summaryrefslogtreecommitdiff
path: root/src/sim/power/thermal_model.cc
blob: d362da6806f806e70f469ab75ec4d630c255a842 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
/*
 * Copyright (c) 2015 ARM Limited
 * All rights reserved
 *
 * The license below extends only to copyright in the software and shall
 * not be construed as granting a license to any other intellectual
 * property including but not limited to intellectual property relating
 * to a hardware implementation of the functionality of the software
 * licensed hereunder.  You may use the software subject to the license
 * terms below provided that you ensure that this notice is replicated
 * unmodified and in its entirety in all distributions of the software,
 * modified or unmodified, in source code or in binary form.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: David Guillen Fandos
 */

#include "sim/power/thermal_model.hh"

#include "base/statistics.hh"
#include "params/ThermalCapacitor.hh"
#include "params/ThermalReference.hh"
#include "params/ThermalResistor.hh"
#include "sim/clocked_object.hh"
#include "sim/linear_solver.hh"
#include "sim/power/thermal_domain.hh"
#include "sim/sim_object.hh"

/**
 * ThermalReference
 */
ThermalReference::ThermalReference(const Params *p)
    : SimObject(p), _temperature(p->temperature), node(NULL)
{
}

ThermalReference *
ThermalReferenceParams::create()
{
    return new ThermalReference(this);
}

void
ThermalReference::serialize(CheckpointOut &cp) const
{
    SERIALIZE_SCALAR(_temperature);
}

void
ThermalReference::unserialize(CheckpointIn &cp)
{
    UNSERIALIZE_SCALAR(_temperature);
}

LinearEquation
ThermalReference::getEquation(ThermalNode * n, unsigned nnodes,
                              double step) const {
    // Just return an empty equation
    return LinearEquation(nnodes);
}

/**
 * ThermalResistor
 */
ThermalResistor::ThermalResistor(const Params *p)
    : SimObject(p), _resistance(p->resistance), node1(NULL), node2(NULL)
{
}

ThermalResistor *
ThermalResistorParams::create()
{
    return new ThermalResistor(this);
}

void
ThermalResistor::serialize(CheckpointOut &cp) const
{
    SERIALIZE_SCALAR(_resistance);
}

void
ThermalResistor::unserialize(CheckpointIn &cp)
{
    UNSERIALIZE_SCALAR(_resistance);
}

LinearEquation
ThermalResistor::getEquation(ThermalNode * n, unsigned nnodes,
                             double step) const
{
    // i[n] = (Vn2 - Vn1)/R
    LinearEquation eq(nnodes);

    if (n != node1 && n != node2)
        return eq;

    if (node1->isref)
        eq[eq.cnt()] += -node1->temp / _resistance;
    else
        eq[node1->id] += -1.0f / _resistance;

    if (node2->isref)
        eq[eq.cnt()] += node2->temp / _resistance;
    else
        eq[node2->id] += 1.0f / _resistance;

    // We've assumed n was node1, reverse if necessary
    if (n == node2)
        eq *= -1.0f;

    return eq;
}

/**
 * ThermalCapacitor
 */
ThermalCapacitor::ThermalCapacitor(const Params *p)
    : SimObject(p), _capacitance(p->capacitance), node1(NULL), node2(NULL)
{
}

ThermalCapacitor *
ThermalCapacitorParams::create()
{
    return new ThermalCapacitor(this);
}

void
ThermalCapacitor::serialize(CheckpointOut &cp) const
{
    SERIALIZE_SCALAR(_capacitance);
}

void
ThermalCapacitor::unserialize(CheckpointIn &cp)
{
    UNSERIALIZE_SCALAR(_capacitance);
}

LinearEquation
ThermalCapacitor::getEquation(ThermalNode * n, unsigned nnodes,
                              double step) const
{
    // i(t) = C * d(Vn2 - Vn1)/dt
    // i[n] = C/step * (Vn2 - Vn1 - Vn2[n-1] + Vn1[n-1])
    LinearEquation eq(nnodes);

    if (n != node1 && n != node2)
        return eq;

    eq[eq.cnt()] += _capacitance / step * (node1->temp - node2->temp);

    if (node1->isref)
        eq[eq.cnt()] += _capacitance / step * (-node1->temp);
    else
        eq[node1->id] += -1.0f * _capacitance / step;

    if (node2->isref)
        eq[eq.cnt()] += _capacitance / step * (node2->temp);
    else
        eq[node2->id] += 1.0f * _capacitance / step;

    // We've assumed n was node1, reverse if necessary
    if (n == node2)
        eq *= -1.0f;

    return eq;
}

/**
 * ThermalModel
 */
ThermalModel::ThermalModel(const Params *p)
    : ClockedObject(p), stepEvent([this]{ doStep(); }, name()), _step(p->step)
{
}

ThermalModel *
ThermalModelParams::create()
{
    return new ThermalModel(this);
}

void
ThermalModel::serialize(CheckpointOut &cp) const
{
    SERIALIZE_SCALAR(_step);
}

void
ThermalModel::unserialize(CheckpointIn &cp)
{
    UNSERIALIZE_SCALAR(_step);
}

void
ThermalModel::doStep()
{
    // Calculate new temperatures!
    // For each node in the system, create the kirchhoff nodal equation
    LinearSystem ls(eq_nodes.size());
    for (unsigned i = 0; i < eq_nodes.size(); i++) {
        auto n = eq_nodes[i];
        LinearEquation node_equation (eq_nodes.size());
        for (auto e : entities) {
            LinearEquation eq = e->getEquation(n, eq_nodes.size(), _step);
            node_equation = node_equation + eq;
        }
        ls[i] = node_equation;
    }

    // Get temperatures for this iteration
    std::vector <double> temps = ls.solve();
    for (unsigned i = 0; i < eq_nodes.size(); i++)
        eq_nodes[i]->temp = temps[i];

    // Schedule next computation
    schedule(stepEvent, curTick() + SimClock::Int::s * _step);

    // Notify everybody
    for (auto dom : domains)
        dom->emitUpdate();
}

void
ThermalModel::startup()
{
    // Look for nodes connected to voltage references, these
    // can be just set to the reference value (no nodal equation)
    for (auto ref : references) {
        ref->node->temp = ref->_temperature;
        ref->node->isref = true;
    }
    // Setup the initial temperatures
    for (auto dom : domains)
        dom->getNode()->temp = dom->initialTemperature();

    // Create a list of unknown temperature nodes
    for (auto n : nodes) {
        bool found = false;
        for (auto ref : references)
            if (ref->node == n) {
                found = true;
                break;
            }
        if (!found)
            eq_nodes.push_back(n);
    }

    // Assign each node an ID
    for (unsigned i = 0; i < eq_nodes.size(); i++)
        eq_nodes[i]->id = i;

    // Schedule first thermal update
    schedule(stepEvent, curTick() + SimClock::Int::s * _step);
}

void ThermalModel::addDomain(ThermalDomain * d) {
    domains.push_back(d);
    entities.push_back(d);
}
void ThermalModel::addReference(ThermalReference * r) {
    references.push_back(r);
    entities.push_back(r);
}
void ThermalModel::addCapacitor(ThermalCapacitor * c) {
    capacitors.push_back(c);
    entities.push_back(c);
}
void ThermalModel::addResistor(ThermalResistor * r) {
    resistors.push_back(r);
    entities.push_back(r);
}

double ThermalModel::getTemp() const {
    // Just pick the highest temperature
    double temp = 0;
    for (auto & n : eq_nodes)
        temp = std::max(temp, n->temp);
    return temp;
}