1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
|
# Copyright (c) 2012-2014, 2017 ARM Limited
# All rights reserved.
#
# The license below extends only to copyright in the software and shall
# not be construed as granting a license to any other intellectual
# property including but not limited to intellectual property relating
# to a hardware implementation of the functionality of the software
# licensed hereunder. You may use the software subject to the license
# terms below provided that you ensure that this notice is replicated
# unmodified and in its entirety in all distributions of the software,
# modified or unmodified, in source code or in binary form.
#
# Copyright (c) 2004-2006 The Regents of The University of Michigan
# Copyright (c) 2010-2011 Advanced Micro Devices, Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Steve Reinhardt
# Nathan Binkert
# Gabe Black
# Andreas Hansson
#####################################################################
#
# Parameter description classes
#
# The _params dictionary in each class maps parameter names to either
# a Param or a VectorParam object. These objects contain the
# parameter description string, the parameter type, and the default
# value (if any). The convert() method on these objects is used to
# force whatever value is assigned to the parameter to the appropriate
# type.
#
# Note that the default values are loaded into the class's attribute
# space when the parameter dictionary is initialized (in
# MetaSimObject._new_param()); after that point they aren't used.
#
#####################################################################
import copy
import datetime
import re
import sys
import time
import math
import proxy
import ticks
from util import *
def isSimObject(*args, **kwargs):
return SimObject.isSimObject(*args, **kwargs)
def isSimObjectSequence(*args, **kwargs):
return SimObject.isSimObjectSequence(*args, **kwargs)
def isSimObjectClass(*args, **kwargs):
return SimObject.isSimObjectClass(*args, **kwargs)
allParams = {}
class MetaParamValue(type):
def __new__(mcls, name, bases, dct):
cls = super(MetaParamValue, mcls).__new__(mcls, name, bases, dct)
assert name not in allParams
allParams[name] = cls
return cls
# Dummy base class to identify types that are legitimate for SimObject
# parameters.
class ParamValue(object):
__metaclass__ = MetaParamValue
cmd_line_settable = False
# Generate the code needed as a prerequisite for declaring a C++
# object of this type. Typically generates one or more #include
# statements. Used when declaring parameters of this type.
@classmethod
def cxx_predecls(cls, code):
pass
@classmethod
def pybind_predecls(cls, code):
cls.cxx_predecls(code)
# default for printing to .ini file is regular string conversion.
# will be overridden in some cases
def ini_str(self):
return str(self)
# default for printing to .json file is regular string conversion.
# will be overridden in some cases, mostly to use native Python
# types where there are similar JSON types
def config_value(self):
return str(self)
# Prerequisites for .ini parsing with cxx_ini_parse
@classmethod
def cxx_ini_predecls(cls, code):
pass
# parse a .ini file entry for this param from string expression
# src into lvalue dest (of the param's C++ type)
@classmethod
def cxx_ini_parse(cls, code, src, dest, ret):
code('// Unhandled param type: %s' % cls.__name__)
code('%s false;' % ret)
# allows us to blithely call unproxy() on things without checking
# if they're really proxies or not
def unproxy(self, base):
return self
# Produce a human readable version of the stored value
def pretty_print(self, value):
return str(value)
# Regular parameter description.
class ParamDesc(object):
def __init__(self, ptype_str, ptype, *args, **kwargs):
self.ptype_str = ptype_str
# remember ptype only if it is provided
if ptype != None:
self.ptype = ptype
if args:
if len(args) == 1:
self.desc = args[0]
elif len(args) == 2:
self.default = args[0]
self.desc = args[1]
else:
raise TypeError, 'too many arguments'
if kwargs.has_key('desc'):
assert(not hasattr(self, 'desc'))
self.desc = kwargs['desc']
del kwargs['desc']
if kwargs.has_key('default'):
assert(not hasattr(self, 'default'))
self.default = kwargs['default']
del kwargs['default']
if kwargs:
raise TypeError, 'extra unknown kwargs %s' % kwargs
if not hasattr(self, 'desc'):
raise TypeError, 'desc attribute missing'
def __getattr__(self, attr):
if attr == 'ptype':
ptype = SimObject.allClasses[self.ptype_str]
assert isSimObjectClass(ptype)
self.ptype = ptype
return ptype
raise AttributeError, "'%s' object has no attribute '%s'" % \
(type(self).__name__, attr)
def example_str(self):
if hasattr(self.ptype, "ex_str"):
return self.ptype.ex_str
else:
return self.ptype_str
# Is the param available to be exposed on the command line
def isCmdLineSettable(self):
if hasattr(self.ptype, "cmd_line_settable"):
return self.ptype.cmd_line_settable
else:
return False
def convert(self, value):
if isinstance(value, proxy.BaseProxy):
value.set_param_desc(self)
return value
if not hasattr(self, 'ptype') and isNullPointer(value):
# deferred evaluation of SimObject; continue to defer if
# we're just assigning a null pointer
return value
if isinstance(value, self.ptype):
return value
if isNullPointer(value) and isSimObjectClass(self.ptype):
return value
return self.ptype(value)
def pretty_print(self, value):
if isinstance(value, proxy.BaseProxy):
return str(value)
if isNullPointer(value):
return NULL
return self.ptype(value).pretty_print(value)
def cxx_predecls(self, code):
code('#include <cstddef>')
self.ptype.cxx_predecls(code)
def pybind_predecls(self, code):
self.ptype.pybind_predecls(code)
def cxx_decl(self, code):
code('${{self.ptype.cxx_type}} ${{self.name}};')
# Vector-valued parameter description. Just like ParamDesc, except
# that the value is a vector (list) of the specified type instead of a
# single value.
class VectorParamValue(list):
__metaclass__ = MetaParamValue
def __setattr__(self, attr, value):
raise AttributeError, \
"Not allowed to set %s on '%s'" % (attr, type(self).__name__)
def config_value(self):
return [v.config_value() for v in self]
def ini_str(self):
return ' '.join([v.ini_str() for v in self])
def getValue(self):
return [ v.getValue() for v in self ]
def unproxy(self, base):
if len(self) == 1 and isinstance(self[0], proxy.BaseProxy):
# The value is a proxy (e.g. Parent.any, Parent.all or
# Parent.x) therefore try resolve it
return self[0].unproxy(base)
else:
return [v.unproxy(base) for v in self]
class SimObjectVector(VectorParamValue):
# support clone operation
def __call__(self, **kwargs):
return SimObjectVector([v(**kwargs) for v in self])
def clear_parent(self, old_parent):
for v in self:
v.clear_parent(old_parent)
def set_parent(self, parent, name):
if len(self) == 1:
self[0].set_parent(parent, name)
else:
width = int(math.ceil(math.log(len(self))/math.log(10)))
for i,v in enumerate(self):
v.set_parent(parent, "%s%0*d" % (name, width, i))
def has_parent(self):
return any([e.has_parent() for e in self if not isNullPointer(e)])
# return 'cpu0 cpu1' etc. for print_ini()
def get_name(self):
return ' '.join([v._name for v in self])
