__name__
code('''\
#ifndef __ENUM__${name}__
#define __ENUM__${name}__
namespace Enums {
enum $name {
''')
code.indent(2)
for val in cls.vals:
code('$val = ${{cls.map[val]}},')
code('Num_$name = ${{len(cls.vals)}},')
code.dedent(2)
code('''\
};
extern const char *${name}Strings[Num_${name}];
}
#endif // __ENUM__${name}__
''')
def cxx_def(cls, code):
name = cls.__name__
code('''\
#include "enums/${name}.hh"
namespace Enums {
const char *${name}Strings[Num_${name}] =
{
''')
code.indent(2)
for val in cls.vals:
code('"$val",')
code.dedent(2)
code('''
};
/* namespace Enums */ }
''')
# Base class for enum types.
class Enum(ParamValue):
__metaclass__ = MetaEnum
vals = []
def __init__(self, value):
if value not in self.map:
raise TypeError, "Enum param got bad value '%s' (not in %s)" \
% (value, self.vals)
self.value = value
def getValue(self):
return int(self.map[self.value])
def __str__(self):
return self.value
# how big does a rounding error need to be before we warn about it?
frequency_tolerance = 0.001 # 0.1%
class TickParamValue(NumericParamValue):
cxx_type = 'Tick'
@classmethod
def cxx_predecls(cls, code):
code('#include "base/types.hh"')
@classmethod
def swig_predecls(cls, code):
code('%import "stdint.i"')
code('%import "base/types.hh"')
def getValue(self):
return long(self.value)
class Latency(TickParamValue):
def __init__(self, value):
if isinstance(value, (Latency, Clock)):
self.ticks = value.ticks
self.value = value.value
elif isinstance(value, Frequency):
self.ticks = value.ticks
self.value = 1.0 / value.value
elif value.endswith('t'):
self.ticks = True
self.value = int(value[:-1])
else:
self.ticks = False
self.value = convert.toLatency(value)
def __getattr__(self, attr):
if attr in ('latency', 'period'):
return self
if attr == 'frequency':
return Frequency(self)
raise AttributeError, "Latency object has no attribute '%s'" % attr
def getValue(self):
if self.ticks or self.value == 0:
value = self.value
else:
value = ticks.fromSeconds(self.value)
return long(value)
# convert latency to ticks
def ini_str(self):
return '%d' % self.getValue()
class Frequency(TickParamValue):
def __init__(self, value):
if isinstance(value, (Latency, Clock)):
if value.value == 0:
self.value = 0
else:
self.value = 1.0 / value.value
self.ticks = value.ticks
elif isinstance(value, Frequency):
self.value = value.value
self.ticks = value.ticks
else:
self.ticks = False
self.value = convert.toFrequency(value)
def __getattr__(self, attr):
if attr == 'frequency':
return self
if attr in ('latency', 'period'):
return Latency(self)
raise AttributeError, "Frequency object has no attribute '%s'" % attr
# convert latency to ticks
def getValue(self):
if self.ticks or self.value == 0:
value = self.value
else:
value = ticks.fromSeconds(1.0 / self.value)
return long(value)
def ini_str(self):
return '%d' % self.getValue()
# A generic frequency and/or Latency value. Value is stored as a latency,
# but to avoid ambiguity this object does not support numeric ops (* or /).
# An explicit conversion to a Latency or Frequency must be made first.
class Clock(ParamValue):
cxx_type = 'Tick'
@classmethod
def cxx_predecls(cls, code):
code('#include "base/types.hh"')
@classmethod
def swig_predecls(cls, code):
code('%import "stdint.i"')
code('%import "base/types.hh"')
def __init__(self, value):
if isinstance(value, (Latency, Clock)):
self.ticks = value.ticks
self.value = value.value
elif isinstance(value, Frequency):
self.ticks = value.ticks
self.value = 1.0 / value.value
elif value.endswith('t'):
self.ticks = True
self.value = int(value[:-1])
else:
self.ticks = False
self.value = convert.anyToLatency(value)
def __getattr__(self, attr):
if attr == 'frequency':
return Frequency(self)
if attr in ('latency', 'period'):
return Latency(self)
raise AttributeError, "Frequency object has no attribute '%s'" % attr
def getValue(self):
return self.period.getValue()
def ini_str(self):
return self.period.ini_str()
class NetworkBandwidth(float,ParamValue):
cxx_type = 'float'
def __new__(cls, value):
# convert to bits per second
val = convert.toNetworkBandwidth(value)
return super(cls, NetworkBandwidth).__new__(cls, val)
def __str__(self):
return str(self.val)
def getValue(self):
# convert to seconds per byte
value = 8.0 / float(self)
# convert to ticks per byte
value = ticks.fromSeconds(value)
return float(value)
def ini_str(self):
return '%f' % self.getValue()
class MemoryBandwidth(float,ParamValue):
cxx_type = 'float'
def __new__(cls, value):
# we want the number of ticks per byte of data
val = convert.toMemoryBandwidth(value)
return super(cls, MemoryBandwidth).__new__(cls, val)
def __str__(self):
return str(self.val)
def getValue(self):
# convert to seconds per byte
value = float(self)
if value:
value = 1.0 / float(self)
# convert to ticks per byte
value = ticks.fromSeconds(value)
return float(value)
def ini_str(self):
return '%f' % self.getValue()
