1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
|
/*
* Copyright (c) 2015 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Nathan Binkert
* Erik Hallnor
* Steve Reinhardt
* Andreas Sandberg
*/
/* @file
* Serialization Interface Declarations
*/
#ifndef __SERIALIZE_HH__
#define __SERIALIZE_HH__
#include <iostream>
#include <list>
#include <map>
#include <stack>
#include <vector>
#include "base/bitunion.hh"
#include "base/types.hh"
class IniFile;
class Serializable;
class CheckpointIn;
class SimObject;
class EventQueue;
typedef std::ostream CheckpointOut;
/** The current version of the checkpoint format.
* This should be incremented by 1 and only 1 for every new version, where a new
* version is defined as a checkpoint created before this version won't work on
* the current version until the checkpoint format is updated. Adding a new
* SimObject shouldn't cause the version number to increase, only changes to
* existing objects such as serializing/unserializing more state, changing sizes
* of serialized arrays, etc. */
static const uint64_t gem5CheckpointVersion = 0x000000000000000e;
template <class T>
void paramOut(CheckpointOut &cp, const std::string &name, const T ¶m);
template <typename DataType, typename BitUnion>
void paramOut(CheckpointOut &cp, const std::string &name,
const BitfieldBackend::BitUnionOperators<DataType, BitUnion> &p)
{
paramOut(cp, name, p.__data);
}
template <class T>
void paramIn(CheckpointIn &cp, const std::string &name, T ¶m);
template <typename DataType, typename BitUnion>
void paramIn(CheckpointIn &cp, const std::string &name,
BitfieldBackend::BitUnionOperators<DataType, BitUnion> &p)
{
paramIn(cp, name, p.__data);
}
template <class T>
bool optParamIn(CheckpointIn &cp, const std::string &name, T ¶m);
template <typename DataType, typename BitUnion>
bool optParamIn(CheckpointIn &cp, const std::string &name,
BitfieldBackend::BitUnionOperators<DataType, BitUnion> &p)
{
return optParamIn(cp, name, p.__data);
}
template <class T>
void arrayParamOut(CheckpointOut &cp, const std::string &name,
const T *param, unsigned size);
template <class T>
void arrayParamOut(CheckpointOut &cp, const std::string &name,
const std::vector<T> ¶m);
template <class T>
void arrayParamOut(CheckpointOut &cp, const std::string &name,
const std::list<T> ¶m);
template <class T>
void arrayParamIn(CheckpointIn &cp, const std::string &name,
T *param, unsigned size);
template <class T>
void arrayParamIn(CheckpointIn &cp, const std::string &name,
std::vector<T> ¶m);
template <class T>
void arrayParamIn(CheckpointIn &cp, const std::string &name,
std::list<T> ¶m);
void
objParamIn(CheckpointIn &cp, const std::string &name, SimObject * ¶m);
template <typename T>
void fromInt(T &t, int i)
{
t = (T)i;
}
template <typename T>
void fromSimObject(T &t, SimObject *s)
{
t = dynamic_cast<T>(s);
}
//
// These macros are streamlined to use in serialize/unserialize
// functions. It's assumed that serialize() has a parameter 'os' for
// the ostream, and unserialize() has parameters 'cp' and 'section'.
#define SERIALIZE_SCALAR(scalar) paramOut(cp, #scalar, scalar)
#define UNSERIALIZE_SCALAR(scalar) paramIn(cp, #scalar, scalar)
#define UNSERIALIZE_OPT_SCALAR(scalar) optParamIn(cp, #scalar, scalar)
// ENUMs are like SCALARs, but we cast them to ints on the way out
#define SERIALIZE_ENUM(scalar) paramOut(cp, #scalar, (int)scalar)
#define UNSERIALIZE_ENUM(scalar) \
do { \
int tmp; \
paramIn(cp, #scalar, tmp); \
fromInt(scalar, tmp); \
} while (0)
#define SERIALIZE_ARRAY(member, size) \
arrayParamOut(cp, #member, member, size)
#define UNSERIALIZE_ARRAY(member, size) \
arrayParamIn(cp, #member, member, size)
#define SERIALIZE_CONTAINER(member) \
arrayParamOut(cp, #member, member)
#define UNSERIALIZE_CONTAINER(member) \
arrayParamIn(cp, #member, member)
#define SERIALIZE_EVENT(event) event.serializeSection(cp, #event);
#define UNSERIALIZE_EVENT(event) \
do { \
event.unserializeSection(cp, #event); \
eventQueue()->checkpointReschedule(&event); \
} while(0)
#define SERIALIZE_OBJPTR(objptr) paramOut(cp, #objptr, (objptr)->name())
#define UNSERIALIZE_OBJPTR(objptr) \
do { \
SimObject *sptr; \
objParamIn(cp, #objptr, sptr); \
fromSimObject(objptr, sptr); \
} while (0)
/**
* Basic support for object serialization.