# By iterating through the constituent members of the vector here
# we can nicely handle iterating over all a SimObject's children
# without having to provide lots of special functions on
# SimObjectVector directly.
def descendants(self):
for v in self:
for obj in v.descendants():
yield obj
def get_config_as_dict(self):
a = []
for v in self:
a.append(v.get_config_as_dict())
return a
# If we are replacing an item in the vector, make sure to set the
# parent reference of the new SimObject to be the same as the parent
# of the SimObject being replaced. Useful to have if we created
# a SimObjectVector of temporary objects that will be modified later in
# configuration scripts.
def __setitem__(self, key, value):
val = self[key]
if value.has_parent():
warn("SimObject %s already has a parent" % value.get_name() +\
" that is being overwritten by a SimObjectVector")
value.set_parent(val.get_parent(), val._name)
super(SimObjectVector, self).__setitem__(key, value)
# Enumerate the params of each member of the SimObject vector. Creates
# strings that will allow indexing into the vector by the python code and
# allow it to be specified on the command line.
def enumerateParams(self, flags_dict = {},
cmd_line_str = "",
access_str = ""):
if hasattr(self, "_paramEnumed"):
print "Cycle detected enumerating params at %s?!" % (cmd_line_str)
else:
x = 0
for vals in self:
# Each entry in the SimObjectVector should be an
# instance of a SimObject
flags_dict = vals.enumerateParams(flags_dict,
cmd_line_str + "%d." % x,
access_str + "[%d]." % x)
x = x + 1
return flags_dict
class VectorParamDesc(ParamDesc):
# Convert assigned value to appropriate type. If the RHS is not a
# list or tuple, it generates a single-element list.
def convert(self, value):
if isinstance(value, (list, tuple)):
# list: coerce each element into new list
tmp_list = [ ParamDesc.convert(self, v) for v in value ]
elif isinstance(value, str):
# If input is a csv string
tmp_list = [ ParamDesc.convert(self, v) \
for v in value.strip('[').strip(']').split(',') ]
else:
# singleton: coerce to a single-element list
tmp_list = [ ParamDesc.convert(self, value) ]
if isSimObjectSequence(tmp_list):
return SimObjectVector(tmp_list)
else:
return VectorParamValue(tmp_list)
# Produce a human readable example string that describes
# how to set this vector parameter in the absence of a default
# value.
def example_str(self):
s = super(VectorParamDesc, self).example_str()
help_str = "[" + s + "," + s + ", ...]"
return help_str
# Produce a human readable representation of the value of this vector param.
def pretty_print(self, value):
if isinstance(value, (list, tuple)):
tmp_list = [ ParamDesc.pretty_print(self, v) for v in value ]
elif isinstance(value, str):
tmp_list = [ ParamDesc.pretty_print(self, v) for v in value.split(',') ]
else:
tmp_list = [ ParamDesc.pretty_print(self, value) ]
return tmp_list
# This is a helper function for the new config system
def __call__(self, value):
if isinstance(value, (list, tuple)):
# list: coerce each element into new list
tmp_list = [ ParamDesc.convert(self, v) for v in value ]
elif isinstance(value, str):
# If input is a csv string
tmp_list = [ ParamDesc.convert(self, v) \
for v in value.strip('[').strip(']').split(',') ]
else:
# singleton: coerce to a single-element list
tmp_list = [ ParamDesc.convert(self, value) ]
return VectorParamValue(tmp_list)
def cxx_predecls(self, code):
code('#include <vector>')
self.ptype.cxx_predecls(code)
def pybind_predecls(self, code):
code('#include <vector>')
self.ptype.pybind_predecls(code)
def cxx_decl(self, code):
code('std::vector< ${{self.ptype.cxx_type}} > ${{self.name}};')
class ParamFactory(object):
def __init__(self, param_desc_class, ptype_str = None):
self.param_desc_class = param_desc_class
self.ptype_str = ptype_str
def __getattr__(self, attr):
if self.ptype_str:
attr = self.ptype_str + '.' + attr
return ParamFactory(self.param_desc_class, attr)
# E.g., Param.Int(5, "number of widgets")
def __call__(self, *args, **kwargs):
ptype = None
try:
ptype = allParams[self.ptype_str]
except KeyError:
# if name isn't defined yet, assume it's a SimObject, and
# try to resolve it later
pass
return self.param_desc_class(self.ptype_str, ptype, *args, **kwargs)
Param = ParamFactory(ParamDesc)
VectorParam = ParamFactory(VectorParamDesc)
#####################################################################
#
# Parameter Types
#
# Though native Python types could be used to specify parameter types
# (the 'ptype' field of the Param and VectorParam classes), it's more
# flexible to define our own set of types. This gives us more control
# over how Python expressions are converted to values (via the
# __init__() constructor) and how these values are printed out (via
# the __str__() conversion method).
#
#####################################################################
# String-valued parameter. Just mixin the ParamValue class with the
# built-in str class.
class String(ParamValue,str):
cxx_type = 'std::string'
cmd_line_settable = True
@classmethod
def cxx_predecls(self, code):
code('#include <string>')
def __call__(self, value):
self = value
return value
@classmethod
def cxx_ini_parse(self, code, src, dest, ret):
code('%s = %s;' % (dest, src))
code('%s true;' % ret)
def getValue(self):
return self
# superclass for "numeric" parameter values, to emulate math
# operations in a type-safe way. e.g., a Latency times an int returns
# a new Latency object.
class NumericParamValue(ParamValue):
def __str__(self):
return str(self.value)
def __float__(self):
return float(self.value)
def __long__(self):
return long(self.value)
def __int__(self):
return int(self.value)
# hook for bounds checking
def _check(self):
return
def __mul__(self, other):
newobj = self.__class__(self)
newobj.value *= other
newobj._check()
return newobj
__rmul__ = __mul__
def __div__(self, other):
newobj = self.__class__(self)
newobj.value /= other
newobj._check()
return newobj
def __sub__(self, other):
newobj = self.__class__(self)
newobj.value -= other
newobj._check()
return newobj
def config_value(self):
return self.value
@classmethod
def cxx_ini_predecls(cls, code):
