summaryrefslogtreecommitdiff
path: root/src/systemc/tests/systemc/misc/sim_tests/cycle_dw8051_demo/cycle_model.cpp
blob: 1b77ef1a45fe416468ddad8a47993c61746d76ea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
/*****************************************************************************

  Licensed to Accellera Systems Initiative Inc. (Accellera) under one or
  more contributor license agreements.  See the NOTICE file distributed
  with this work for additional information regarding copyright ownership.
  Accellera licenses this file to you under the Apache License, Version 2.0
  (the "License"); you may not use this file except in compliance with the
  License.  You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
  implied.  See the License for the specific language governing
  permissions and limitations under the License.

 *****************************************************************************/

/*****************************************************************************

  cycle_model.cpp -- 

  Original Author: Martin Janssen, Synopsys, Inc., 2002-02-15

 *****************************************************************************/

/*****************************************************************************

  MODIFICATION LOG - modifiers, enter your name, affiliation, date and
  changes you are making here.

      Name, Affiliation, Date:
  Description of Modification:

 *****************************************************************************/

//***************************************************************************
// FILE: cycle_model.cc
// 
// AUTHOR: Luc Semeria    September, 21, 1998
//
// ABSTRACT: cycle-accurate model based on the dw8051 architecture
//             
//
// MODIFICATION HISTORY:
//         Luc Semeria: 21/9/98 created
//
//***************************************************************************
// 
// DESCRIPTION
// 
// During initialization, the model parses the Intel hex file and put the 
// program into memory.
// Then the cycle-accurate model does the following operations:
//
//   main loop:
//     fetch instruction
//     decode instruction
//     execute instruction                   /read instr mem
//              |\- fetch operand 1 (and 2) <             /mem bus access
//              |                            \fetch data <
//              |                                         \read data mem
//              |\- execute operation
//              |                     /mem bus access
//              |\- write back data  <
//              |                     \write data mem
//              |
//               \- compute next address
//                                             
//    
// The external instruction and data memories are part of the model
// so these memory accesses are just read and write in internal memory
// The simulation is then speeded up because no bus transactions occurs.
// The model doesn't switch from one process to another.
//
// To communicate with peripheral on the memory bus, the bus can be 
// used and the model automatically switches to a real cycle-accurate mode 
// for a given number of cycle. This is implemented within the function:
//   request_address(int addr);
// 
// This cycle-accurate model implements only parts of the dw8051. The 
// limitations are the following:
//       - some instructions are not supported (cf decode function)
//       - SFR, timers, io_interface and interrupts are not supported
//
//***************************************************************************

#include "cycle_model.h"
#include <string.h>

/* useful macros for sc_aproc */
#define AT_POSEDGE(CLK) wait(); while(!clk.posedge()) wait();
#define AT_NEGEDGE(CLK) wait(); while(!clk.negedge()) wait();

bool ALL_CYCLES;         /* flag to execute all cycles */


//-------------------------------------------------------------------------
// void cycle_model::parse_hex(char *name) 
//
// parse Intel HEX file
// more information on hex format on-line at:
//         http://www.8052.com/tutintel.htm
//
//------------------------------------------------------------------------
void cycle_model::parse_hex(char *name) {
  char line_buffer[MEM_SIZE];
  FILE *hex_file;

  // open file
  hex_file = fopen(name,"r");
  if(hex_file==NULL) {
    fprintf(stderr,"Error in opening file %s\n",name);
    exit(-1);
  }

  // read new line at each loop ------------------------------------------
  while(fgets(line_buffer,MEM_SIZE,hex_file)!=NULL) {  
#ifdef DEBUG
    printf("Read new line -> %s",line_buffer);
#endif

    // parse line --------------------------------------------------------
    
    // parse ':' (line[0])
    if(line_buffer[0]!=':') {
      continue;
    }
        
    
    // parse length (line[1..2])
    int length;
    // char length_string[2];
    char length_string[3];
    if(strncpy(length_string,&(line_buffer[1]),2)==NULL) {
      fprintf(stderr,"Error in parsing length\n");
      exit(-1);
    }
    length_string[2] = 0;
    length = (int)strtol(length_string, (char **)NULL, 16);
#ifdef DEBUG
    printf("length=%x\n",length);
#endif

    // parse address (line[3..6])
    int address;
    // char address_string[4];
    char address_string[5];
    if(strncpy(address_string,&(line_buffer[3]),4)==NULL) {
      fprintf(stderr,"Error in parsing address\n");
      exit(-1);
    }
    address_string[4] = 0;
    address = (int)strtol(address_string, (char **)NULL, 16);
#ifdef DEBUG
    printf("address=%x\n",address);
#endif


    // parse Record Type (line[7..8])
    int record_type;
    // char record_string[2];
    char record_string[3];
    if(strncpy(record_string,&(line_buffer[7]),2)==NULL) {
      fprintf(stderr,"Error in parsing record type\n");
      exit(-1);
    }
    record_string[2] = 0;
    record_type = (int)strtol(record_string, (char **)NULL, 16);
#ifdef DEBUG
    printf("record_type=%x\n",record_type);
#endif
    if(record_type==01) {
      // end of file
      // return;
#ifdef DEBUG
      printf("end of file => return\n");
#endif
      fclose(hex_file);
      return;
    }

