1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
|
# Copyright (c) 2012-2013 ARM Limited
# All rights reserved.
#
# The license below extends only to copyright in the software and shall
# not be construed as granting a license to any other intellectual
# property including but not limited to intellectual property relating
# to a hardware implementation of the functionality of the software
# licensed hereunder. You may use the software subject to the license
# terms below provided that you ensure that this notice is replicated
# unmodified and in its entirety in all distributions of the software,
# modified or unmodified, in source code or in binary form.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Andreas Hansson
# Uri Wiener
# Sascha Bischoff
#####################################################################
#
# System visualization using DOT
#
# While config.ini and config.json provide an almost complete listing
# of a system's components and connectivity, they lack a birds-eye
# view. The output generated by do_dot() is a DOT-based figure (as a
# pdf and an editable svg file) and its source dot code. Nodes are
# components, and edges represent the memory hierarchy: the edges are
# directed, from a master to slave. Initially all nodes are
# generated, and then all edges are added. do_dot should be called
# with the top-most SimObject (namely root but not necessarily), the
# output folder and the output dot source filename. From the given
# node, both processes (node and edge creation) is performed
# recursivly, traversing all children of the given root.
#
# pydot is required. When missing, no output will be generated.
#
#####################################################################
import m5, os, re
from m5.SimObject import isRoot, isSimObjectVector
from m5.params import PortRef, isNullPointer
from m5.util import warn
try:
import pydot
except:
pydot = False
def simnode_children(simNode):
for child in simNode._children.itervalues():
if isNullPointer(child):
continue
if isSimObjectVector(child):
for obj in child:
if not isNullPointer(obj):
yield obj
else:
yield child
# need to create all nodes (components) before creating edges (memory channels)
def dot_create_nodes(simNode, callgraph):
if isRoot(simNode):
label = "root"
else:
label = simNode._name
full_path = re.sub('\.', '_', simNode.path())
# add class name under the label
label = "\"" + label + " \\n: " + simNode.__class__.__name__ + "\""
# each component is a sub-graph (cluster)
cluster = dot_create_cluster(simNode, full_path, label)
# create nodes per port
for port_name in simNode._ports.keys():
port = simNode._port_refs.get(port_name, None)
if port != None:
full_port_name = full_path + "_" + port_name
port_node = dot_create_node(simNode, full_port_name, port_name)
cluster.add_node(port_node)
# recurse to children
for child in simnode_children(simNode):
dot_create_nodes(child, cluster)
callgraph.add_subgraph(cluster)
# create all edges according to memory hierarchy
def dot_create_edges(simNode, callgraph):
for port_name in simNode._ports.keys():
port = simNode._port_refs.get(port_name, None)
if port != None:
full_path = re.sub('\.', '_', simNode.path())
full_port_name = full_path + "_" + port_name
port_node = dot_create_node(simNode, full_port_name, port_name)
# create edges
if isinstance(port, PortRef):
dot_add_edge(simNode, callgraph, full_port_name, port)
else:
for p in port.elements:
dot_add_edge(simNode, callgraph, full_port_name, p)
# recurse to children
for child in simnode_children(simNode):
dot_create_edges(child, callgraph)
def dot_add_edge(simNode, callgraph, full_port_name, peerPort):
if peerPort.role == "MASTER":
peer_port_name = re.sub('\.', '_', peerPort.peer.simobj.path() \
+ "." + peerPort.peer.name)
callgraph.add_edge(pydot.Edge(full_port_name, peer_port_name))
def dot_create_cluster(simNode, full_path, label):
# get the parameter values of the node and use them as a tooltip
ini_strings = []
for param in sorted(simNode._params.keys()):
value = simNode._values.get(param)
if value != None:
# parameter name = value in HTML friendly format
ini_strings.append(str(param) + "=" +
simNode._values[param].ini_str())
# join all the parameters with an HTML newline
tooltip = " ".join(ini_strings)
return pydot.Cluster( \
full_path, \
shape = "Mrecord", \
label = label, \
tooltip = "\"" + tooltip + "\"", \
style = "\"rounded, filled\"", \
color = "#000000", \
fillcolor = dot_gen_colour(simNode), \
fontname = "Arial", \
fontsize = "14", \
fontcolor = "#000000" \
)
def dot_create_node(simNode, full_path, label):
return pydot.Node( \
full_path, \
shape = "Mrecord", \
label = label, \
style = "\"rounded, filled\"", \
color = "#000000", \
fillcolor = dot_gen_colour(simNode, True), \
fontname = "Arial", \
fontsize = "14", \
fontcolor = "#000000" \
)
# an enumerator for different kinds of node types, at the moment we
# discern the majority of node types, with the caches being the
# notable exception
class NodeType:
SYS = 0
CPU = 1
XBAR = 2
MEM = 3
DEV = 4
OTHER = 5
# based on the sim object, determine the node type
def get_node_type(simNode):
if isinstance(simNode, m5.objects.System):
return NodeType.SYS
# NULL ISA has no BaseCPU or PioDevice, so check if these names
# exists before using them
elif 'BaseCPU' in dir(m5.objects) and \
isinstance(simNode, m5.objects.BaseCPU):
return NodeType.CPU
elif 'PioDevice' in dir(m5.objects) and \
isinstance(simNode, m5.objects.PioDevice):