# Assume that base/str.hh will be included anyway
# code('#include "base/str.hh"')
pass
# The default for parsing PODs from an .ini entry is to extract from an
# istringstream and let overloading choose the right type according to
# the dest type.
@classmethod
def cxx_ini_parse(self, code, src, dest, ret):
code('%s to_number(%s, %s);' % (ret, src, dest))
# Metaclass for bounds-checked integer parameters. See CheckedInt.
class CheckedIntType(MetaParamValue):
def __init__(cls, name, bases, dict):
super(CheckedIntType, cls).__init__(name, bases, dict)
# CheckedInt is an abstract base class, so we actually don't
# want to do any processing on it... the rest of this code is
# just for classes that derive from CheckedInt.
if name == 'CheckedInt':
return
if not (hasattr(cls, 'min') and hasattr(cls, 'max')):
if not (hasattr(cls, 'size') and hasattr(cls, 'unsigned')):
panic("CheckedInt subclass %s must define either\n" \
" 'min' and 'max' or 'size' and 'unsigned'\n",
name);
if cls.unsigned:
cls.min = 0
cls.max = 2 ** cls.size - 1
else:
cls.min = -(2 ** (cls.size - 1))
cls.max = (2 ** (cls.size - 1)) - 1
# Abstract superclass for bounds-checked integer parameters. This
# class is subclassed to generate parameter classes with specific
# bounds. Initialization of the min and max bounds is done in the
# metaclass CheckedIntType.__init__.
class CheckedInt(NumericParamValue):
__metaclass__ = CheckedIntType
cmd_line_settable = True
def _check(self):
if not self.min <= self.value <= self.max:
raise TypeError, 'Integer param out of bounds %d < %d < %d' % \
(self.min, self.value, self.max)
def __init__(self, value):
if isinstance(value, str):
self.value = convert.toInteger(value)
elif isinstance(value, (int, long, float, NumericParamValue)):
self.value = long(value)
else:
raise TypeError, "Can't convert object of type %s to CheckedInt" \
% type(value).__name__
self._check()
def __call__(self, value):
self.__init__(value)
return value
@classmethod
def cxx_predecls(cls, code):
# most derived types require this, so we just do it here once
code('#include "base/types.hh"')
def getValue(self):
return long(self.value)
class Int(CheckedInt): cxx_type = 'int'; size = 32; unsigned = False
class Unsigned(CheckedInt): cxx_type = 'unsigned'; size = 32; unsigned = True
class Int8(CheckedInt): cxx_type = 'int8_t'; size = 8; unsigned = False
class UInt8(CheckedInt): cxx_type = 'uint8_t'; size = 8; unsigned = True
class Int16(CheckedInt): cxx_type = 'int16_t'; size = 16; unsigned = False
class UInt16(CheckedInt): cxx_type = 'uint16_t'; size = 16; unsigned = True
class Int32(CheckedInt): cxx_type = 'int32_t'; size = 32; unsigned = False
class UInt32(CheckedInt): cxx_type = 'uint32_t'; size = 32; unsigned = True
class Int64(CheckedInt): cxx_type = 'int64_t'; size = 64; unsigned = False
class UInt64(CheckedInt): cxx_type = 'uint64_t'; size = 64; unsigned = True
class Counter(CheckedInt): cxx_type = 'Counter'; size = 64; unsigned = True
class Tick(CheckedInt): cxx_type = 'Tick'; size = 64; unsigned = True
class TcpPort(CheckedInt): cxx_type = 'uint16_t'; size = 16; unsigned = True
class UdpPort(CheckedInt): cxx_type = 'uint16_t'; size = 16; unsigned = True
class Percent(CheckedInt): cxx_type = 'int'; min = 0; max = 100
class Cycles(CheckedInt):
cxx_type = 'Cycles'
size = 64
unsigned = True
def getValue(self):
from _m5.core import Cycles
return Cycles(self.value)
@classmethod
def cxx_ini_predecls(cls, code):
# Assume that base/str.hh will be included anyway
# code('#include "base/str.hh"')
pass
@classmethod
def cxx_ini_parse(cls, code, src, dest, ret):
code('uint64_t _temp;')
code('bool _ret = to_number(%s, _temp);' % src)
code('if (_ret)')
code(' %s = Cycles(_temp);' % dest)
code('%s _ret;' % ret)
class Float(ParamValue, float):
cxx_type = 'double'
cmd_line_settable = True
def __init__(self, value):
if isinstance(value, (int, long, float, NumericParamValue, Float, str)):
self.value = float(value)
else:
raise TypeError, "Can't convert object of type %s to Float" \
% type(value).__name__
def __call__(self, value):
self.__init__(value)
return value
def getValue(self):
return float(self.value)
def config_value(self):
return self
@classmethod
def cxx_ini_predecls(cls, code):
code('#include <sstream>')
@classmethod
def cxx_ini_parse(self, code, src, dest, ret):
code('%s (std::istringstream(%s) >> %s).eof();' % (ret, src, dest))
class MemorySize(CheckedInt):
cxx_type = 'uint64_t'
ex_str = '512MB'
size = 64
unsigned = True
def __init__(self, value):
if isinstance(value, MemorySize):
self.value = value.value
else:
self.value = convert.toMemorySize(value)
self._check()
class MemorySize32(CheckedInt):
cxx_type = 'uint32_t'
ex_str = '512MB'
size = 32
unsigned = True
def __init__(self, value):
if isinstance(value, MemorySize):
self.value = value.value
else:
self.value = convert.toMemorySize(value)
self._check()
class Addr(CheckedInt):
cxx_type = 'Addr'
size = 64
unsigned = True
def __init__(self, value):
if isinstance(value, Addr):
self.value = value.value
else:
try:
# Often addresses are referred to with sizes. Ex: A device
# base address is at "512MB". Use toMemorySize() to convert
# these into addresses. If the address is not specified with a
# "size", an exception will occur and numeric translation will
# proceed below.
self.value = convert.toMemorySize(value)
except (TypeError, ValueError):
# Convert number to string and use long() to do automatic
# base conversion (requires base=0 for auto-conversion)
self.value = long(str(value), base=0)
self._check()
def __add__(self, other):
if isinstance(other, Addr):
return self.value + other.value
else:
return self.value + other
def pretty_print(self, value):
try:
val = convert.toMemorySize(value)
except TypeError:
val = long(value)
return "0x%x" % long(val)
class AddrRange(ParamValue):
cxx_type = 'AddrRange'
def __init__(self, *args, **kwargs):
# Disable interleaving and hashing by default
self.intlvHighBit = 0
self.xorHighBit = 0
self.intlvBits = 0
self.intlvMatch = 0
def handle_kwargs(self, kwargs):