    // parse data bytes
    char instr_string[3];
    for(int i=0;i<length;i++) {
      if(strncpy(instr_string,&(line_buffer[2*i+9]),2)==NULL) {
	fprintf(stderr,"Error in parsing data byte %d\n",i);
	exit(-1);
      }

    instr_string[2] = 0;
    int temp = (int)strtol(instr_string, (char **)NULL, 16);
    instr_mem[address++] = temp;
#ifdef DEBUG
    printf("data byte = %x\n",temp);
#endif
    }
    
    // skip the checksum bits

    // verify end of line
    if(line_buffer[2*length+9+2]!='\n') {
      fprintf(stderr,"Error in parsing hex file: end of line expected\n");
      exit(-1);
    }
    
  }
  
  fprintf(stderr,"Error in parsing hex file: end of file record type expected\n");
  exit(-1);

}


//---------------------------------------------------------------------
//void cycle_model::decode(int opcode, instr* i)
//
// take an opcode as an input and output the instruction with the
// proper operand types.
//
//---------------------------------------------------------------------
void cycle_model::decode(int opcode, instr* i) {

  // default 
  i->type = i_nop;
  i->n_src = 0;
  i->src1.type = o_null;
  i->src1.val = -1;
  i->src2.type = o_null;
  i->src2.val = -1;
  i->dst.type = o_null;
  i->dst.val = -1;
  
