1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
|
# Copyright (c) 2012 ARM Limited
# All rights reserved.
#
# The license below extends only to copyright in the software and shall
# not be construed as granting a license to any other intellectual
# property including but not limited to intellectual property relating
# to a hardware implementation of the functionality of the software
# licensed hereunder. You may use the software subject to the license
# terms below provided that you ensure that this notice is replicated
# unmodified and in its entirety in all distributions of the software,
# modified or unmodified, in source code or in binary form.
#
# Copyright (c) 2005 The Regents of The University of Michigan
# Copyright (c) 2010 Advanced Micro Devices, Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Nathan Binkert
# Steve Reinhardt
import atexit
import os
import sys
# import the SWIG-wrapped main C++ functions
import internal
import core
import stats
import SimObject
import ticks
import objects
from m5.util.dot_writer import do_dot
from m5.internal.stats import updateEvents as updateStatEvents
from util import fatal
from util import attrdict
# define a MaxTick parameter, unsigned 64 bit
MaxTick = 2**64 - 1
_memory_modes = {
"atomic" : objects.params.atomic,
"timing" : objects.params.timing,
"atomic_noncaching" : objects.params.atomic_noncaching,
}
# The final hook to generate .ini files. Called from the user script
# once the config is built.
def instantiate(ckpt_dir=None):
from m5 import options
root = objects.Root.getInstance()
if not root:
fatal("Need to instantiate Root() before calling instantiate()")
# we need to fix the global frequency
ticks.fixGlobalFrequency()
# Make sure SimObject-valued params are in the configuration
# hierarchy so we catch them with future descendants() walks
for obj in root.descendants(): obj.adoptOrphanParams()
# Unproxy in sorted order for determinism
for obj in root.descendants(): obj.unproxyParams()
if options.dump_config:
ini_file = file(os.path.join(options.outdir, options.dump_config), 'w')
# Print ini sections in sorted order for easier diffing
for obj in sorted(root.descendants(), key=lambda o: o.path()):
obj.print_ini(ini_file)
ini_file.close()
if options.json_config:
try:
import json
json_file = file(os.path.join(options.outdir, options.json_config), 'w')
d = root.get_config_as_dict()
json.dump(d, json_file, indent=4)
json_file.close()
except ImportError:
pass
do_dot(root, options.outdir, options.dot_config)
# Initialize the global statistics
stats.initSimStats()
# Create the C++ sim objects and connect ports
for obj in root.descendants(): obj.createCCObject()
for obj in root.descendants(): obj.connectPorts()
# Do a second pass to finish initializing the sim objects
for obj in root.descendants(): obj.init()
# Do a third pass to initialize statistics
for obj in root.descendants(): obj.regStats()
# Do a fourth pass to initialize probe points
for obj in root.descendants(): obj.regProbePoints()
# Do a fifth pass to connect probe listeners
for obj in root.descendants(): obj.regProbeListeners()
# We're done registering statistics. Enable the stats package now.
stats.enable()
# Restore checkpoint (if any)
if ckpt_dir:
ckpt = internal.core.getCheckpoint(ckpt_dir)
internal.core.unserializeGlobals(ckpt);
for obj in root.descendants(): obj.loadState(ckpt)
need_resume.append(root)
else:
for obj in root.descendants(): obj.initState()
# Check to see if any of the stat events are in the past after resuming from
# a checkpoint, If so, this call will shift them to be at a valid time.
updateStatEvents()
need_resume = []
need_startup = True
def simulate(*args, **kwargs):
global need_resume, need_startup
if need_startup:
root = objects.Root.getInstance()
for obj in root.descendants(): obj.startup()
need_startup = False
# Python exit handlers happen in reverse order.
# We want to dump stats last.
atexit.register(stats.dump)
# register our C++ exit callback function with Python
atexit.register(internal.core.doExitCleanup)
# Reset to put the stats in a consistent state.
stats.reset()
for root in need_resume:
resume(root)
need_resume = []
return internal.event.simulate(*args, **kwargs)
# Export curTick to user script.
def curTick():
return internal.core.curTick()
# Drain the system in preparation of a checkpoint or memory mode
# switch.
def drain(root):