# An address range needs to have an upper limit, specified
# either explicitly with an end, or as an offset using the
# size keyword.
if 'end' in kwargs:
self.end = Addr(kwargs.pop('end'))
elif 'size' in kwargs:
self.end = self.start + Addr(kwargs.pop('size')) - 1
else:
raise TypeError, "Either end or size must be specified"
# Now on to the optional bit
if 'intlvHighBit' in kwargs:
self.intlvHighBit = int(kwargs.pop('intlvHighBit'))
if 'xorHighBit' in kwargs:
self.xorHighBit = int(kwargs.pop('xorHighBit'))
if 'intlvBits' in kwargs:
self.intlvBits = int(kwargs.pop('intlvBits'))
if 'intlvMatch' in kwargs:
self.intlvMatch = int(kwargs.pop('intlvMatch'))
if len(args) == 0:
self.start = Addr(kwargs.pop('start'))
handle_kwargs(self, kwargs)
elif len(args) == 1:
if kwargs:
self.start = Addr(args[0])
handle_kwargs(self, kwargs)
elif isinstance(args[0], (list, tuple)):
self.start = Addr(args[0][0])
self.end = Addr(args[0][1])
else:
self.start = Addr(0)
self.end = Addr(args[0]) - 1
elif len(args) == 2:
self.start = Addr(args[0])
self.end = Addr(args[1])
else:
raise TypeError, "Too many arguments specified"
if kwargs:
raise TypeError, "Too many keywords: %s" % kwargs.keys()
def __str__(self):
return '%s:%s:%s:%s:%s:%s' \
% (self.start, self.end, self.intlvHighBit, self.xorHighBit,\
self.intlvBits, self.intlvMatch)
def size(self):
# Divide the size by the size of the interleaving slice
return (long(self.end) - long(self.start) + 1) >> self.intlvBits
@classmethod
def cxx_predecls(cls, code):
Addr.cxx_predecls(code)
code('#include "base/addr_range.hh"')
@classmethod
def pybind_predecls(cls, code):
Addr.pybind_predecls(code)
code('#include "base/addr_range.hh"')
@classmethod
def cxx_ini_predecls(cls, code):
code('#include <sstream>')
@classmethod
def cxx_ini_parse(cls, code, src, dest, ret):
code('uint64_t _start, _end, _intlvHighBit = 0, _xorHighBit = 0;')
code('uint64_t _intlvBits = 0, _intlvMatch = 0;')
code('char _sep;')
code('std::istringstream _stream(${src});')
code('_stream >> _start;')
code('_stream.get(_sep);')
code('_stream >> _end;')
code('if (!_stream.fail() && !_stream.eof()) {')
code(' _stream.get(_sep);')
code(' _stream >> _intlvHighBit;')
code(' _stream.get(_sep);')
code(' _stream >> _xorHighBit;')
code(' _stream.get(_sep);')
code(' _stream >> _intlvBits;')
code(' _stream.get(_sep);')
code(' _stream >> _intlvMatch;')
code('}')
code('bool _ret = !_stream.fail() &&'
'_stream.eof() && _sep == \':\';')
code('if (_ret)')
code(' ${dest} = AddrRange(_start, _end, _intlvHighBit, \
_xorHighBit, _intlvBits, _intlvMatch);')
code('${ret} _ret;')
def getValue(self):
# Go from the Python class to the wrapped C++ class
from _m5.range import AddrRange
return AddrRange(long(self.start), long(self.end),
int(self.intlvHighBit), int(self.xorHighBit),
int(self.intlvBits), int(self.intlvMatch))
# Boolean parameter type. Python doesn't let you subclass bool, since
# it doesn't want to let you create multiple instances of True and
# False. Thus this is a little more complicated than String.
class Bool(ParamValue):
cxx_type = 'bool'
cmd_line_settable = True
def __init__(self, value):
try:
self.value = convert.toBool(value)
except TypeError:
self.value = bool(value)
def __call__(self, value):
self.__init__(value)
return value
def getValue(self):
return bool(self.value)
def __str__(self):
return str(self.value)
# implement truth value testing for Bool parameters so that these params
# evaluate correctly during the python configuration phase
def __nonzero__(self):
return bool(self.value)
def ini_str(self):
if self.value:
return 'true'
return 'false'
def config_value(self):
return self.value
@classmethod
def cxx_ini_predecls(cls, code):
# Assume that base/str.hh will be included anyway
# code('#include "base/str.hh"')
pass
@classmethod
def cxx_ini_parse(cls, code, src, dest, ret):
code('%s to_bool(%s, %s);' % (ret, src, dest))
def IncEthernetAddr(addr, val = 1):
bytes = map(lambda x: int(x, 16), addr.split(':'))
bytes[5] += val
for i in (5, 4, 3, 2, 1):
val,rem = divmod(bytes[i], 256)
bytes[i] = rem
if val == 0:
break
bytes[i - 1] += val
assert(bytes[0] <= 255)
return ':'.join(map(lambda x: '%02x' % x, bytes))
_NextEthernetAddr = "00:90:00:00:00:01"
def NextEthernetAddr():
global _NextEthernetAddr
value = _NextEthernetAddr
_NextEthernetAddr = IncEthernetAddr(_NextEthernetAddr, 1)
return value
class EthernetAddr(ParamValue):
cxx_type = 'Net::EthAddr'
ex_str = "00:90:00:00:00:01"
cmd_line_settable = True
@classmethod
def cxx_predecls(cls, code):
code('#include "base/inet.hh"')
def __init__(self, value):
if value == NextEthernetAddr:
self.value = value
return
if not isinstance(value, str):
raise TypeError, "expected an ethernet address and didn't get one"
bytes = value.split(':')
if len(bytes) != 6:
raise TypeError, 'invalid ethernet address %s' % value
for byte in bytes:
if not 0 <= int(byte, base=16) <= 0xff:
raise TypeError, 'invalid ethernet address %s' % value
self.value = value
def __call__(self, value):
self.__init__(value)
return value
def unproxy(self, base):
if self.value == NextEthernetAddr:
return EthernetAddr(self.value())
return self
def getValue(self):
from _m5.net import EthAddr
return EthAddr(self.value)
def __str__(self):
return self.value
def ini_str(self):
return self.value
@classmethod
def cxx_ini_parse(self, code, src, dest, ret):
code('%s = Net::EthAddr(%s);' % (dest, src))
code('%s true;' % ret)
# When initializing an IpAddress, pass in an existing IpAddress, a string of
# the form "a.b.c.d", or an integer representing an IP.
class IpAddress(ParamValue):
cxx_type = 'Net::IpAddress'
ex_str = "127.0.0.1"
cmd_line_settable = True
@classmethod
def cxx_predecls(cls, code):
code('#include "base/inet.hh"')
def __init__(self, value):
if isinstance(value, IpAddress):
self.ip = value.ip
else:
try:
self.ip = convert.toIpAddress(value)
except TypeError:
self.ip = long(value)
self.verifyIp()
def __call__(self, value):
self.__init__(value)
return value
def __str__(self):
tup = [(self.ip >> i) & 0xff for i in (24, 16, 8, 0)]
return '%d.%d.%d.%d' % tuple(tup)
def __eq__(self, other):
if isinstance(other, IpAddress):
return self.ip == other.ip
elif isinstance(other, str):
try:
return self.ip == convert.toIpAddress(other)
except:
return False
else:
return self.ip == other
def __ne__(self, other):
return not (self == other)
def verifyIp(self):
if self.ip < 0 or self.ip >= (1 << 32):
raise TypeError, "invalid ip address %#08x" % self.ip
def getValue(self):
from _m5.net import IpAddress
return IpAddress(self.ip)
# When initializing an IpNetmask, pass in an existing IpNetmask, a string of
# the form "a.b.c.d/n" or "a.b.c.d/e.f.g.h", or an ip and netmask as
# positional or keyword arguments.
class IpNetmask(IpAddress):
cxx_type = 'Net::IpNetmask'
ex_str = "127.0.0.0/24"
cmd_line_settable = True
@classmethod
def cxx_predecls(cls, code):
code('#include "base/inet.hh"')
def __init__(self, *args, **kwargs):
def handle_kwarg(self, kwargs, key, elseVal = None):
if key in kwargs:
setattr(self, key, kwargs.pop(key))
elif elseVal:
setattr(self, key, elseVal)
else:
raise TypeError, "No value set for %s" % key
if len(args) == 0:
handle_kwarg(self, kwargs, 'ip')
handle_kwarg(self, kwargs, 'netmask')
elif len(args) == 1:
if kwargs:
if not 'ip' in kwargs and not 'netmask' in kwargs:
raise TypeError, "Invalid arguments"
handle_kwarg(self, kwargs, 'ip', args[0])
handle_kwarg(self, kwargs, 'netmask', args[0])
elif isinstance(args[0], IpNetmask):
self.ip = args[0].ip
self.netmask = args[0].netmask
else:
(self.ip, self.netmask) = convert.toIpNetmask(args[0])
elif len(args) == 2:
self.ip = args[0]
self.netmask = args[1]
else:
raise TypeError, "Too many arguments specified"
if kwargs:
raise TypeError, "Too many keywords: %s" % kwargs.keys()
self.verify()
def __call__(self, value):
self.__init__(value)
return value
def __str__(self):
return "%s/%d" % (super(IpNetmask, self).__str__(), self.netmask)
def __eq__(self, other):
if isinstance(other, IpNetmask):
return self.ip == other.ip and self.netmask == other.netmask
elif isinstance(other, str):
try:
return (self.ip, self.netmask) == convert.toIpNetmask(other)
except:
return False
else:
return False
def verify(self):
self.verifyIp()
if self.netmask < 0 or self.netmask > 32:
raise TypeError, "invalid netmask %d" % netmask
def getValue(self):
from _m5.net import IpNetmask
return IpNetmask(self.ip, self.netmask)