  switch(opcode) { 
    // arithmetic operations -----------------------------------------
  case 0x28:
  case 0x29:
  case 0x2A:
  case 0x2B:
  case 0x2C:
  case 0x2d:
  case 0x2e:
  case 0x2f: {
    // add register to A
    i->type = i_add;
    i->n_src = 2;
    i->src1.type = o_reg;
    i->src1.val = opcode&0x07;
    i->src2.type = o_acc;
    i->dst.type = o_acc;
    i->cycle = 1;
    break;
  }
  case 0x25: {
    // add direct byte to A
    i->type = i_add;
    i->n_src = 2;
    i->src1.type = o_dir;
    i->src2.type = o_acc;
    i->dst.type = o_acc;
    i->cycle = 2;
    break;
  }
  case 0x26:
  case 0x27: {
    // add data memory to A
    i->type = i_add;
    i->n_src = 2;
    i->src1.type = o_ind;
    i->src1.val = opcode&1;
    i->src2.type = o_acc;
    i->dst.type = o_acc;
    i->cycle = 1;
    break;
  }
  case 0x24: {
    // add immediate to A
    i->type = i_add;
    i->n_src = 2;
    i->src1.type = o_cst;
    i->src2.type = o_acc;
    i->dst.type = o_acc;
    i->cycle = 2;
    break;
  }
  case 0x98:
  case 0x99:
  case 0x9A:
  case 0x9B:
  case 0x9C:
  case 0x9d:
  case 0x9e:
  case 0x9f: {
    // sub register to A
    i->type = i_sub;
    i->n_src = 2;
    i->src1.type = o_reg;
    i->src1.val = opcode&0x07;
    i->src2.type = o_acc;
    i->dst.type = o_acc;
    i->cycle = 1;
    break;
  }
  case 0x95: {
    // sub direct byte to A
    i->type = i_sub;
    i->n_src = 2;
    i->src1.type = o_dir;
    i->src2.type = o_acc;
    i->dst.type = o_acc;
    i->cycle = 2;
    break;
  }
  case 0x96:
  case 0x97: {
    // sub data memory to A
    i->type = i_sub;
    i->n_src = 2;
    i->src1.type = o_ind;
    i->src1.val = opcode&1;
    i->src2.type = o_acc;
    i->dst.type = o_acc;
    i->cycle = 1;
    break;
  }
  case 0x94: {
    // sub immediate to A
    i->type = i_sub;
    i->n_src = 2;
    i->src1.type = o_cst;
    i->src2.type = o_acc;
    i->dst.type = o_acc;
    i->cycle = 2;
    break;
  }
  case 0x04: {
    // increment A
    i->type = i_inc;
    i->n_src = 1;
    i->src1.type = o_acc;
    i->dst.type = o_acc;
    i->cycle = 1;
    break;
  }
  case 0x08:
  case 0x09:
  case 0x0A:
  case 0x0B:
  case 0x0C:
  case 0x0d:
  case 0x0e:
  case 0x0f: {
    // increment register
    i->type = i_inc;
    i->n_src = 1;
    i->src1.type = o_reg;
    i->src1.val = opcode&0x07;
    i->dst.type = o_reg;
    i->dst.val = opcode&0x07;
    i->cycle = 1;
    break;
  }
  case 0x05: {
    // increment direct byte
    i->type = i_inc;
    i->n_src = 1;
    i->src1.type = o_dir;
    i->dst.type = o_dir;
    i->cycle = 2;
    break;
  }
  case 0x06:
  case 0x07: {
    // increment  data memory
    i->type = i_inc;
    i->n_src = 1;
    i->src1.type = o_ind;
    i->src1.val = opcode&1;
    i->dst.type = o_ind;
    i->dst.val = opcode&1;
    i->cycle = 1;
    break;
  }
  case 0x14: {
    // decrement A
    i->type = i_dec;
    i->n_src = 1;
    i->src1.type = o_acc;
    i->dst.type = o_acc;
    i->cycle = 1;
    break;
  }
  case 0x18:
  case 0x19:
  case 0x1A:
  case 0x1B:
  case 0x1C:
  case 0x1d:
  case 0x1e:
  case 0x1f: {
    // decrement register
    i->type = i_dec;
    i->n_src = 1;
    i->src1.type = o_reg;
    i->src1.val = opcode&0x07;
    i->dst.type = o_reg;
    i->dst.val = opcode&0x07;
    i->cycle = 1;
    break;
  }
  case 0x15: {
    // decrement direct byte
    i->type = i_dec;
    i->n_src = 1;
    i->src1.type = o_dir;
    i->dst.type = o_dir;
    i->cycle = 2;
    break;
  }
  case 0x16:
  case 0x17: {
    // increment  data memory
    i->type = i_dec;
    i->n_src = 1;
    i->src1.type = o_ind;
    i->src1.val = opcode&1;
    i->dst.type = o_ind;
    i->dst.val = opcode&1;
    i->cycle = 1;
    break;
  }
  // logic operation --------------------------------------------------
  case 0x58:
  case 0x59:
  case 0x5A:
  case 0x5B:
  case 0x5C:
  case 0x5d:
  case 0x5e:
  case 0x5f: {
    // and register to A
    i->type = i_and;
    i->n_src = 2;
    i->src1.type = o_reg;
    i->src1.val = opcode&0x07;
    i->src2.type = o_acc;
    i->dst.type = o_acc;
    i->cycle = 1;
    break;
  }
  case 0x55: {
    // and direct byte to A
    i->type = i_and;
    i->n_src = 2;
    i->src1.type = o_dir;
    i->src2.type = o_acc;
    i->dst.type = o_acc;
    i->cycle = 2;
    break;
  }
  case 0x56:
  case 0x57: {
    // and data memory to A
    i->type = i_and;
    i->n_src = 2;
    i->src1.type = o_ind;
    i->src1.val = opcode&1;
    i->src2.type = o_acc;
    i->dst.type = o_acc;
    i->cycle = 1;
    break;
  }
  case 0x54: {
    // and immediate to A
    i->type = i_and;
    i->n_src = 2;
    i->src1.type = o_cst;
    i->src2.type = o_acc;
    i->dst.type = o_acc;
    i->cycle = 2;
    break;
  }
  case 0x52: {
    // and A to direct byte
    i->type = i_and;
    i->n_src = 2;
    i->src1.type = o_dir;
    i->src2.type = o_acc;
    i->dst.type = o_dir;
    i->cycle = 2;
    break;
  }
  case 0x53: {
    // and immdiate to direct byte
    i->type = i_and;
    i->n_src = 2;
