summaryrefslogtreecommitdiff
path: root/src/systemc/core/scheduler.hh
blob: 0d853f5c68f9d48005ba8598d9cc19dfaa5e52a1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
/*
 * Copyright 2018 Google, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met: redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer;
 * redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution;
 * neither the name of the copyright holders nor the names of its
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * Authors: Gabe Black
 */

#ifndef __SYSTEMC_CORE_SCHEDULER_HH__
#define __SYSTEMC_CORE_SCHEDULER_HH__

#include <functional>
#include <map>
#include <set>
#include <vector>

#include "base/logging.hh"
#include "sim/core.hh"
#include "sim/eventq.hh"
#include "systemc/core/channel.hh"
#include "systemc/core/list.hh"
#include "systemc/core/process.hh"
#include "systemc/core/sched_event.hh"

class Fiber;

namespace sc_gem5
{

class TraceFile;

typedef NodeList<Process> ProcessList;
typedef NodeList<Channel> ChannelList;

/*
 * The scheduler supports three different mechanisms, the initialization phase,
 * delta cycles, and timed notifications.
 *
 * INITIALIZATION PHASE
 *
 * The initialization phase has three parts:
 * 1. Run requested channel updates.
 * 2. Make processes which need to initialize runnable (methods and threads
 *    which didn't have dont_initialize called on them).
 * 3. Process delta notifications.
 *
 * First, the Kernel SimObject calls the update() method during its startup()
 * callback which handles the requested channel updates. The Kernel also
 * schedules an event to be run at time 0 with a slightly elevated priority
 * so that it happens before any "normal" event.
 *
 * When that t0 event happens, it calls the schedulers prepareForInit method
 * which performs step 2 above. That indirectly causes the scheduler's
 * readyEvent to be scheduled with slightly lowered priority, ensuring it
 * happens after any "normal" event.
 *
 * Because delta notifications are scheduled at the standard priority, all
 * of those events will happen next, performing step 3 above. Once they finish,
 * if the readyEvent was scheduled above, there shouldn't be any higher
 * priority events in front of it. When it runs, it will start the first
 * evaluate phase of the first delta cycle.
 *
 * DELTA CYCLE
 *
 * A delta cycle has three phases within it.
 * 1. The evaluate phase where runnable processes are allowed to run.
 * 2. The update phase where requested channel updates hapen.
 * 3. The delta notification phase where delta notifications happen.
 *
 * The readyEvent runs all three steps of the delta cycle. It first goes
 * through the list of runnable processes and executes them until the set is
 * empty, and then immediately runs the update phase. Since these are all part
 * of the same event, there's no chance for other events to intervene and
 * break the required order above.
 *
 * During the update phase above, the spec forbids any action which would make
 * a process runnable. That means that once the update phase finishes, the set
 * of runnable processes will be empty. There may, however, have been some
 * delta notifications/timeouts which will have been scheduled during either
 * the evaluate or update phase above. Those will have been accumulated in the
 * scheduler, and are now all executed.
 *
 * If any processes became runnable during the delta notification phase, the
 * readyEvent will have been scheduled and will be waiting and ready to run
 * again, effectively starting the next delta cycle.
 *
 * TIMED NOTIFICATION PHASE
 *
 * If no processes became runnable, the event queue will continue to process
 * events until it comes across an event which represents all the timed
 * notifications which are supposed to happen at a particular time. The object
 * which tracks them will execute all those notifications, and then destroy
 * itself. If the readyEvent is now ready to run, the next delta cycle will
 * start.
 *
 * PAUSE/STOP
 *
 * To inject a pause from sc_pause which should happen after the current delta
 * cycle's delta notification phase, an event is scheduled with a lower than
 * normal priority, but higher than the readyEvent. That ensures that any
 * delta notifications which are scheduled with normal priority will happen
 * first, since those are part of the current delta cycle. Then the pause
 * event will happen before the next readyEvent which would start the next
 * delta cycle. All of these events are scheduled for the current time, and so
 * would happen before any timed notifications went off.
 *
 * To inject a stop from sc_stop, the delta cycles should stop before even the
 * delta notifications have happened, but after the evaluate and update phases.
 * For that, a stop event with slightly higher than normal priority will be
 * scheduled so that it happens before any of the delta notification events
 * which are at normal priority.
 *
 * MAX RUN TIME
 *
 * When sc_start is called, it's possible to pass in a maximum time the
 * simulation should run to, at which point sc_pause is implicitly called. The
 * simulation is supposed to run up to the latest timed notification phase
 * which is less than or equal to the maximum time. In other words it should
 * run timed notifications at the maximum time, but not the subsequent evaluate
 * phase. That's implemented by scheduling an event at the max time with a
 * priority which is lower than all the others except the ready event. Timed
 * notifications will happen before it fires, but it will override any ready
 * event and prevent the evaluate phase from starting.
 */

class Scheduler
{
  public:
    typedef std::list<ScEvent *> ScEvents;

    class TimeSlot : public ::Event
    {
      public:
        TimeSlot() : ::Event(Default_Pri, AutoDelete) {}