#
# "Constants"... handy aliases for various values.
#
# Special class for NULL pointers. Note the special check in
# make_param_value() above that lets these be assigned where a
# SimObject is required.
# only one copy of a particular node
class NullSimObject(object):
__metaclass__ = Singleton
def __call__(cls):
return cls
def _instantiate(self, parent = None, path = ''):
pass
def ini_str(self):
return 'Null'
def unproxy(self, base):
return self
def set_path(self, parent, name):
pass
def __str__(self):
return 'Null'
def getValue(self):
return None
# The only instance you'll ever need...
NULL = NullSimObject()
def isNullPointer(value):
return isinstance(value, NullSimObject)
# Some memory range specifications use this as a default upper bound.
MaxAddr = Addr.max
MaxTick = Tick.max
AllMemory = AddrRange(0, MaxAddr)
#####################################################################
#
# Port objects
#
# Ports are used to interconnect objects in the memory system.
#
#####################################################################
# Port reference: encapsulates a reference to a particular port on a
# particular SimObject.
class PortRef(object):
def __init__(self, simobj, name):
assert(isSimObject(simobj) or isSimObjectClass(simobj))
self.simobj = simobj
self.name = name
self.peer = None # not associated with another port yet
self.ccConnected = False # C++ port connection done?
self.index = -1 # always -1 for non-vector ports
def __str__(self):
return '%s.%s' % (self.simobj, self.name)
# for config.ini, print peer's name (not ours)
def ini_str(self):
return str(self.peer)
def __getattr__(self, attr):
if attr == 'peerObj':
# shorthand for proxies
return self.peer.simobj
raise AttributeError, "'%s' object has no attribute '%s'" % \
(self.__class__.__name__, attr)
# Full connection is symmetric (both ways). Called via
# SimObject.__setattr__ as a result of a port assignment, e.g.,
# "obj1.portA = obj2.portB", or via VectorPortElementRef.__setitem__,
# e.g., "obj1.portA[3] = obj2.portB".
def connect(self, other):
if isinstance(other, VectorPortRef):
# reference to plain VectorPort is implicit append
other = other._get_next()
if self.peer and not proxy.isproxy(self.peer):
print "warning: overwriting port", self, \
"value", self.peer, "with", other
self.peer.peer = None
self.peer = other
if proxy.isproxy(other):
other.set_param_desc(PortParamDesc())
elif isinstance(other, PortRef):
if other.peer is not self:
other.connect(self)
else:
raise TypeError, \
"assigning non-port reference '%s' to port '%s'" \
% (other, self)
def clone(self, simobj, memo):
if memo.has_key(self):
return memo[self]
newRef = copy.copy(self)
memo[self] = newRef
newRef.simobj = simobj
assert(isSimObject(newRef.simobj))
if self.peer and not proxy.isproxy(self.peer):
peerObj = self.peer.simobj(_memo=memo)
newRef.peer = self.peer.clone(peerObj, memo)
assert(not isinstance(newRef.peer, VectorPortRef))
return newRef
def unproxy(self, simobj):
assert(simobj is self.simobj)
if proxy.isproxy(self.peer):
try:
realPeer = self.peer.unproxy(self.simobj)
except:
print "Error in unproxying port '%s' of %s" % \
(self.name, self.simobj.path())
raise
self.connect(realPeer)
# Call C++ to create corresponding port connection between C++ objects
def ccConnect(self):
from m5.objects.params import connectPorts
if self.ccConnected: # already done this
return
peer = self.peer
if not self.peer: # nothing to connect to
return
try:
connectPorts(self.simobj.getCCObject(), self.name, self.index,
peer.simobj.getCCObject(), peer.name, peer.index)
except:
print "Error connecting port %s.%s to %s.%s" % \
(self.simobj.path(), self.name,
peer.simobj.path(), peer.name)
raise
self.ccConnected = True
peer.ccConnected = True
# A reference to an individual element of a VectorPort... much like a
# PortRef, but has an index.
class VectorPortElementRef(PortRef):
def __init__(self, simobj, name, index):
PortRef.__init__(self, simobj, name)
self.index = index
def __str__(self):
return '%s.%s[%d]' % (self.simobj, self.name, self.index)