    i->src1.type = o_dir;
    i->src2.type = o_cst;
    i->dst.type = o_dir;
    i->cycle = 3;
    break;
  }
  case 0x48:
  case 0x49:
  case 0x4A:
  case 0x4B:
  case 0x4C:
  case 0x4d:
  case 0x4e:
  case 0x4f: {
    // or register to A
    i->type = i_or;
    i->n_src = 2;
    i->src1.type = o_reg;
    i->src1.val = opcode&0x07;
    i->src2.type = o_acc;
    i->dst.type = o_acc;
    i->cycle = 1;
    break;
  }
  case 0x45: {
    // or direct byte to A
    i->type = i_or;
    i->n_src = 2;
    i->src1.type = o_dir;
    i->src2.type = o_acc;
    i->dst.type = o_acc;
    i->cycle = 2;
    break;
  }
  case 0x46:
  case 0x47: {
    // or data memory to A
    i->type = i_or;
    i->n_src = 2;
    i->src1.type = o_ind;
    i->src1.val = opcode&1;
    i->src2.type = o_acc;
    i->dst.type = o_acc;
    i->cycle = 1;
    break;
  }
  case 0x44: {
    // or immediate to A
    i->type = i_or;
    i->n_src = 2;
    i->src1.type = o_cst;
    i->src2.type = o_acc;
    i->dst.type = o_acc;
    i->cycle = 2;
    break;
  }
  case 0x42: {
    // or A to direct byte
    i->type = i_or;
    i->n_src = 2;
    i->src1.type = o_dir;
    i->src2.type = o_acc;
    i->dst.type = o_dir;
    i->cycle = 2;
    break;
  }
  case 0x43: {
    // or immediate to direct byte
    i->type = i_or;
    i->n_src = 2;
    i->src1.type = o_dir;
    i->src2.type = o_cst;
    i->dst.type = o_dir;
    i->cycle = 3;
    break;
  }
  case 0x68:
  case 0x69:
  case 0x6A:
  case 0x6B:
  case 0x6C:
  case 0x6d:
  case 0x6e:
  case 0x6f: {
    // xor register to A
    i->type = i_xor;
    i->n_src = 2;
    i->src1.type = o_reg;
    i->src1.val = opcode&0x07;
    i->src2.type = o_acc;
    i->dst.type = o_acc;
    i->cycle = 1;
    break;
  }
  case 0x65: {
    // xor direct byte to A
    i->type = i_xor;
    i->n_src = 2;
    i->src1.type = o_dir;
    i->src2.type = o_acc;
    i->dst.type = o_acc;
    i->cycle = 2;
    break;
  }
  case 0x66:
  case 0x67: {
    // xor data memory to A
    i->type = i_xor;
    i->n_src = 2;
    i->src1.type = o_ind;
    i->src1.val = opcode&1;
    i->src2.type = o_acc;
    i->dst.type = o_acc;
    i->cycle = 1;
    break;
  }
  case 0x64: {
    // xor immediate to A
    i->type = i_xor;
    i->n_src = 2;
    i->src1.type = o_cst;
    i->src2.type = o_acc;
    i->dst.type = o_acc;
    i->cycle = 2;
    break;
  }
  case 0x62: {
    // and A to direct byte
    i->type = i_xor;
    i->n_src = 2;
    i->src1.type = o_dir;
    i->src2.type = o_acc;
    i->dst.type = o_dir;
    i->cycle = 2;
    break;
  }
  case 0x63: {
    // xor immdiate to direct byte
    i->type = i_xor;
    i->n_src = 2;
    i->src1.type = o_dir;
    i->src2.type = o_cst;
    i->dst.type = o_dir;
    i->cycle = 3;
    break;
  }
  case 0xf4: {
    // complement A
    i->type = i_cpl;
    i->n_src = 1;
    i->src1.type = o_acc;
    i->dst.type = o_acc;
    i->cycle = 1;
    break;
  }
  case 0x23: {
    // rotate A left
    i->type = i_rl;
    i->n_src = 1;
    i->src1.type = o_acc;
    i->dst.type = o_acc;
    i->cycle = 1;
    break;
  }
  case 0x03: {
    // rotate A right
    i->type = i_rr;
    i->n_src = 1;
    i->src1.type = o_acc;
    i->dst.type = o_acc;
    i->cycle = 1;
    break;
  }
  // data transfer -----------------------------------------------
  case 0xe8:
  case 0xe9:
  case 0xeA:
  case 0xeB:
  case 0xeC:
  case 0xed:
  case 0xee:
  case 0xef: {
    // move register to A
    i->type = i_mov;
    i->n_src = 1;
    i->src1.type = o_reg;
    i->src1.val = opcode&0x07;
    i->dst.type = o_acc;
    i->cycle = 1;
    break;
  }
  case 0xe5: {
    // move direct bit to A
    i->type = i_mov;
    i->n_src = 1;
    i->src1.type = o_dir;
    i->dst.type = o_acc;
    i->cycle = 2;
    break;
  }
  case 0xe6:
  case 0xe7: {
    // move data memory to A
    i->type = i_mov;
    i->n_src = 1;
    i->src1.type = o_ind;
    i->src1.val = opcode&1;
    i->dst.type = o_acc;
    i->cycle = 1;
    break;
  }
  case 0x74: {
    // move immediate to A
    i->type = i_mov;
    i->n_src = 1;
    i->src1.type = o_cst;
    i->dst.type = o_acc;
    i->cycle = 2;
    break;
  }
  case 0xf8:
  case 0xf9:
  case 0xfA:
  case 0xfB:
  case 0xfC:
  case 0xfd:
  case 0xfe:
  case 0xff: {
    // move A to register
    i->type = i_mov;
    i->n_src = 1;
    i->src1.type = o_acc;
    i->dst.type = o_reg;
    i->dst.val = opcode&0x07;
    i->cycle = 1;
    break;
  }
  case 0xa8:
  case 0xa9:
  case 0xaA:
  case 0xaB:
  case 0xaC:
  case 0xad:
  case 0xae:
  case 0xaf: {
    // move direct to register
    i->type = i_mov;
    i->n_src = 1;
    i->src1.type = o_dir;
    i->dst.type = o_reg;
    i->dst.val = opcode&0x07;
    i->cycle = 2;
    break;
  }
  case 0x78:
  case 0x79:
  case 0x7A:
  case 0x7B:
  case 0x7C:
  case 0x7d:
  case 0x7e:
  case 0x7f: {
    // move immediate to register
    i->type = i_mov;
    i->n_src = 1;
    i->src1.type = o_cst;
    i->dst.type = o_reg;
    i->dst.val = opcode&0x07;
    i->cycle = 2;
    break;
  }
