1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
|
/*****************************************************************************
Licensed to Accellera Systems Initiative Inc. (Accellera) under one or
more contributor license agreements. See the NOTICE file distributed
with this work for additional information regarding copyright ownership.
Accellera licenses this file to you under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with the
License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing
permissions and limitations under the License.
*****************************************************************************/
//====================================================================
// Nov 06, 2008
//
// Updated by:
// Xiaopeng Qiu, JEDA Technologies, Inc
// Email: qiuxp@jedatechnologies.net
//
// To fix violations of TLM2.0 rules, which are detected by JEDA
// TLM2.0 checker.
//
//====================================================================
#ifndef __SIMPLE_LT_INITIATOR3_DMI_H__
#define __SIMPLE_LT_INITIATOR3_DMI_H__
#include "tlm.h"
#include "tlm_utils/simple_initiator_socket.h"
#include <systemc>
#include <cassert>
#include <iostream>
#include <map>
class SimpleLTInitiator3_dmi : public sc_core::sc_module
{
public:
typedef tlm::tlm_generic_payload transaction_type;
typedef tlm::tlm_dmi dmi_type;
typedef tlm::tlm_phase phase_type;
typedef tlm::tlm_sync_enum sync_enum_type;
typedef tlm_utils::simple_initiator_socket<SimpleLTInitiator3_dmi> initiator_socket_type;
public:
initiator_socket_type socket;
public:
SC_HAS_PROCESS(SimpleLTInitiator3_dmi);
SimpleLTInitiator3_dmi(sc_core::sc_module_name name,
unsigned int nrOfTransactions = 0x5,
unsigned int baseAddress = 0x0) :
sc_core::sc_module(name),
socket("socket"),
mNrOfTransactions(nrOfTransactions),
mBaseAddress(baseAddress),
mTransactionCount(0)
{
mDMIDataReads.first.set_start_address(1);
mDMIDataReads.first.set_end_address(0);
mDMIDataWrites.first.set_start_address(1);
mDMIDataWrites.first.set_end_address(0);
socket.register_invalidate_direct_mem_ptr(this, &SimpleLTInitiator3_dmi::invalidate_direct_mem_ptr);
// Initiator thread
SC_THREAD(run);
}
bool initTransaction(transaction_type& trans)
{
if (mTransactionCount < mNrOfTransactions) {
trans.set_address(mBaseAddress + 4*mTransactionCount);
mData = mTransactionCount;
trans.set_command(tlm::TLM_WRITE_COMMAND);
} else if (mTransactionCount < 2 * mNrOfTransactions) {
trans.set_address(mBaseAddress + 4*(mTransactionCount-mNrOfTransactions));
mData = 0;
trans.set_command(tlm::TLM_READ_COMMAND);
} else {
return false;
}
trans.set_data_ptr(reinterpret_cast<unsigned char*>(&mData));
trans.set_data_length(4);
trans.set_streaming_width(4);
trans.set_dmi_allowed(false);
trans.set_response_status(tlm::TLM_INCOMPLETE_RESPONSE);
++mTransactionCount;
return true;
}
void logStartTransation(transaction_type& trans)
{
if (trans.get_command() == tlm::TLM_WRITE_COMMAND) {
std::cout << name() << ": Send write request: A = 0x"
<< std::hex << (unsigned int)trans.get_address()
<< ", D = 0x" << mData << std::dec
<< " @ " << sc_core::sc_time_stamp() << std::endl;
} else {
std::cout << name() << ": Send read request: A = 0x"
<< std::hex << (unsigned int)trans.get_address() << std::dec
<< " @ " << sc_core::sc_time_stamp() << std::endl;
}
}
void logEndTransaction(transaction_type& trans)
{
if (trans.get_response_status() != tlm::TLM_OK_RESPONSE) {
std::cout << name() << ": Received error response @ "
<< sc_core::sc_time_stamp() << std::endl;
} else {
std::cout << name() << ": Received ok response";
if (trans.get_command() == tlm::TLM_READ_COMMAND) {
std::cout << ": D = 0x" << std::hex << mData << std::dec;
}
std::cout << " @ " << sc_core::sc_time_stamp() << std::endl;
}
}
std::pair<dmi_type, bool>& getDMIData(const transaction_type& trans)
{
if (trans.get_command() == tlm::TLM_READ_COMMAND) {
return mDMIDataReads;
} else { // WRITE
return mDMIDataWrites;
}
}
void run()
{
transaction_type trans;
sc_core::sc_time t;
while (initTransaction(trans)) {
// Create transaction and initialise t
t = sc_core::SC_ZERO_TIME;
logStartTransation(trans);
///////////////////////////////////////////////////////////
// DMI handling:
// We do *not* use the DMI hint to check if it makes sense to ask for
// DMI pointers. So the pattern is:
// - if the address is not covered by a DMI region try to acquire DMI
// pointers
// - if we have a DMI pointer, do the DMI "transaction"
// - otherwise fall back to a normal transaction
///////////////////////////////////////////////////////////
std::pair<dmi_type, bool>& dmi_data = getDMIData(trans);
// Check if we need to acquire a DMI pointer
if((trans.get_address() < dmi_data.first.get_start_address()) ||
(trans.get_address() > dmi_data.first.get_end_address()) )
{
sc_dt::uint64 address = trans.get_address(); //save original address
dmi_data.second =
socket->get_direct_mem_ptr(trans,
dmi_data.first);
trans.set_address(address);
}
// Do DMI "transaction" if we have a valid region
if (dmi_data.second &&
(trans.get_address() >= dmi_data.first.get_start_address()) &&
(trans.get_address() <= dmi_data.first.get_end_address()) )
{
// We can handle the data here. As the logEndTransaction is assuming
// something to happen in the data structure, we really need to
// do this:
trans.set_response_status(tlm::TLM_OK_RESPONSE);
sc_dt::uint64 tmp = trans.get_address() - dmi_data.first.get_start_address();
if (trans.get_command() == tlm::TLM_WRITE_COMMAND)
{
*(unsigned int*)&dmi_data.first.get_dmi_ptr()[tmp] = mData;
}
else
{
mData = *(unsigned int*)&dmi_data.first.get_dmi_ptr()[tmp];
}
// Do the wait immediately. Note that doing the wait here eats almost
// all the performance anyway, so we only gain something if we're
// using temporal decoupling.
if (trans.get_command() == tlm::TLM_WRITE_COMMAND) {
wait(dmi_data.first.get_write_latency());
} else {
wait(dmi_data.first.get_read_latency());
}
}
else // we need a full transaction
{
socket->b_transport(trans, t);
// wait for the returned delay
wait(t);
}
logEndTransaction(trans);
}
wait();
}
// Invalidate DMI pointer(s)
void invalidate_direct_mem_ptr(sc_dt::uint64 start_range,
sc_dt::uint64 end_range)
{
// FIXME: probably faster to always invalidate everything?
if (start_range <= mDMIDataReads.first.get_end_address ()&&
end_range >= mDMIDataReads.first.get_start_address()) {
mDMIDataReads.second = false;
}
if (start_range <= mDMIDataWrites.first.get_end_address ()&&
end_range >= mDMIDataWrites.first.get_start_address()) {
mDMIDataWrites.second = false;
}
}
private:
std::pair<dmi_type, bool> mDMIDataReads;
std::pair<dmi_type, bool> mDMIDataWrites;
sc_core::sc_event mEndEvent;
unsigned int mNrOfTransactions;
unsigned int mBaseAddress;
unsigned int mTransactionCount;
unsigned int mData;
};
#endif
|