# When initializing an IpWithPort, pass in an existing IpWithPort, a string of
# the form "a.b.c.d:p", or an ip and port as positional or keyword arguments.
class IpWithPort(IpAddress):
cxx_type = 'Net::IpWithPort'
ex_str = "127.0.0.1:80"
cmd_line_settable = True
@classmethod
def cxx_predecls(cls, code):
code('#include "base/inet.hh"')
def __init__(self, *args, **kwargs):
def handle_kwarg(self, kwargs, key, elseVal = None):
if key in kwargs:
setattr(self, key, kwargs.pop(key))
elif elseVal:
setattr(self, key, elseVal)
else:
raise TypeError, "No value set for %s" % key
if len(args) == 0:
handle_kwarg(self, kwargs, 'ip')
handle_kwarg(self, kwargs, 'port')
elif len(args) == 1:
if kwargs:
if not 'ip' in kwargs and not 'port' in kwargs:
raise TypeError, "Invalid arguments"
handle_kwarg(self, kwargs, 'ip', args[0])
handle_kwarg(self, kwargs, 'port', args[0])
elif isinstance(args[0], IpWithPort):
self.ip = args[0].ip
self.port = args[0].port
else:
(self.ip, self.port) = convert.toIpWithPort(args[0])
elif len(args) == 2:
self.ip = args[0]
self.port = args[1]
else:
raise TypeError, "Too many arguments specified"
if kwargs:
raise TypeError, "Too many keywords: %s" % kwargs.keys()
self.verify()
def __call__(self, value):
self.__init__(value)
return value
def __str__(self):
return "%s:%d" % (super(IpWithPort, self).__str__(), self.port)
def __eq__(self, other):
if isinstance(other, IpWithPort):
return self.ip == other.ip and self.port == other.port
elif isinstance(other, str):
try:
return (self.ip, self.port) == convert.toIpWithPort(other)
except:
return False
else:
return False
def verify(self):
self.verifyIp()
if self.port < 0 or self.port > 0xffff:
raise TypeError, "invalid port %d" % self.port
def getValue(self):
from _m5.net import IpWithPort
return IpWithPort(self.ip, self.port)
time_formats = [ "%a %b %d %H:%M:%S %Z %Y",
"%a %b %d %H:%M:%S %Y",
"%Y/%m/%d %H:%M:%S",
"%Y/%m/%d %H:%M",
"%Y/%m/%d",
"%m/%d/%Y %H:%M:%S",
"%m/%d/%Y %H:%M",
"%m/%d/%Y",
"%m/%d/%y %H:%M:%S",
"%m/%d/%y %H:%M",
"%m/%d/%y"]
def parse_time(value):
from time import gmtime, strptime, struct_time, time
from datetime import datetime, date
if isinstance(value, struct_time):
return value
if isinstance(value, (int, long)):
return gmtime(value)
if isinstance(value, (datetime, date)):
return value.timetuple()
if isinstance(value, str):
if value in ('Now', 'Today'):
return time.gmtime(time.time())
for format in time_formats:
try:
return strptime(value, format)
except ValueError:
pass
raise ValueError, "Could not parse '%s' as a time" % value
class Time(ParamValue):
cxx_type = 'tm'
@classmethod
def cxx_predecls(cls, code):
code('#include <time.h>')
def __init__(self, value):
self.value = parse_time(value)
def __call__(self, value):
self.__init__(value)
return value
def getValue(self):
from _m5.core import tm
import calendar
return tm.gmtime(calendar.timegm(self.value))
def __str__(self):
return time.asctime(self.value)
def ini_str(self):
return str(self)
def get_config_as_dict(self):
assert false
return str(self)
@classmethod
def cxx_ini_predecls(cls, code):
code('#include <time.h>')
@classmethod
def cxx_ini_parse(cls, code, src, dest, ret):
code('char *_parse_ret = strptime((${src}).c_str(),')
code(' "%a %b %d %H:%M:%S %Y", &(${dest}));')
code('${ret} _parse_ret && *_parse_ret == \'\\0\';');
# Enumerated types are a little more complex. The user specifies the
# type as Enum(foo) where foo is either a list or dictionary of
# alternatives (typically strings, but not necessarily so). (In the
# long run, the integer value of the parameter will be the list index
# or the corresponding dictionary value. For now, since we only check
# that the alternative is valid and then spit it into a .ini file,
# there's not much point in using the dictionary.)
# What Enum() must do is generate a new type encapsulating the
# provided list/dictionary so that specific values of the parameter
# can be instances of that type. We define two hidden internal
# classes (_ListEnum and _DictEnum) to serve as base classes, then
# derive the new type from the appropriate base class on the fly.
allEnums = {}
# Metaclass for Enum types
class MetaEnum(MetaParamValue):
def __new__(mcls, name, bases, dict):
assert name not in allEnums
cls = super(MetaEnum, mcls).__new__(mcls, name, bases, dict)
allEnums[name] = cls
return cls
def __init__(cls, name, bases, init_dict):
if init_dict.has_key('map'):
if not isinstance(cls.map, dict):
raise TypeError, "Enum-derived class attribute 'map' " \
"must be of type dict"
# build list of value strings from map
cls.vals = cls.map.keys()
cls.vals.sort()
elif init_dict.has_key('vals'):
if not isinstance(cls.vals, list):
raise TypeError, "Enum-derived class attribute 'vals' " \
"must be of type list"
# build string->value map from vals sequence
cls.map = {}
for idx,val in enumerate(cls.vals):
cls.map[val] = idx
else:
raise TypeError, "Enum-derived class must define "\
"attribute 'map' or 'vals'"
cls.cxx_type = 'Enums::%s' % name
super(MetaEnum, cls).__init__(name, bases, init_dict)