  case 0xf5: {
    // move A to direct byte
    i->type = i_mov;
    i->n_src = 1;
    i->src1.type = o_acc;
    i->dst.type = o_dir;
    i->cycle = 2;
  }
  case 0x88:
  case 0x89:
  case 0x8A:
  case 0x8B:
  case 0x8C:
  case 0x8d:
  case 0x8e:
  case 0x8f: {
    // move register to direct byte
    i->type = i_mov;
    i->n_src = 1;
    i->src1.type = o_reg;
    i->src1.val = opcode&0x07;
    i->dst.type = o_dir;
    i->cycle = 2;
    break;
  }
  case 0x85: {
    // move direct byte to direct byte
    i->type = i_mov;
    i->n_src = 1;
    i->src1.type = o_dir;
    i->dst.type = o_dir;
    i->cycle = 3;
    break;
  }
  case 0x86:
  case 0x87: {
    // move data memory to direct byte
    i->type = i_mov;
    i->n_src = 1;
    i->src1.type = o_ind;
    i->src1.val = opcode&0x01;
    i->dst.type = o_dir;
    i->cycle = 2;
    break;
  }
  case 0x75: {
    // move immediate to direct byte
    i->type = i_mov;
    i->n_src = 1;
    i->src1.type = o_cst;
    i->dst.type = o_dir;
    i->cycle = 2;
    break;
    }
  case 0xf6:
  case 0xf7: {
    // move A to data memory
    i->type = i_mov;
    i->n_src = 1;
    i->src1.type = o_acc;
    i->dst.type = o_ind;
    i->dst.val = opcode&1;
    i->cycle = 1;
    break;
  }
  case 0xa6:
  case 0xa7: {
    // move direct byte to data memory
    i->type = i_mov;
    i->n_src = 1;
    i->src1.type = o_dir;
    i->dst.type = o_ind;
    i->dst.val = opcode&1;
    i->cycle = 2;
    break;
  }
  case 0x76:
  case 0x77: {
    // move immediate to data memory
    i->type = i_mov;
    i->n_src = 1;
    i->src1.type = o_cst;
    i->dst.type = o_ind;
    i->dst.val = opcode&1;
    i->cycle = 2;
    break;
  }
  case 0xe2:
  case 0xe3: {
    // move external data to A
    i->type = i_mov;
    i->n_src = 1;
    i->src1.type = o_ext;
    i->src1.val = opcode&1;
    i->dst.type = o_acc;
    i->cycle = 2+stretch_cycles;
    break;
  }
  case 0xf2:
  case 0xf3: {
    // move A to external data
    i->type = i_mov;
    i->n_src = 1;
    i->src1.type = o_acc;
    i->dst.type = o_ext;
    i->dst.val = opcode&1;
    i->cycle = 2+stretch_cycles;
    break;
  }
  // branching ----------------------------------------------------
  case 0x11:
  case 0x31:
  case 0x51:
  case 0x71:
  case 0x91:
  case 0xb1:
  case 0xd1:
  case 0xf1: {
    // absolute call to subroutine
    i->type = i_call;
    i->n_src = 1;
    i->src1.type = o_add;
    i->src1.val = (opcode>>5)&7;
    i->cycle = 3;
    break;
  }
  case 0x12: {
    // Long call to subroutine
    i->type = i_call;
    i->n_src = 1;
    i->src1.type = o_ladd;
    i->cycle = 4;
    break;
  }
  case 0x22: {
    // return from subroutine
    i->type = i_ret;
    i->cycle = 4;
    break;
  }
  case 0x01:
  case 0x21:
  case 0x41:
  case 0x61:
  case 0x81:
  case 0xa1:
  case 0xc1:
  case 0xe1: {
    // absolute jump unconditional
    i->type = i_jmp;
    i->n_src = 1;
    i->src1.type = o_add;
    i->src1.val = (opcode>>5)&7;
    i->cycle = 3;
    break;
  }
  case 0x02: {
    // Long jump unconditional
    i->type = i_jmp;
    i->n_src = 1;
    i->src1.type = o_ladd;
    i->cycle = 4;
    break;
  }
  case 0x60: {
    // jump on accumulator = 0
    i->type = i_jz;
    i->n_src = 1;
    i->src1.type = o_rel;
    i->cycle = 3;
    break;
  }
  case 0x70: {
    // jump on accumulator != 0
    i->type = i_jnz;
    i->n_src = 1;
    i->src1.type = o_rel;
    i->cycle = 3;
    break;
  }
  case 0xb5: {
    // compare A,direct JNE
    i->type = i_cjne;
    i->n_src = 2;
    i->src1.type = o_acc;
    i->src2.type = o_dir;
    i->dst.type = o_rel;
    i->cycle = 4;
    break;
  }
  case 0xb4: {
    // compare A,immeditate JNE
    i->type = i_cjne;
    i->n_src = 2;
    i->src1.type = o_acc;
    i->src2.type = o_cst;
    i->dst.type = o_rel;
    i->cycle = 4;
    break;
  }
  case 0xB8:
  case 0xB9:
  case 0xBa:
  case 0xBb:
  case 0xBc:
  case 0xBd:
  case 0xBe:
  case 0xBf: {
    // compare reg,immeditate JNE
    i->type = i_cjne;
    i->n_src = 2;
    i->src1.type = o_reg;
    i->src1.val = opcode & 0x7;
    i->src2.type = o_cst;
    i->dst.type = o_rel;
    i->cycle = 4;
    break;
  }
  case 0xb6:
  case 0xb7: {
    // compare memory byte,immeditate JNE
    i->type = i_cjne;
    i->n_src = 2;
    i->src1.type = o_ind;
    i->src1.val = opcode & 0x1;
    i->src2.type = o_cst;
    i->dst.type = o_rel;
    i->cycle = 4;
    break;
  }
  case 0xd8:
  case 0xd9:
  case 0xda:
  case 0xdb:
  case 0xdc:
  case 0xdd:
  case 0xde:
  case 0xdf: {
    // decrement reg, JNZ relative
    i->type = i_djnz;
    i->n_src = 2;
    i->src1.type = o_reg;
    i->src1.val = opcode & 0x7;
    i->src2.type = o_rel;
    i->cycle = 3;
    break;
  }
  case 0xd5: {
    // decrement direct byte, JNZ relative
    i->type = i_djnz;
    i->n_src = 2;
    i->src1.type = o_dir;
    i->src2.type = o_rel;
    i->cycle = 4;
    break;
  }
  // NOP --------------------------------------------------------------
  case 0x00: {
    break;
  }
  default: {
    