*
* Objects that support serialization should derive from this
* class. Such objects can largely be divided into two categories: 1)
* True SimObjects (deriving from SimObject), and 2) child objects
* (non-SimObjects).
*
* SimObjects are serialized automatically into their own sections
* automatically by the SimObject base class (see
* SimObject::serializeAll().
*
* SimObjects can contain other serializable objects that are not
* SimObjects. Much like normal serialized members are not serialized
* automatically, these objects will not be serialized automatically
* and it is expected that the objects owning such serializable
* objects call the required serialization/unserialization methods on
* child objects. The preferred method to serialize a child object is
* to call serializeSection() on the child, which serializes the
* object into a new subsection in the current section. Another option
* is to call serialize() directly, which serializes the object into
* the current section. The latter is not recommended as it can lead
* to naming clashes between objects.
*
* @note Many objects that support serialization need to be put in a
* consistent state when serialization takes place. We refer to the
* action of forcing an object into a consistent state as
* 'draining'. Objects that need draining inherit from Drainable. See
* Drainable for more information.
*/
class Serializable
{
protected:
/**
* Scoped checkpoint section helper class
*
* This helper class creates a section within a checkpoint without
* the need for a separate serializeable object. It is mainly used
* within the Serializable class when serializing or unserializing
* section (see serializeSection() and unserializeSection()). It
* can also be used to maintain backwards compatibility in
* existing code that serializes structs that are not inheriting
* from Serializable into subsections.
*
* When the class is instantiated, it appends a name to the active
* path in a checkpoint. The old path is later restored when the
* instance is destroyed. For example, serializeSection() could be
* implemented by instantiating a ScopedCheckpointSection and then
* calling serialize() on an object.
*/
class ScopedCheckpointSection {
public:
template<class CP>
ScopedCheckpointSection(CP &cp, const char *name) {
pushName(name);
nameOut(cp);
}
template<class CP>
ScopedCheckpointSection(CP &cp, const std::string &name) {
pushName(name.c_str());
nameOut(cp);
}
~ScopedCheckpointSection();
ScopedCheckpointSection() = delete;
ScopedCheckpointSection(const ScopedCheckpointSection &) = delete;
ScopedCheckpointSection &operator=(
const ScopedCheckpointSection &) = delete;
ScopedCheckpointSection &operator=(
ScopedCheckpointSection &&) = delete;
private:
void pushName(const char *name);
void nameOut(CheckpointOut &cp);
void nameOut(CheckpointIn &cp) {};
};
public:
Serializable();
virtual ~Serializable();
/**
* Serialize an object
*
* Output an object's state into the current checkpoint section.
*
* @param cp Checkpoint state
*/
virtual void serialize(CheckpointOut &cp) const = 0;
/**
* Unserialize an object
*
* Read an object's state from the current checkpoint section.
*
* @param cp Checkpoint state
*/
virtual void unserialize(CheckpointIn &cp) = 0;
/**
* Serialize an object into a new section
*
* This method creates a new section in a checkpoint and calls
* serialize() to serialize the current object into that
* section. The name of the section is appended to the current
* checkpoint path.
*
* @param cp Checkpoint state
* @param name Name to append to the active path
*/
void serializeSection(CheckpointOut &cp, const char *name) const;
void serializeSection(CheckpointOut &cp, const std::string &name) const {
serializeSection(cp, name.c_str());
}
/**
* Unserialize an a child object
*
* This method loads a child object from a checkpoint. The object
* name is appended to the active path to form a fully qualified
* section name and unserialize() is called.
*
* @param cp Checkpoint state
* @param name Name to append to the active path
*/
void unserializeSection(CheckpointIn &cp, const char *name);
void unserializeSection(CheckpointIn &cp, const std::string &name) {
unserializeSection(cp, name.c_str());
}
/**
* @{
* @name Legacy interface
*
* Interface for objects that insist on changing their state when
* serializing. Such state change should be done in drain(),
* memWriteback(), or memInvalidate() and not in the serialization
* method. In general, if state changes occur in serialize, it
* complicates testing since it breaks assumptions about draining
* and serialization. It potentially also makes components more
* fragile since they there are no ordering guarantees when
* serializing SimObjects.
*
* @warn This interface is considered deprecated and should never
* be used.