return NodeType.DEV
elif isinstance(simNode, m5.objects.BaseXBar):
return NodeType.XBAR
elif isinstance(simNode, m5.objects.AbstractMemory):
return NodeType.MEM
else:
return NodeType.OTHER
# based on the node type, determine the colour as an RGB tuple, the
# palette is rather arbitrary at this point (some coherent natural
# tones), and someone that feels artistic should probably have a look
def get_type_colour(nodeType):
if nodeType == NodeType.SYS:
return (228, 231, 235)
elif nodeType == NodeType.CPU:
return (187, 198, 217)
elif nodeType == NodeType.XBAR:
return (111, 121, 140)
elif nodeType == NodeType.MEM:
return (94, 89, 88)
elif nodeType == NodeType.DEV:
return (199, 167, 147)
elif nodeType == NodeType.OTHER:
# use a relatively gray shade
return (186, 182, 174)
# generate colour for a node, either corresponding to a sim object or a
# port
def dot_gen_colour(simNode, isPort = False):
# determine the type of the current node, and also its parent, if
# the node is not the same type as the parent then we use the base
# colour for its type
node_type = get_node_type(simNode)
if simNode._parent:
parent_type = get_node_type(simNode._parent)
else:
parent_type = NodeType.OTHER
# if this node is the same type as the parent, then scale the
# colour based on the depth such that the deeper levels in the
# hierarchy get darker colours
if node_type == parent_type:
# start out with a depth of zero
depth = 0
parent = simNode._parent
# find the closes parent that is not the same type
while parent and get_node_type(parent) == parent_type:
depth = depth + 1
parent = parent._parent
node_colour = get_type_colour(parent_type)
# slightly arbitrary, but assume that the depth is less than
# five levels
r, g, b = map(lambda x: x * max(1 - depth / 7.0, 0.3), node_colour)
else:
node_colour = get_type_colour(node_type)
r, g, b = node_colour
# if we are colouring a port, then make it a slightly darker shade
# than the node that encapsulates it, once again use a magic constant
if isPort:
r, g, b = map(lambda x: 0.8 * x, (r, g, b))
return dot_rgb_to_html(r, g, b)
def dot_rgb_to_html(r, g, b):
return "#%.2x%.2x%.2x" % (r, g, b)
# We need to create all of the clock domains. We abuse the alpha channel to get
# the correct domain colouring.
def dot_add_clk_domain(c_dom, v_dom):
label = "\"" + str(c_dom) + "\ :\ " + str(v_dom) + "\""
label = re.sub('\.', '_', str(label))
full_path = re.sub('\.', '_', str(c_dom))
return pydot.Cluster( \
full_path, \
shape = "Mrecord", \
label = label, \
style = "\"rounded, filled, dashed\"", \
color = "#000000", \
fillcolor = "#AFC8AF8F", \
fontname = "Arial", \
fontsize = "14", \
fontcolor = "#000000" \
)
def dot_create_dvfs_nodes(simNode, callgraph, domain=None):
if isRoot(simNode):
label = "root"
else:
label = simNode._name
full_path = re.sub('\.', '_', simNode.path())
# add class name under the label
label = "\"" + label + " \\n: " + simNode.__class__.__name__ + "\""
# each component is a sub-graph (cluster)
cluster = dot_create_cluster(simNode, full_path, label)
# create nodes per port
for port_name in simNode._ports.keys():
port = simNode._port_refs.get(port_name, None)
if port != None:
full_port_name = full_path + "_" + port_name
port_node = dot_create_node(simNode, full_port_name, port_name)
cluster.add_node(port_node)
# Dictionary of DVFS domains
dvfs_domains = {}
# recurse to children
for child in simnode_children(simNode):
try:
c_dom = child.__getattr__('clk_domain')
v_dom = c_dom.__getattr__('voltage_domain')
except AttributeError:
# Just re-use the domain from above
c_dom = domain
v_dom = c_dom.__getattr__('voltage_domain')
pass
if c_dom == domain or c_dom == None:
dot_create_dvfs_nodes(child, cluster, domain)
else:
if c_dom not in dvfs_domains:
dvfs_cluster = dot_add_clk_domain(c_dom, v_dom)
dvfs_domains[c_dom] = dvfs_cluster
else:
dvfs_cluster = dvfs_domains[c_dom]
dot_create_dvfs_nodes(child, dvfs_cluster, c_dom)
for key in dvfs_domains:
cluster.add_subgraph(dvfs_domains[key])
callgraph.add_subgraph(cluster)
def do_dot(root, outdir, dotFilename):
if not pydot:
return
# * use ranksep > 1.0 for for vertical separation between nodes
# especially useful if you need to annotate edges using e.g. visio
# which accepts svg format
# * no need for hoizontal separation as nothing moves horizonally
callgraph = pydot.Dot(graph_type='digraph', ranksep='1.3')
dot_create_nodes(root, callgraph)
dot_create_edges(root, callgraph)
dot_filename = os.path.join(outdir, dotFilename)
callgraph.write(dot_filename)
try:
# dot crashes if the figure is extremely wide.
# So avoid terminating simulation unnecessarily
callgraph.write_svg(dot_filename + ".svg")
callgraph.write_pdf(dot_filename + ".pdf")
except:
warn("failed to generate dot output from %s", dot_filename)
def do_dvfs_dot(root, outdir, dotFilename):
if not pydot:
return
# There is a chance that we are unable to resolve the clock or
# voltage domains. If so, we fail silently.
try:
dvfsgraph = pydot.Dot(graph_type='digraph', ranksep='1.3')
dot_create_dvfs_nodes(root, dvfsgraph)
dot_create_edges(root, dvfsgraph)
dot_filename = os.path.join(outdir, dotFilename)
dvfsgraph.write(dot_filename)
except:
warn("Failed to generate dot graph for DVFS domains")
return
try:
# dot crashes if the figure is extremely wide.
# So avoid terminating simulation unnecessarily
dvfsgraph.write_svg(dot_filename + ".svg")
dvfsgraph.write_pdf(dot_filename + ".pdf")
except:
warn("failed to generate dot output from %s", dot_filename)
|