    break;
    fprintf(stderr,"opcode 0x%x not supported\n",opcode);
    break;
  }
  }

#ifdef DEBUG
  printf("decode instr type:%d, src1: %d, src2: %d, dest %d, nb_cycles: %d\n",i->type, i->src1.type, i->src2.type, i->dst.type, i->cycle);
#endif
}


//--------------------------------------------------------------------
// bool request_address(int ad); 
//      
//    return 0 if the memory adress is external (i.e. external peripheral)   
//    update cycles2execute so that the simulation runs for a given
//    number of clock cycles.
//
//--------------------------------------------------------------------
bool cycle_model::request_address(int ad) {
  // add peripheral driver here
  //
  // if(ad==<ADDRESS OF THE PERIPH>) {
  //    if(cycles2execute<=<NB_CYCLES>)
  //        cycles2execute = <NB_CYCLES>;
  //    return 0;
  // }
    
  if(ad==0x10) {
    if(cycles2execute<=30)
      cycles2execute = 30;
    return 0;
  }
  
  if(ad==0x11) {
    return 0;
  }
  
  return 1;
}


//--------------------------------------------------------------------
// exec_bus_cycle(bus_cycle_type op, int addr, int data, int* result)
//
//    executes a bus cycle (IDLE, MEM_READ, MEM_WRITE).
//       - IDLE: executes an idle cycle (4 clocks)
//       - MEM_READ: reads from the memory bus (stretch+1 clocks)
//       - MEM_WRITE: writes on the memory bus (stretch+1 clocks)
//
//--------------------------------------------------------------------
void cycle_model::exec_bus_cycle(bus_cycle_type op, int addr, int data, int* result) {
  int cycles = 0;
  int mem_idle =0;

  
  if(op==OP_IDLE) {
    // OP_IDLE
    if((cycles2execute>0)||ALL_CYCLES) {
      // wait 4 cycles
      mem_ale.write(0);
      mem_wr_n.write(1);
      mem_pswr_n.write(1);
      mem_rd_n.write(1);
      mem_psrd_n.write(1);
      p0_mem_reg_n.write(0);
      p0_addr_data_n.write(0);
      AT_POSEDGE(clk);  
      AT_POSEDGE(clk); 
      AT_POSEDGE(clk); 
      AT_POSEDGE(clk);
      cycles2execute -= 1;
    }
    
    cycle_count += 1;
    return;
  }

  
  // OP_MEM_READ or OP_MEM_WRITE
  do {
    cycles++;
    
    // Cycle 1 *********************************************************
    if(mem_idle==0) {
      mem_ale.write(1);
      mem_wr_n.write(1);
      mem_pswr_n.write(1);
      mem_rd_n.write(1);
      mem_psrd_n.write(1);
      p0_mem_reg_n.write(0);
      p0_addr_data_n.write(0);
      
      if(op==OP_MEM_WRITE) {
	mem_data_out.write( sc_bv<8>( data ) );
	p0_mem_reg_n.write(1);
	p0_addr_data_n.write(1);
      }
    }
    
    AT_POSEDGE(clk);
    
    
    // Cycle 2 *********************************************************
    if(mem_idle==0) {
      switch (op) {
      case OP_MEM_READ: {
	mem_addr.write( sc_bv<16>( addr & 0x0000ffff ) );
	p0_mem_reg_n.write(1);
	p0_addr_data_n.write(1);
	p2_mem_reg_n.write(1);
	break;
      }
      case OP_MEM_WRITE: {
	mem_addr.write( sc_bv<16>( addr & 0x0000ffff ) );
	p0_addr_data_n.write(0);
	p2_mem_reg_n.write(1);
	break;
      }	
      default: {
	// do nothing
	break;
      }
      }
    }
    if(mem_idle==0) { 
      AT_NEGEDGE(clk);
      mem_ale.write(0);
    }
    
    AT_POSEDGE(clk);
    
    
    // Cycle 3 *********************************************************
    if(mem_idle==0) {
      switch (op) {
      case OP_MEM_READ: {
	p0_mem_reg_n.write(0);
	p0_addr_data_n.write(0);
	
	if(stretch_cycles==0)
	  mem_rd_n.write(0); // read RAM
	break;
      }
      case OP_MEM_WRITE: {
	if(stretch_cycles==0)
	  mem_wr_n.write(0); // write RAM
	break;
      }	
      default: {
	// do nothing
	break;
      }
      }
    }
    AT_POSEDGE(clk);
    
    
    // Cycle 4 *********************************************************
    if (mem_idle==0) {
      switch (op) {
      case OP_MEM_READ: {
	if(stretch_cycles>0) {
	  mem_idle=stretch_cycles+1;
	  mem_rd_n.write(0); // read RAM
	}
	break;
      }
      case OP_MEM_WRITE: {
	if(stretch_cycles>0) {
	  mem_idle=stretch_cycles+1;
	  mem_wr_n.write(0); // write RAM
	}
	break;
      }
      default: {
	// do nothing 
	break;
      }
      }
    }
    else if(mem_idle==1) {
      // read/write enable <- 1 when stretch>0
      switch (op) {
      case OP_MEM_READ: {
	if(stretch_cycles>0) {
	  // read value
	  *result = mem_data_in.read().to_uint();
	  // reset read enable
	  mem_rd_n.write(1); // read RAM
	}	
	break;
      }
      case OP_MEM_WRITE: {
	if(stretch_cycles>0) {
	  // reset write enable
	  mem_wr_n.write(1); // write RAM
	}
	break;
      }
      default: {
	break;
      }
      }
    }
    AT_POSEDGE(clk);
    
    
    // Cycle 1 (1st part) **********************************************
    if(mem_idle>0)
      mem_idle--;
    
    if(mem_idle==0){ 
      switch(op) {
      case OP_MEM_READ:
	if(stretch_cycles==0) {
	  mem_rd_n.write(1);
	  *result = mem_data_in.read().to_uint();
	}
	break;
      case OP_MEM_WRITE:
	if(stretch_cycles==0) 
	  mem_wr_n.write(1);
	break;
      default:
	break;
      }
    }
  } while(mem_idle>0);
  
  sc_assert(cycles==(stretch_cycles+1));
  cycle_count += cycles;
  cycles2execute-=cycles;
  return;
}




//------------------------------------------------------------------------
// int cycle_model::fetch_instr(int ad)
//
//    fetches data (1byte) from instruction memory
//
//------------------------------------------------------------------------
int cycle_model::fetch_instr(int ad) {

  sc_assert((ad<MEM_SIZE)&&(ad>=0));
  
  int temp;
  exec_bus_cycle(OP_IDLE, 0,0, &temp);

  int opcode = instr_mem[ad];
#ifdef DEBUG
  printf("Fetch instruction @0x%x (= 0x%x)\n",ad,opcode);
#endif
  return opcode;
}