# Try to drain all objects. Draining might not be completed unless
# all objects return that they are drained on the first call. This
# is because as objects drain they may cause other objects to no
# longer be drained.
def _drain():
all_drained = False
dm = internal.drain.createDrainManager()
unready_objs = sum(obj.drain(dm) for obj in root.descendants())
# If we've got some objects that can't drain immediately, then simulate
if unready_objs > 0:
dm.setCount(unready_objs)
#WARNING: if a valid exit event occurs while draining, it will not
# get returned to the user script
exit_event = simulate()
while exit_event.getCause() != 'Finished drain':
exit_event = simulate()
else:
all_drained = True
internal.drain.cleanupDrainManager(dm)
return all_drained
all_drained = _drain()
while (not all_drained):
all_drained = _drain()
def memWriteback(root):
for obj in root.descendants():
obj.memWriteback()
def memInvalidate(root):
for obj in root.descendants():
obj.memInvalidate()
def resume(root):
for obj in root.descendants(): obj.drainResume()
def checkpoint(dir):
root = objects.Root.getInstance()
if not isinstance(root, objects.Root):
raise TypeError, "Checkpoint must be called on a root object."
drain(root)
memWriteback(root)
print "Writing checkpoint"
internal.core.serializeAll(dir)
resume(root)
def _changeMemoryMode(system, mode):
if not isinstance(system, (objects.Root, objects.System)):
raise TypeError, "Parameter of type '%s'. Must be type %s or %s." % \
(type(system), objects.Root, objects.System)
if system.getMemoryMode() != mode:
drain(system)
system.setMemoryMode(mode)
else:
print "System already in target mode. Memory mode unchanged."
def switchCpus(system, cpuList, do_drain=True, verbose=True):
"""Switch CPUs in a system.
By default, this method drains and resumes the system. This
behavior can be disabled by setting the keyword argument
'do_drain' to false, which might be desirable if multiple
operations requiring a drained system are going to be performed in
sequence.
Note: This method may switch the memory mode of the system if that
is required by the CPUs. It may also flush all caches in the
system.
Arguments:
system -- Simulated system.
cpuList -- (old_cpu, new_cpu) tuples
Keyword Arguments:
do_drain -- Perform a drain/resume of the system when switching.
"""
if verbose:
print "switching cpus"
if not isinstance(cpuList, list):
raise RuntimeError, "Must pass a list to this function"
for item in cpuList:
if not isinstance(item, tuple) or len(item) != 2:
raise RuntimeError, "List must have tuples of (oldCPU,newCPU)"
old_cpus = [old_cpu for old_cpu, new_cpu in cpuList]
new_cpus = [new_cpu for old_cpu, new_cpu in cpuList]
old_cpu_set = set(old_cpus)
memory_mode_name = new_cpus[0].memory_mode()
for old_cpu, new_cpu in cpuList:
if not isinstance(old_cpu, objects.BaseCPU):
raise TypeError, "%s is not of type BaseCPU" % old_cpu
if not isinstance(new_cpu, objects.BaseCPU):
raise TypeError, "%s is not of type BaseCPU" % new_cpu
if new_cpu in old_cpu_set:
raise RuntimeError, \
"New CPU (%s) is in the list of old CPUs." % (old_cpu,)
if not new_cpu.switchedOut():
raise RuntimeError, \
"New CPU (%s) is already active." % (new_cpu,)
if not new_cpu.support_take_over():
raise RuntimeError, \
"New CPU (%s) does not support CPU handover." % (old_cpu,)
if new_cpu.memory_mode() != memory_mode_name:
raise RuntimeError, \
"%s and %s require different memory modes." % (new_cpu,
new_cpus[0])
if old_cpu.switchedOut():
raise RuntimeError, \
"Old CPU (%s) is inactive." % (new_cpu,)
if not old_cpu.support_take_over():
raise RuntimeError, \
"Old CPU (%s) does not support CPU handover." % (old_cpu,)
try:
memory_mode = _memory_modes[memory_mode_name]
except KeyError:
raise RuntimeError, "Invalid memory mode (%s)" % memory_mode_name
if do_drain:
drain(system)
# Now all of the CPUs are ready to be switched out
for old_cpu, new_cpu in cpuList:
old_cpu.switchOut()
# Change the memory mode if required. We check if this is needed
# to avoid printing a warning if no switch was performed.
if system.getMemoryMode() != memory_mode:
# Flush the memory system if we are switching to a memory mode
# that disables caches. This typically happens when switching to a
# hardware virtualized CPU.
if memory_mode == objects.params.atomic_noncaching:
memWriteback(system)
memInvalidate(system)
_changeMemoryMode(system, memory_mode)
for old_cpu, new_cpu in cpuList:
new_cpu.takeOverFrom(old_cpu)
if do_drain:
resume(system)
from internal.core import disableAllListeners
|