1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
|
/*
* Copyright (c) 2006 The Regents of The University of Michigan
* Copyright (c) 2013 Advanced Micro Devices, Inc.
* Copyright (c) 2013 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Nathan Binkert
* Steve Reinhardt
*/
#include <mutex>
#include <thread>
#include "base/misc.hh"
#include "base/pollevent.hh"
#include "base/types.hh"
#include "sim/async.hh"
#include "sim/eventq_impl.hh"
#include "sim/sim_events.hh"
#include "sim/sim_exit.hh"
#include "sim/simulate.hh"
#include "sim/stat_control.hh"
//! Mutex for handling async events.
std::mutex asyncEventMutex;
//! Global barrier for synchronizing threads entering/exiting the
//! simulation loop.
Barrier *threadBarrier;
//! forward declaration
Event *doSimLoop(EventQueue *);
/**
* The main function for all subordinate threads (i.e., all threads
* other than the main thread). These threads start by waiting on
* threadBarrier. Once all threads have arrived at threadBarrier,
* they enter the simulation loop concurrently. When they exit the
* loop, they return to waiting on threadBarrier. This process is
* repeated until the simulation terminates.
*/
static void
thread_loop(EventQueue *queue)
{
while (true) {
threadBarrier->wait();
doSimLoop(queue);
}
}
/** Simulate for num_cycles additional cycles. If num_cycles is -1
* (the default), do not limit simulation; some other event must
* terminate the loop. Exported to Python via SWIG.
* @return The SimLoopExitEvent that caused the loop to exit.
*/
GlobalSimLoopExitEvent *
simulate(Tick num_cycles)
{
// The first time simulate() is called from the Python code, we need to
// create a thread for each of event queues referenced by the
// instantiated sim objects.
static bool threads_initialized = false;
static std::vector<std::thread *> threads;
if (!threads_initialized) {
threadBarrier = new Barrier(numMainEventQueues);
// the main thread (the one we're currently running on)
// handles queue 0, so we only need to allocate new threads
// for queues 1..N-1. We'll call these the "subordinate" threads.
for (uint32_t i = 1; i < numMainEventQueues; i++) {
threads.push_back(new std::thread(thread_loop, mainEventQueue[i]));
}
threads_initialized = true;
}
inform("Entering event queue @ %d. Starting simulation...\n", curTick());
if (num_cycles < MaxTick - curTick())
num_cycles = curTick() + num_cycles;
else // counter would roll over or be set to MaxTick anyhow
num_cycles = MaxTick;
GlobalEvent *limit_event = new GlobalSimLoopExitEvent(num_cycles,
"simulate() limit reached", 0, 0);
GlobalSyncEvent *quantum_event = NULL;
if (numMainEventQueues > 1) {
if (simQuantum == 0) {
fatal("Quantum for multi-eventq simulation not specified");
}
quantum_event = new GlobalSyncEvent(curTick() + simQuantum, simQuantum,
EventBase::Progress_Event_Pri, 0);
inParallelMode = true;
}
// all subordinate (created) threads should be waiting on the
// barrier; the arrival of the main thread here will satisfy the
// barrier, and all threads will enter doSimLoop in parallel
threadBarrier->wait();
Event *local_event = doSimLoop(mainEventQueue[0]);
assert(local_event != NULL);
inParallelMode = false;
// locate the global exit event and return it to Python
BaseGlobalEvent *global_event = local_event->globalEvent();
assert(global_event != NULL);
GlobalSimLoopExitEvent *global_exit_event =
dynamic_cast<GlobalSimLoopExitEvent *>(global_event);
assert(global_exit_event != NULL);
// if we didn't hit limit_event, delete it.
if (global_exit_event != limit_event) {
assert(limit_event->scheduled());
limit_event->deschedule();
delete limit_event;
}
//! Delete the simulation quantum event.
if (quantum_event != NULL) {
quantum_event->deschedule();
delete quantum_event;
}
return global_exit_event;
}
/**
* Test and clear the global async_event flag, such that each time the
* flag is cleared, only one thread returns true (and thus is assigned
* to handle the corresponding async event(s)).
*/
static bool
testAndClearAsyncEvent()
{
bool was_set = false;
asyncEventMutex.lock();
if (async_event) {
was_set = true;
async_event = false;
}
asyncEventMutex.unlock();
return was_set;
}
/**
* The main per-thread simulation loop. This loop is executed by all
* simulation threads (the main thread and the subordinate threads) in
* parallel.
*/
Event *
doSimLoop(EventQueue *eventq)
{
// set the per thread current eventq pointer
curEventQueue(eventq);
eventq->handleAsyncInsertions();
while (1) {
// there should always be at least one event (the SimLoopExitEvent
// we just scheduled) in the queue
assert(!eventq->empty());
assert(curTick() <= eventq->nextTick() &&
"event scheduled in the past");
if (async_event && testAndClearAsyncEvent()) {
// Take the event queue lock in case any of the service
// routines want to schedule new events.
std::lock_guard<EventQueue> lock(*eventq);
if (async_statdump || async_statreset) {
Stats::schedStatEvent(async_statdump, async_statreset);
async_statdump = false;
async_statreset = false;
}
if (async_io) {
async_io = false;
pollQueue.service();
}
if (async_exit) {
async_exit = false;
exitSimLoop("user interrupt received");
}
if (async_exception) {
async_exception = false;
return NULL;
}
}
Event *exit_event = eventq->serviceOne();
if (exit_event != NULL) {
return exit_event;
}
}
// not reached... only exit is return on SimLoopExitEvent
}
|