//------------------------------------------------------------------------
// int cycle_model::fetch_data(int ad)
//
//   fetches data from memory which can be internal to the block or 
//   external (case of an hardware peripheral)
//
//------------------------------------------------------------------------
int cycle_model::fetch_data(int addr) {
  
  int data = 0, result;
  
  bool is_internal = request_address(addr);
  if(is_internal) {
    // is internal
    if((cycles2execute>0)||ALL_CYCLES) {
      // Wait 
      for(int i=0; i<stretch_cycles+1; i++) {
	exec_bus_cycle(OP_IDLE,addr,data,&result);
      }
    }
    result = ext_mem[addr];
  } else {
    // is external
    exec_bus_cycle(OP_MEM_READ,addr,data,&result);
  }
  
  return result;
}



//------------------------------------------------------------------------
// int cycle_model::write_data(int addr, int data)
//
//    writes data on data memory which can be internal to the block or
//    external (case of an hardware peripheral)
//
//------------------------------------------------------------------------
int cycle_model::write_data(int addr, int data) {
  
  int result = 0;
  
  bool is_internal = request_address(addr);
  
  if(is_internal) {
    // is internal
    if((cycles2execute>0)||ALL_CYCLES) {
      for(int i=0; i<stretch_cycles+1; i++) {
	exec_bus_cycle(OP_IDLE,addr,data,&result);
      }
    }
    ext_mem[addr]=data;
  } else {
    // is external
    exec_bus_cycle(OP_MEM_WRITE,addr,data,&result);
  }

  return result;
}


//--------------------------------------------------------------------
// int cycle_model::fetch_operand(operand* op)
//
//   returns the value of the operand
//
//--------------------------------------------------------------------
int cycle_model::fetch_operand(operand* op) {
  switch(op->type) {
  case o_acc: {
    return A;
    break;
  }
  case o_reg: {
    sc_assert((op->val<8)&&(op->val>=0));
#ifdef DEBUG
    printf("read R%d=%d\n",op->val,R[op->val]); 
#endif
    return R[op->val];
    break;
  }
  case o_dir: {
    // fetch address
    my_stack->address += 1;
    int temp = fetch_instr(my_stack->address);
    sc_assert((op->val<INT_SIZE)&&(op->val>=0));
    return int_mem[temp];
    break;
  }
  case o_ind: {
    sc_assert((op->val==0)||(op->val==1));
    sc_assert((R[op->val]<INT_SIZE)&&(R[op->val]>=0));
    return int_mem[R[op->val]];
    break;
  }
  case o_ext: {
    sc_assert((op->val==1)||(op->val==0));
    int addr = R[op->val];
    sc_assert((addr<MEM_SIZE)&&(addr>=0));
    
    int result = fetch_data(addr);

    return result;
    break;
  }
  case o_cst: {
    // fetch next byte
    my_stack->address += 1;
    int temp = fetch_instr(my_stack->address);
    return temp;
    break;
  }
  case o_lcst: {
    // fetch next 2 bytes

    my_stack->address += 1;
    int temp = fetch_instr(my_stack->address);

    my_stack->address += 1;
    sc_assert(my_stack->address<=MEM_SIZE);
    temp = (temp<<8) +  fetch_instr(my_stack->address);

    return temp;
    break;
  }
  case o_add: {
    // fetch next byte
    my_stack->address += 1;
    int temp = ((op->val)<<8) + fetch_instr(my_stack->address);
    return temp;
    break;
  }	
  case o_ladd: {
    // fetch next 2 bytes
    my_stack->address += 1;
    int temp = fetch_instr(my_stack->address);

    my_stack->address += 1;
    temp = (temp<<8) + fetch_instr(my_stack->address);
    return temp;
    break;
  }
  case o_rel: {
    // fetch next byte
    my_stack->address += 1;
    int temp = fetch_instr(my_stack->address);
    if(temp<0x80)
      return temp;
    else
      return -(0x100-temp);
    break;
  }
  default: {
    return -1;
    break;
  }
  }
  return -1;
}

//--------------------------------------------------------------------
// int write_back(operand *op, int value)
//
//    write the value into the operand
//
//--------------------------------------------------------------------
int cycle_model::write_back(operand* op, int v) {
  switch(op->type) {
  case o_acc: {
    A = v;
    return A;
    break;
  }
  case o_reg: {
    sc_assert((op->val<8)&&(op->val>=0));
    R[op->val] = v;
#ifdef DEBUG
    printf("write R%d <- %d\n",op->val,R[op->val]);
#endif
    return R[op->val];
    break;
  }
  case o_dir: {
    // write address
    my_stack->address += 1;
    int temp = fetch_instr(my_stack->address);
    sc_assert((temp<INT_SIZE)&&(temp>=0));
    int_mem[temp] = v;
    return int_mem[temp];
    break;
  }
  case o_ind: {
    sc_assert((op->val==0)||(op->val==1));
    sc_assert((R[op->val]<INT_SIZE)&&(R[op->val]>=0));
    int_mem[R[op->val]] = v;
    return int_mem[R[op->val]];
    break;
  }
  case o_ext: {
    sc_assert((op->val==1)||(op->val==0));
    int addr = R[op->val];
    sc_assert((addr<MEM_SIZE)&&(addr>=0));
    int data, result;
    data = v;
    result = write_data(addr,data);
    return result;
    break;
  }
  default: {
    return -1;
    break;
  }
  }
  return -1;
}