# Generate C++ class declaration for this enum type.
# Note that we wrap the enum in a class/struct to act as a namespace,
# so that the enum strings can be brief w/o worrying about collisions.
def cxx_decl(cls, code):
wrapper_name = cls.wrapper_name
wrapper = 'struct' if cls.wrapper_is_struct else 'namespace'
name = cls.__name__ if cls.enum_name is None else cls.enum_name
idem_macro = '__ENUM__%s__%s__' % (wrapper_name, name)
code('''\
#ifndef $idem_macro
#define $idem_macro
$wrapper $wrapper_name {
enum $name {
''')
code.indent(2)
for val in cls.vals:
code('$val = ${{cls.map[val]}},')
code('Num_$name = ${{len(cls.vals)}}')
code.dedent(2)
code(' };')
if cls.wrapper_is_struct:
code(' static const char *${name}Strings[Num_${name}];')
code('};')
else:
code('extern const char *${name}Strings[Num_${name}];')
code('}')
code()
code('#endif // $idem_macro')
def cxx_def(cls, code):
wrapper_name = cls.wrapper_name
file_name = cls.__name__
name = cls.__name__ if cls.enum_name is None else cls.enum_name
code('#include "enums/$file_name.hh"')
if cls.wrapper_is_struct:
code('const char *${wrapper_name}::${name}Strings'
'[Num_${name}] =')
else:
code('namespace Enums {')
code.indent(1)
code(' const char *${name}Strings[Num_${name}] =')
code('{')
code.indent(1)
for val in cls.vals:
code('"$val",')
code.dedent(1)
code('};')
if not cls.wrapper_is_struct:
code('} // namespace $wrapper_name')
code.dedent(1)
def pybind_def(cls, code):
name = cls.__name__
wrapper_name = cls.wrapper_name
enum_name = cls.__name__ if cls.enum_name is None else cls.enum_name
code('''#include "pybind11/pybind11.h"
#include "pybind11/stl.h"
#include <sim/init.hh>
namespace py = pybind11;
static void
module_init(py::module &m_internal)
{
py::module m = m_internal.def_submodule("enum_${name}");
py::enum_<${wrapper_name}::${enum_name}>(m, "enum_${name}")
''')
code.indent()
code.indent()
for val in cls.vals:
code('.value("${val}", ${wrapper_name}::${val})')
code('.value("Num_${name}", ${wrapper_name}::Num_${enum_name})')
code('.export_values()')
code(';')
code.dedent()
code('}')
code.dedent()
code()
code('static EmbeddedPyBind embed_enum("enum_${name}", module_init);')
# Base class for enum types.
class Enum(ParamValue):
__metaclass__ = MetaEnum
vals = []
cmd_line_settable = True
# The name of the wrapping namespace or struct
wrapper_name = 'Enums'
# If true, the enum is wrapped in a struct rather than a namespace
wrapper_is_struct = False
# If not None, use this as the enum name rather than this class name
enum_name = None
def __init__(self, value):
if value not in self.map:
raise TypeError, "Enum param got bad value '%s' (not in %s)" \
% (value, self.vals)
self.value = value
def __call__(self, value):
self.__init__(value)
return value
@classmethod
def cxx_predecls(cls, code):
code('#include "enums/$0.hh"', cls.__name__)
@classmethod
def cxx_ini_parse(cls, code, src, dest, ret):
code('if (false) {')
for elem_name in cls.map.iterkeys():
code('} else if (%s == "%s") {' % (src, elem_name))
code.indent()
code('%s = Enums::%s;' % (dest, elem_name))
code('%s true;' % ret)
code.dedent()
code('} else {')
code(' %s false;' % ret)
code('}')
def getValue(self):
import m5.internal.params
e = getattr(m5.internal.params, "enum_%s" % self.__class__.__name__)
return e(self.map[self.value])
def __str__(self):
return self.value
# how big does a rounding error need to be before we warn about it?
frequency_tolerance = 0.001 # 0.1%
class TickParamValue(NumericParamValue):
cxx_type = 'Tick'
ex_str = "1MHz"
cmd_line_settable = True
@classmethod
def cxx_predecls(cls, code):
code('#include "base/types.hh"')
def __call__(self, value):
self.__init__(value)
return value
def getValue(self):
return long(self.value)
@classmethod
def cxx_ini_predecls(cls, code):
code('#include <sstream>')
# Ticks are expressed in seconds in JSON files and in plain
# Ticks in .ini files. Switch based on a config flag
@classmethod
def cxx_ini_parse(self, code, src, dest, ret):
code('${ret} to_number(${src}, ${dest});')
class Latency(TickParamValue):
ex_str = "100ns"
def __init__(self, value):
if isinstance(value, (Latency, Clock)):
self.ticks = value.ticks
self.value = value.value
elif isinstance(value, Frequency):
self.ticks = value.ticks
self.value = 1.0 / value.value
elif value.endswith('t'):
self.ticks = True
self.value = int(value[:-1])
else:
self.ticks = False
self.value = convert.toLatency(value)
def __call__(self, value):
self.__init__(value)
return value
def __getattr__(self, attr):
if attr in ('latency', 'period'):
return self
if attr == 'frequency':
return Frequency(self)
raise AttributeError, "Latency object has no attribute '%s'" % attr
def getValue(self):
if self.ticks or self.value == 0:
value = self.value
else:
value = ticks.fromSeconds(self.value)
return long(value)
def config_value(self):
return self.getValue()
# convert latency to ticks
def ini_str(self):
return '%d' % self.getValue()
class Frequency(TickParamValue):
ex_str = "1GHz"
def __init__(self, value):
if isinstance(value, (Latency, Clock)):
if value.value == 0:
self.value = 0
else:
self.value = 1.0 / value.value
self.ticks = value.ticks
elif isinstance(value, Frequency):
self.value = value.value
self.ticks = value.ticks
else:
self.ticks = False
self.value = convert.toFrequency(value)
def __call__(self, value):
self.__init__(value)
return value
def __getattr__(self, attr):
if attr == 'frequency':
return self
if attr in ('latency', 'period'):
return Latency(self)
raise AttributeError, "Frequency object has no attribute '%s'" % attr
# convert latency to ticks
def getValue(self):
if self.ticks or self.value == 0:
value = self.value
else:
value = ticks.fromSeconds(1.0 / self.value)
return long(value)
def config_value(self):
return self.getValue()
def ini_str(self):
return '%d' % self.getValue()