        ScEvents events;
        void process();
    };

    typedef std::map<Tick, TimeSlot *> TimeSlots;

    Scheduler();
    ~Scheduler();

    void clear();

    const std::string name() const { return "systemc_scheduler"; }

    uint64_t numCycles() { return _numCycles; }
    Process *current() { return _current; }

    void initPhase();

    // Register a process with the scheduler.
    void reg(Process *p);

    // Run the next process, if there is one.
    void yield();

    // Put a process on the ready list.
    void ready(Process *p);

    // Mark a process as ready if init is finished, or put it on the list of
    // processes to be initialized.
    void resume(Process *p);

    // Remove a process from the ready/init list if it was on one of them, and
    // return if it was.
    bool suspend(Process *p);

    // Schedule an update for a given channel.
    void requestUpdate(Channel *c);

    // Run the given process immediately, preempting whatever may be running.
    void
    runNow(Process *p)
    {
        // This function may put a process on the wrong list, ie a thread
        // the method list. That's fine since that's just a performance
        // optimization, and the important thing here is how the processes are
        // ordered.

        // If a process is running, schedule it/us to run again.
        if (_current)
            readyListMethods.pushFirst(_current);
        // Schedule p to run first.
        readyListMethods.pushFirst(p);
        yield();
    }

    // Set an event queue for scheduling events.
    void setEventQueue(EventQueue *_eq) { eq = _eq; }

    // Get the current time according to gem5.
    Tick getCurTick() { return eq ? eq->getCurTick() : 0; }

    Tick
    delayed(const ::sc_core::sc_time &delay)
    {
        return getCurTick() + delay.value();
    }

    // For scheduling delayed/timed notifications/timeouts.
    void
    schedule(ScEvent *event, const ::sc_core::sc_time &delay)
    {
        Tick tick = delayed(delay);
        if (tick < getCurTick())
            tick = getCurTick();

        // Delta notification/timeout.
        if (delay.value() == 0) {
            event->schedule(deltas, tick);
            if (!inEvaluate() && !inUpdate())
                scheduleReadyEvent();
            return;
        }

        // Timed notification/timeout.
        TimeSlot *&ts = timeSlots[tick];
        if (!ts) {
            ts = new TimeSlot;
            schedule(ts, tick);
        }
        event->schedule(ts->events, tick);
    }

    // For descheduling delayed/timed notifications/timeouts.
    void
    deschedule(ScEvent *event)
    {
        ScEvents *on = event->scheduledOn();

        if (on == &deltas) {
            event->deschedule();
            return;
        }

        // Timed notification/timeout.
        auto tsit = timeSlots.find(event->when());
        panic_if(tsit == timeSlots.end(),
                "Descheduling event at time with no events.");
        TimeSlot *ts = tsit->second;
        ScEvents &events = ts->events;
        assert(on == &events);
        event->deschedule();

        // If no more events are happening at this time slot, get rid of it.
        if (events.empty()) {
            deschedule(ts);
            timeSlots.erase(tsit);
        }
    }

    void
    completeTimeSlot(TimeSlot *ts)
    {
        _changeStamp++;
        assert(ts == timeSlots.begin()->second);
        timeSlots.erase(timeSlots.begin());
        if (!runToTime && starved())
            scheduleStarvationEvent();
        scheduleTimeAdvancesEvent();
    }

    // Pending activity ignores gem5 activity, much like how a systemc
    // simulation wouldn't know about asynchronous external events (socket IO
    // for instance) that might happen before time advances in a pure
    // systemc simulation. Also the spec lists what specific types of pending
    // activity needs to be counted, which obviously doesn't include gem5
    // events.

    // Return whether there's pending systemc activity at this time.
    bool
    pendingCurr()
    {
        return !readyListMethods.empty() || !readyListThreads.empty() ||
            !updateList.empty() || !deltas.empty();
    }

    // Return whether there are pending timed notifications or timeouts.
    bool
    pendingFuture()
    {
        return !timeSlots.empty();
    }

    // Return how many ticks there are until the first pending event, if any.
    Tick
    timeToPending()
    {
        if (pendingCurr())
            return 0;
        if (pendingFuture())
            return timeSlots.begin()->first - getCurTick();
        return MaxTick - getCurTick();
    }

    // Run scheduled channel updates.
    void runUpdate();