# A reference to a complete vector-valued port (not just a single element).
# Can be indexed to retrieve individual VectorPortElementRef instances.
class VectorPortRef(object):
def __init__(self, simobj, name):
assert(isSimObject(simobj) or isSimObjectClass(simobj))
self.simobj = simobj
self.name = name
self.elements = []
def __str__(self):
return '%s.%s[:]' % (self.simobj, self.name)
# for config.ini, print peer's name (not ours)
def ini_str(self):
return ' '.join([el.ini_str() for el in self.elements])
def __getitem__(self, key):
if not isinstance(key, int):
raise TypeError, "VectorPort index must be integer"
if key >= len(self.elements):
# need to extend list
ext = [VectorPortElementRef(self.simobj, self.name, i)
for i in range(len(self.elements), key+1)]
self.elements.extend(ext)
return self.elements[key]
def _get_next(self):
return self[len(self.elements)]
def __setitem__(self, key, value):
if not isinstance(key, int):
raise TypeError, "VectorPort index must be integer"
self[key].connect(value)
def connect(self, other):
if isinstance(other, (list, tuple)):
# Assign list of port refs to vector port.
# For now, append them... not sure if that's the right semantics
# or if it should replace the current vector.
for ref in other:
self._get_next().connect(ref)
else:
# scalar assignment to plain VectorPort is implicit append
self._get_next().connect(other)
def clone(self, simobj, memo):
if memo.has_key(self):
return memo[self]
newRef = copy.copy(self)
memo[self] = newRef
newRef.simobj = simobj
assert(isSimObject(newRef.simobj))
newRef.elements = [el.clone(simobj, memo) for el in self.elements]
return newRef
def unproxy(self, simobj):
[el.unproxy(simobj) for el in self.elements]
def ccConnect(self):
[el.ccConnect() for el in self.elements]
# Port description object. Like a ParamDesc object, this represents a
# logical port in the SimObject class, not a particular port on a
# SimObject instance. The latter are represented by PortRef objects.
class Port(object):
# Port("description") or Port(default, "description")
def __init__(self, *args):
if len(args) == 1:
self.desc = args[0]
elif len(args) == 2:
self.default = args[0]
self.desc = args[1]
else:
raise TypeError, 'wrong number of arguments'
# self.name is set by SimObject class on assignment
# e.g., pio_port = Port("blah") sets self.name to 'pio_port'
# Generate a PortRef for this port on the given SimObject with the
# given name
def makeRef(self, simobj):
return PortRef(simobj, self.name)
# Connect an instance of this port (on the given SimObject with
# the given name) with the port described by the supplied PortRef
def connect(self, simobj, ref):
self.makeRef(simobj).connect(ref)
# VectorPort description object. Like Port, but represents a vector
# of connections (e.g., as on a Bus).
class VectorPort(Port):
def __init__(self, *args):
Port.__init__(self, *args)
self.isVec = True
def makeRef(self, simobj):
return VectorPortRef(simobj, self.name)
# 'Fake' ParamDesc for Port references to assign to the _pdesc slot of
# proxy objects (via set_param_desc()) so that proxy error messages
# make sense.
class PortParamDesc(object):
__metaclass__ = Singleton
ptype_str = 'Port'
ptype = Port
baseEnums = allEnums.copy()
baseParams = allParams.copy()
def clear():
global allEnums, allParams
allEnums = baseEnums.copy()
allParams = baseParams.copy()
__all__ = ['Param', 'VectorParam',
'Enum', 'Bool', 'String', 'Float',
'Int', 'Unsigned', 'Int8', 'UInt8', 'Int16', 'UInt16',
'Int32', 'UInt32', 'Int64', 'UInt64',
'Counter', 'Addr', 'Tick', 'Percent',
'TcpPort', 'UdpPort', 'EthernetAddr',
'MemorySize', 'MemorySize32',
'Latency', 'Frequency', 'Clock',
'NetworkBandwidth', 'MemoryBandwidth',
'Range', 'AddrRange', 'TickRange',
'MaxAddr', 'MaxTick', 'AllMemory',
'Time',
'NextEthernetAddr', 'NULL',
'Port', 'VectorPort']
import SimObject
|