# A generic Frequency and/or Latency value. Value is stored as a
# latency, just like Latency and Frequency.
class Clock(TickParamValue):
def __init__(self, value):
if isinstance(value, (Latency, Clock)):
self.ticks = value.ticks
self.value = value.value
elif isinstance(value, Frequency):
self.ticks = value.ticks
self.value = 1.0 / value.value
elif value.endswith('t'):
self.ticks = True
self.value = int(value[:-1])
else:
self.ticks = False
self.value = convert.anyToLatency(value)
def __call__(self, value):
self.__init__(value)
return value
def __str__(self):
return "%s" % Latency(self)
def __getattr__(self, attr):
if attr == 'frequency':
return Frequency(self)
if attr in ('latency', 'period'):
return Latency(self)
raise AttributeError, "Frequency object has no attribute '%s'" % attr
def getValue(self):
return self.period.getValue()
def config_value(self):
return self.period.config_value()
def ini_str(self):
return self.period.ini_str()
class Voltage(float,ParamValue):
cxx_type = 'double'
ex_str = "1V"
cmd_line_settable = True
def __new__(cls, value):
# convert to voltage
val = convert.toVoltage(value)
return super(cls, Voltage).__new__(cls, val)
def __call__(self, value):
val = convert.toVoltage(value)
self.__init__(val)
return value
def __str__(self):
return str(self.getValue())
def getValue(self):
value = float(self)
return value
def ini_str(self):
return '%f' % self.getValue()
@classmethod
def cxx_ini_predecls(cls, code):
code('#include <sstream>')
@classmethod
def cxx_ini_parse(self, code, src, dest, ret):
code('%s (std::istringstream(%s) >> %s).eof();' % (ret, src, dest))
class Current(float, ParamValue):
cxx_type = 'double'
ex_str = "1mA"
cmd_line_settable = False
def __new__(cls, value):
# convert to current
val = convert.toCurrent(value)
return super(cls, Current).__new__(cls, val)
def __call__(self, value):
val = convert.toCurrent(value)
self.__init__(val)
return value
def __str__(self):
return str(self.getValue())
def getValue(self):
value = float(self)
return value
def ini_str(self):
return '%f' % self.getValue()
@classmethod
def cxx_ini_predecls(cls, code):
code('#include <sstream>')
@classmethod
def cxx_ini_parse(self, code, src, dest, ret):
code('%s (std::istringstream(%s) >> %s).eof();' % (ret, src, dest))
class NetworkBandwidth(float,ParamValue):
cxx_type = 'float'
ex_str = "1Gbps"
cmd_line_settable = True
def __new__(cls, value):
# convert to bits per second
val = convert.toNetworkBandwidth(value)
return super(cls, NetworkBandwidth).__new__(cls, val)
def __str__(self):
return str(self.val)
def __call__(self, value):
val = convert.toNetworkBandwidth(value)
self.__init__(val)
return value
def getValue(self):
# convert to seconds per byte
value = 8.0 / float(self)
# convert to ticks per byte
value = ticks.fromSeconds(value)
return float(value)
def ini_str(self):
return '%f' % self.getValue()
def config_value(self):
return '%f' % self.getValue()
@classmethod
def cxx_ini_predecls(cls, code):
code('#include <sstream>')
@classmethod
def cxx_ini_parse(self, code, src, dest, ret):
code('%s (std::istringstream(%s) >> %s).eof();' % (ret, src, dest))
class MemoryBandwidth(float,ParamValue):
cxx_type = 'float'
ex_str = "1GB/s"
cmd_line_settable = True
def __new__(cls, value):
# convert to bytes per second
val = convert.toMemoryBandwidth(value)
return super(cls, MemoryBandwidth).__new__(cls, val)
def __call__(self, value):
val = convert.toMemoryBandwidth(value)
self.__init__(val)
return value
def getValue(self):
# convert to seconds per byte
value = float(self)
if value:
value = 1.0 / float(self)
# convert to ticks per byte
value = ticks.fromSeconds(value)
return float(value)
def ini_str(self):
return '%f' % self.getValue()
def config_value(self):
return '%f' % self.getValue()
@classmethod
def cxx_ini_predecls(cls, code):
code('#include <sstream>')
@classmethod
def cxx_ini_parse(self, code, src, dest, ret):
code('%s (std::istringstream(%s) >> %s).eof();' % (ret, src, dest))
#
# "Constants"... handy aliases for various values.
#
# Special class for NULL pointers. Note the special check in
# make_param_value() above that lets these be assigned where a
# SimObject is required.
# only one copy of a particular node
class NullSimObject(object):
__metaclass__ = Singleton
def __call__(cls):
return cls
def _instantiate(self, parent = None, path = ''):
pass
def ini_str(self):
return 'Null'
def unproxy(self, base):
return self
def set_path(self, parent, name):
pass
def set_parent(self, parent, name):
pass
def clear_parent(self, old_parent):
pass
def descendants(self):
return
yield None
def __str__(self):
return 'Null'
def config_value(self):
return None
def getValue(self):
return None
# The only instance you'll ever need...
NULL = NullSimObject()
def isNullPointer(value):
return isinstance(value, NullSimObject)
# Some memory range specifications use this as a default upper bound.
MaxAddr = Addr.max
MaxTick = Tick.max
AllMemory = AddrRange(0, MaxAddr)
#####################################################################
#
# Port objects
#
# Ports are used to interconnect objects in the memory system.
#
#####################################################################
# Port reference: encapsulates a reference to a particular port on a
# particular SimObject.
class PortRef(object):
def __init__(self, simobj, name, role):
assert(isSimObject(simobj) or isSimObjectClass(simobj))
self.simobj = simobj
self.name = name
self.role = role
self.peer = None # not associated with another port yet
self.ccConnected = False # C++ port connection done?
self.index = -1 # always -1 for non-vector ports
def __str__(self):
return '%s.%s' % (self.simobj, self.name)
def __len__(self):
# Return the number of connected ports, i.e. 0 is we have no
# peer and 1 if we do.
return int(self.peer != None)
# for config.ini, print peer's name (not ours)
def ini_str(self):
return str(self.peer)
# for config.json
def get_config_as_dict(self):
return {'role' : self.role, 'peer' : str(self.peer)}
def __getattr__(self, attr):
if attr == 'peerObj':
# shorthand for proxies
return self.peer.simobj
raise AttributeError, "'%s' object has no attribute '%s'" % \
(self.__class__.__name__, attr)
# Full connection is symmetric (both ways). Called via
# SimObject.__setattr__ as a result of a port assignment, e.g.,
# "obj1.portA = obj2.portB", or via VectorPortElementRef.__setitem__,
# e.g., "obj1.portA[3] = obj2.portB".
def connect(self, other):
if isinstance(other, VectorPortRef):
# reference to plain VectorPort is implicit append
other = other._get_next()
if self.peer and not proxy.isproxy(self.peer):
fatal("Port %s is already connected to %s, cannot connect %s\n",
self, self.peer, other);
self.peer = other
if proxy.isproxy(other):
other.set_param_desc(PortParamDesc())
elif isinstance(other, PortRef):
if other.peer is not self:
other.connect(self)
else:
raise TypeError, \
"assigning non-port reference '%s' to port '%s'" \
% (other, self)