*/
virtual void serializeOld(CheckpointOut &cp) {
serialize(cp);
}
void serializeSectionOld(CheckpointOut &cp, const char *name);
void serializeSectionOld(CheckpointOut &cp, const std::string &name) {
serializeSectionOld(cp, name.c_str());
}
/** @} */
/** Get the fully-qualified name of the active section */
static const std::string ¤tSection();
static Serializable *create(CheckpointIn &cp, const std::string §ion);
static int ckptCount;
static int ckptMaxCount;
static int ckptPrevCount;
static void serializeAll(const std::string &cpt_dir);
static void unserializeGlobals(CheckpointIn &cp);
private:
static std::stack<std::string> path;
};
void debug_serialize(const std::string &cpt_dir);
//
// A SerializableBuilder serves as an evaluation context for a set of
// parameters that describe a specific instance of a Serializable. This
// evaluation context corresponds to a section in the .ini file (as
// with the base ParamContext) plus an optional node in the
// configuration hierarchy (the configNode member) for resolving
// Serializable references. SerializableBuilder is an abstract superclass;
// derived classes specialize the class for particular subclasses of
// Serializable (e.g., BaseCache).
//
// For typical usage, see the definition of
// SerializableClass::createObject().
//
class SerializableBuilder
{
public:
SerializableBuilder() {}
virtual ~SerializableBuilder() {}
// Create the actual Serializable corresponding to the parameter
// values in this context. This function is overridden in derived
// classes to call a specific constructor for a particular
// subclass of Serializable.
virtual Serializable *create() = 0;
};
//
// An instance of SerializableClass corresponds to a class derived from
// Serializable. The SerializableClass instance serves to bind the string
// name (found in the config file) to a function that creates an
// instance of the appropriate derived class.
//
// This would be much cleaner in Smalltalk or Objective-C, where types
// are first-class objects themselves.
//
class SerializableClass
{
public:
// Type CreateFunc is a pointer to a function that creates a new
// simulation object builder based on a .ini-file parameter
// section (specified by the first string argument), a unique name
// for the object (specified by the second string argument), and
// an optional config hierarchy node (specified by the third
// argument). A pointer to the new SerializableBuilder is returned.
typedef Serializable *(*CreateFunc)(CheckpointIn &cp,
const std::string §ion);
static std::map<std::string,CreateFunc> *classMap;
// Constructor. For example:
//
// SerializableClass baseCacheSerializableClass("BaseCacheSerializable",
// newBaseCacheSerializableBuilder);
//
SerializableClass(const std::string &className, CreateFunc createFunc);
// create Serializable given name of class and pointer to
// configuration hierarchy node
static Serializable *createObject(CheckpointIn &cp,
const std::string §ion);
};
//
// Macros to encapsulate the magic of declaring & defining
// SerializableBuilder and SerializableClass objects
//
#define REGISTER_SERIALIZEABLE(CLASS_NAME, OBJ_CLASS) \
SerializableClass the##OBJ_CLASS##Class(CLASS_NAME, \
OBJ_CLASS::createForUnserialize);
// Base class to wrap object resolving functionality. This can be
// provided to Checkpoint to allow it to map object names onto
// object C++ objects in which to unserialize
class SimObjectResolver
{
public:
virtual ~SimObjectResolver() { }
// Find a SimObject given a full path name
virtual SimObject *resolveSimObject(const std::string &name) = 0;
};
class CheckpointIn
{
private:
IniFile *db;
SimObjectResolver &objNameResolver;
public:
CheckpointIn(const std::string &cpt_dir, SimObjectResolver &resolver);
~CheckpointIn();
const std::string cptDir;
bool find(const std::string §ion, const std::string &entry,
std::string &value);
bool findObj(const std::string §ion, const std::string &entry,
SimObject *&value);
bool sectionExists(const std::string §ion);
// The following static functions have to do with checkpoint
// creation rather than restoration. This class makes a handy
// namespace for them though. Currently no Checkpoint object is
// created on serialization (only unserialization) so we track the
// directory name as a global. It would be nice to change this
// someday
private:
// current directory we're serializing into.
static std::string currentDirectory;
public:
// Set the current directory. This function takes care of
// inserting curTick() if there's a '%d' in the argument, and
// appends a '/' if necessary. The final name is returned.
static std::string setDir(const std::string &base_name);
// Export current checkpoint directory name so other objects can
// derive filenames from it (e.g., memory). The return value is
// guaranteed to end in '/' so filenames can be directly appended.
// This function is only valid while a checkpoint is being created.
static std::string dir();
// Filename for base checkpoint file within directory.
static const char *baseFilename;
};
#endif // __SERIALIZE_HH__
|