    // Run delta events.
    void runDelta();

    void setScMainFiber(Fiber *sc_main) { scMain = sc_main; }

    void start(Tick max_tick, bool run_to_time);
    void oneCycle();

    void schedulePause();
    void scheduleStop(bool finish_delta);

    enum Status
    {
        StatusOther = 0,
        StatusEvaluate,
        StatusUpdate,
        StatusDelta,
        StatusTiming,
        StatusPaused,
        StatusStopped
    };

    bool elaborationDone() { return _elaborationDone; }
    void elaborationDone(bool b) { _elaborationDone = b; }

    bool paused() { return status() == StatusPaused; }
    bool stopped() { return status() == StatusStopped; }
    bool inEvaluate() { return status() == StatusEvaluate; }
    bool inUpdate() { return status() == StatusUpdate; }
    bool inDelta() { return status() == StatusDelta; }
    bool inTiming() { return status() == StatusTiming; }

    uint64_t changeStamp() { return _changeStamp; }

    void throwToScMain(const ::sc_core::sc_report *r=nullptr);

    Status status() { return _status; }
    void status(Status s) { _status = s; }

    void registerTraceFile(TraceFile *tf) { traceFiles.insert(tf); }
    void unregisterTraceFile(TraceFile *tf) { traceFiles.erase(tf); }

  private:
    typedef const EventBase::Priority Priority;
    static Priority DefaultPriority = EventBase::Default_Pri;

    static Priority StopPriority = DefaultPriority - 1;
    static Priority PausePriority = DefaultPriority + 1;
    static Priority MaxTickPriority = DefaultPriority + 2;
    static Priority ReadyPriority = DefaultPriority + 3;
    static Priority StarvationPriority = ReadyPriority;
    static Priority TimeAdvancesPriority = EventBase::Maximum_Pri;

    EventQueue *eq;

    // For gem5 style events.
    void
    schedule(::Event *event, Tick tick)
    {
        if (initDone)
            eq->schedule(event, tick);
        else
            eventsToSchedule[event] = tick;
    }

    void schedule(::Event *event) { schedule(event, getCurTick()); }

    void
    deschedule(::Event *event)
    {
        if (initDone)
            eq->deschedule(event);
        else
            eventsToSchedule.erase(event);
    }

    ScEvents deltas;
    TimeSlots timeSlots;

    Process *
    getNextReady()
    {
        Process *p = readyListMethods.getNext();
        return p ? p : readyListThreads.getNext();
    }

    void runReady();
    EventWrapper<Scheduler, &Scheduler::runReady> readyEvent;
    void scheduleReadyEvent();

    void pause();
    void stop();
    EventWrapper<Scheduler, &Scheduler::pause> pauseEvent;
    EventWrapper<Scheduler, &Scheduler::stop> stopEvent;

    Fiber *scMain;
    const ::sc_core::sc_report *_throwToScMain;

    bool
    starved()
    {
        return (readyListMethods.empty() && readyListThreads.empty() &&
                updateList.empty() && deltas.empty() &&
                (timeSlots.empty() || timeSlots.begin()->first > maxTick) &&
                initList.empty());
    }
    EventWrapper<Scheduler, &Scheduler::pause> starvationEvent;
    void scheduleStarvationEvent();

    bool _elaborationDone;
    bool _started;
    bool _stopNow;

    Status _status;

    Tick maxTick;
    Tick lastReadyTick;
    void
    maxTickFunc()
    {
        if (lastReadyTick != getCurTick())
            _changeStamp++;
        pause();
    }
    EventWrapper<Scheduler, &Scheduler::maxTickFunc> maxTickEvent;

    void timeAdvances() { trace(false); }
    EventWrapper<Scheduler, &Scheduler::timeAdvances> timeAdvancesEvent;
    void
    scheduleTimeAdvancesEvent()
    {
        if (!traceFiles.empty() && !timeAdvancesEvent.scheduled())
            schedule(&timeAdvancesEvent);
    }

    uint64_t _numCycles;
    uint64_t _changeStamp;

    Process *_current;

    bool initDone;
    bool runToTime;
    bool runOnce;

    ProcessList initList;

    ProcessList readyListMethods;
    ProcessList readyListThreads;

    ChannelList updateList;

    std::map<::Event *, Tick> eventsToSchedule;

    std::set<TraceFile *> traceFiles;

    void trace(bool delta);
};

extern Scheduler scheduler;

inline void
Scheduler::TimeSlot::process()
{
    scheduler.status(StatusTiming);

    try {
        while (!events.empty())
            events.front()->run();
    } catch (...) {
        if (events.empty())
            scheduler.completeTimeSlot(this);
        else
            scheduler.schedule(this);
        scheduler.throwToScMain();
    }

    scheduler.status(StatusOther);
    scheduler.completeTimeSlot(this);
}

const ::sc_core::sc_report *reportifyException();

} // namespace sc_gem5

#endif // __SYSTEMC_CORE_SCHEDULER_H__