# Allow a master/slave port pair to be spliced between
# a port and its connected peer. Useful operation for connecting
# instrumentation structures into a system when it is necessary
# to connect the instrumentation after the full system has been
# constructed.
def splice(self, new_master_peer, new_slave_peer):
if self.peer and not proxy.isproxy(self.peer):
if isinstance(new_master_peer, PortRef) and \
isinstance(new_slave_peer, PortRef):
old_peer = self.peer
if self.role == 'SLAVE':
self.peer = new_master_peer
old_peer.peer = new_slave_peer
new_master_peer.connect(self)
new_slave_peer.connect(old_peer)
elif self.role == 'MASTER':
self.peer = new_slave_peer
old_peer.peer = new_master_peer
new_slave_peer.connect(self)
new_master_peer.connect(old_peer)
else:
panic("Port %s has unknown role, "+\
"cannot splice in new peers\n", self)
else:
raise TypeError, \
"Splicing non-port references '%s','%s' to port '%s'"\
% (new_peer, peers_new_peer, self)
else:
fatal("Port %s not connected, cannot splice in new peers\n", self)
def clone(self, simobj, memo):
if memo.has_key(self):
return memo[self]
newRef = copy.copy(self)
memo[self] = newRef
newRef.simobj = simobj
assert(isSimObject(newRef.simobj))
if self.peer and not proxy.isproxy(self.peer):
peerObj = self.peer.simobj(_memo=memo)
newRef.peer = self.peer.clone(peerObj, memo)
assert(not isinstance(newRef.peer, VectorPortRef))
return newRef
def unproxy(self, simobj):
assert(simobj is self.simobj)
if proxy.isproxy(self.peer):
try:
realPeer = self.peer.unproxy(self.simobj)
except:
print "Error in unproxying port '%s' of %s" % \
(self.name, self.simobj.path())
raise
self.connect(realPeer)
# Call C++ to create corresponding port connection between C++ objects
def ccConnect(self):
from _m5.pyobject import connectPorts
if self.role == 'SLAVE':
# do nothing and let the master take care of it
return
if self.ccConnected: # already done this
return
peer = self.peer
if not self.peer: # nothing to connect to
return
# check that we connect a master to a slave
if self.role == peer.role:
raise TypeError, \
"cannot connect '%s' and '%s' due to identical role '%s'" \
% (peer, self, self.role)
try:
# self is always the master and peer the slave
connectPorts(self.simobj.getCCObject(), self.name, self.index,
peer.simobj.getCCObject(), peer.name, peer.index)
except:
print "Error connecting port %s.%s to %s.%s" % \
(self.simobj.path(), self.name,
peer.simobj.path(), peer.name)
raise
self.ccConnected = True
peer.ccConnected = True
# A reference to an individual element of a VectorPort... much like a
# PortRef, but has an index.
class VectorPortElementRef(PortRef):
def __init__(self, simobj, name, role, index):
PortRef.__init__(self, simobj, name, role)
self.index = index
def __str__(self):
return '%s.%s[%d]' % (self.simobj, self.name, self.index)
# A reference to a complete vector-valued port (not just a single element).
# Can be indexed to retrieve individual VectorPortElementRef instances.
class VectorPortRef(object):
def __init__(self, simobj, name, role):
assert(isSimObject(simobj) or isSimObjectClass(simobj))
self.simobj = simobj
self.name = name
self.role = role
self.elements = []
def __str__(self):
return '%s.%s[:]' % (self.simobj, self.name)
def __len__(self):
# Return the number of connected peers, corresponding the the
# length of the elements.
return len(self.elements)
# for config.ini, print peer's name (not ours)
def ini_str(self):
return ' '.join([el.ini_str() for el in self.elements])
# for config.json
def get_config_as_dict(self):
return {'role' : self.role,
'peer' : [el.ini_str() for el in self.elements]}
def __getitem__(self, key):
if not isinstance(key, int):
raise TypeError, "VectorPort index must be integer"
if key >= len(self.elements):
# need to extend list
ext = [VectorPortElementRef(self.simobj, self.name, self.role, i)
for i in range(len(self.elements), key+1)]
self.elements.extend(ext)
return self.elements[key]
def _get_next(self):
return self[len(self.elements)]
def __setitem__(self, key, value):
if not isinstance(key, int):
raise TypeError, "VectorPort index must be integer"
self[key].connect(value)
def connect(self, other):
if isinstance(other, (list, tuple)):
# Assign list of port refs to vector port.
# For now, append them... not sure if that's the right semantics
# or if it should replace the current vector.
for ref in other:
self._get_next().connect(ref)
else:
# scalar assignment to plain VectorPort is implicit append
self._get_next().connect(other)
def clone(self, simobj, memo):
if memo.has_key(self):
return memo[self]
newRef = copy.copy(self)
memo[self] = newRef
newRef.simobj = simobj
assert(isSimObject(newRef.simobj))
newRef.elements = [el.clone(simobj, memo) for el in self.elements]
return newRef
def unproxy(self, simobj):
[el.unproxy(simobj) for el in self.elements]
def ccConnect(self):
[el.ccConnect() for el in self.elements]
# Port description object. Like a ParamDesc object, this represents a
# logical port in the SimObject class, not a particular port on a
# SimObject instance. The latter are represented by PortRef objects.
class Port(object):
# Generate a PortRef for this port on the given SimObject with the
# given name
def makeRef(self, simobj):
return PortRef(simobj, self.name, self.role)
# Connect an instance of this port (on the given SimObject with
# the given name) with the port described by the supplied PortRef
def connect(self, simobj, ref):
self.makeRef(simobj).connect(ref)
# No need for any pre-declarations at the moment as we merely rely
# on an unsigned int.
def cxx_predecls(self, code):
pass
def pybind_predecls(self, code):
cls.cxx_predecls(self, code)
# Declare an unsigned int with the same name as the port, that
# will eventually hold the number of connected ports (and thus the
# number of elements for a VectorPort).
def cxx_decl(self, code):
code('unsigned int port_${{self.name}}_connection_count;')
class MasterPort(Port):
# MasterPort("description")
def __init__(self, *args):
if len(args) == 1:
self.desc = args[0]
self.role = 'MASTER'
else:
raise TypeError, 'wrong number of arguments'
class SlavePort(Port):
# SlavePort("description")
def __init__(self, *args):
if len(args) == 1:
self.desc = args[0]
self.role = 'SLAVE'
else:
raise TypeError, 'wrong number of arguments'
# VectorPort description object. Like Port, but represents a vector
# of connections (e.g., as on a XBar).
class VectorPort(Port):
def __init__(self, *args):
self.isVec = True
def makeRef(self, simobj):
return VectorPortRef(simobj, self.name, self.role)
class VectorMasterPort(VectorPort):
# VectorMasterPort("description")
def __init__(self, *args):
if len(args) == 1:
self.desc = args[0]
self.role = 'MASTER'
VectorPort.__init__(self, *args)
else:
raise TypeError, 'wrong number of arguments'
class VectorSlavePort(VectorPort):
# VectorSlavePort("description")
def __init__(self, *args):
if len(args) == 1:
self.desc = args[0]
self.role = 'SLAVE'
VectorPort.__init__(self, *args)
else:
raise TypeError, 'wrong number of arguments'
# 'Fake' ParamDesc for Port references to assign to the _pdesc slot of
# proxy objects (via set_param_desc()) so that proxy error messages
# make sense.
class PortParamDesc(object):
__metaclass__ = Singleton
ptype_str = 'Port'
ptype = Port
baseEnums = allEnums.copy()
baseParams = allParams.copy()
def clear():
global allEnums, allParams
allEnums = baseEnums.copy()
allParams = baseParams.copy()
__all__ = ['Param', 'VectorParam',
'Enum', 'Bool', 'String', 'Float',
'Int', 'Unsigned', 'Int8', 'UInt8', 'Int16', 'UInt16',
'Int32', 'UInt32', 'Int64', 'UInt64',
'Counter', 'Addr', 'Tick', 'Percent',
'TcpPort', 'UdpPort', 'EthernetAddr',
'IpAddress', 'IpNetmask', 'IpWithPort',
'MemorySize', 'MemorySize32',
'Latency', 'Frequency', 'Clock', 'Voltage',
'NetworkBandwidth', 'MemoryBandwidth',
'AddrRange',
'MaxAddr', 'MaxTick', 'AllMemory',
'Time',
'NextEthernetAddr', 'NULL',
'MasterPort', 'SlavePort',
'VectorMasterPort', 'VectorSlavePort']
import SimObject
|