//--------------------------------------------------------------------
// void execute(instr *i)
//
//   execute consists of the following tasks:
//        - fetch the operands
//        - execute the operation in the intruction
//        - write the data back in the destination
//        - compute the next address for (jmp, call, return...)
//
//--------------------------------------------------------------------
void cycle_model::execute(instr *i) {
  int in1, in2, out = 0;

  // fetch operands ---------------------------------------------------
  if(i->n_src>=1)
    in1 = fetch_operand(&(i->src1));

  if(i->n_src>=2)
    in2 = fetch_operand(&(i->src2));
 
#ifdef DEBUG
  printf("execute %d, with in1=%d and in2=%d\n",i->type,in1, in2); 
#endif

  // execute ----------------------------------------------------------
  switch(i->type) {
  case i_add: {
    out = in1 + in2;
    break;
  }
  case i_sub: {
    out = in1 - in2;
    break;
  }	
  case i_inc: {
    out = in1+1;
    break;
  }
  case i_dec: {
    out = in1-1;
    break;
  }
  case i_mul: {
    out = in1 * in2;
    break;
  }
  case i_div: {
    out = in1/in2;
    break;
  }
  // logic operations
  case i_and: {
    out = in1 & in2;
    break;
  }
  case i_or: {
    out = in1 | in2;
    break;
  }
  case i_xor: {
    out = in1 ^ in2;
    break;
  }
  case i_rl: {
    out = in1<<1;
    break;
  }
  case i_rr: {
    out = in2>>1;
    break;
  }
  // data transfer
  case i_mov: {
    out = in1;
    break;
  }
  // branching (out==0 -> don't branch)
  case i_call:
  case i_ret:
  case i_jmp:
  case i_sjmp: {
    out = 1;
    break;
  }
  case i_jz: {
    out = (A==0);
    break;
  }
  case i_jnz: {
    out = (A!=0);
    break;
  }
  case i_cjne: {
    out = (in1!=in2);
    break;
  }
  case i_djnz: {
    out=in1-1; // decrement reg/direct and jump if != 0
    break;
  }
  default: {
    break;
  }
  }


  // write back --------------------------------------------------------
  write_back(&(i->dst),out);

  // compute next address ----------------------------------------------
  switch(i->type) {
  case i_call: {
    stack_el *new_stack_el= (stack_el *) malloc(sizeof(stack_el));
    new_stack_el->up = my_stack;
    new_stack_el->address = in1;
    my_stack = new_stack_el;

    /* wait additional cycles */
    int result;
    exec_bus_cycle(OP_IDLE,0,0,&result);
    
    break;
  }
  case i_ret: {
    stack_el *new_stack_el = my_stack->up;
    free(my_stack);
    my_stack = new_stack_el;
    if(my_stack!=NULL)
      my_stack->address += 1; // increment address after jump

    /* wait additional cycles */
    int result;
    exec_bus_cycle(OP_IDLE,0,0,&result);
    exec_bus_cycle(OP_IDLE,0,0,&result);
    exec_bus_cycle(OP_IDLE,0,0,&result);
    break;
  }
  case i_jmp: {
    my_stack->address = in1;

    /* wait additional cycles */
    int result;
    exec_bus_cycle(OP_IDLE,0,0,&result);
     
    break;
  }
  case i_sjmp:
  case i_jz:
  case i_jnz: {
    if(out!=0)
      my_stack->address += in1+1;
    else
      my_stack->address += 1;

    /* wait additional cycles */
    int result;
    exec_bus_cycle(OP_IDLE,0,0,&result);
 
    break;
  }
  case i_cjne: {
    int in3 = fetch_operand(&i->dst); 
    if(out!=0)
      my_stack->address += in3+1;
    else
      my_stack->address += 1;

    /* wait additional cycles */
    int result;
    exec_bus_cycle(OP_IDLE,0,0,&result);

    break;
  }
  case i_djnz: {
    if(out!=0)
      my_stack->address += in2+1;
    else
      my_stack->address += 1;

    /* wait additional cycles */
    int result;
    exec_bus_cycle(OP_IDLE,0,0,&result);

    break;
  }
  default: {
     my_stack->address += 1;
     break;
  }
  }
}



//---------------------------------------------------------------------
// cycle_model::init() 
//
//   initialize the stack
//   
//---------------------------------------------------------------------
void cycle_model::init() {

  cycles2execute = 0;
  cycle_count = 0;
  stretch_cycles = 0;
  
  // initialize stack
  my_stack = (stack_el *) malloc(sizeof(stack_el));
  my_stack->up = NULL;
  my_stack->address = 0;
}



//------------------------------------------------------------------------
// void cycle_mode::entry() 
//
// main loop: fetch instruction
//            decode opcode
//            execute instruction
//
//------------------------------------------------------------------------
void cycle_model::entry() {

  wait();

  mem_ale.write(0);
  mem_wr_n.write(1);
  mem_pswr_n.write(1);
  mem_rd_n.write(1);
  mem_psrd_n.write(1);
  p0_mem_reg_n.write(0);
  p0_addr_data_n.write(0);
  wait();

  while(true) {
    instr the_instr;
    // fetch instruction
    if(my_stack==NULL) {
      // printf("cycles count = %d\n",cycle_count);
      sc_stop();
      wait();
    } else {
      int opcode = fetch_instr(my_stack->address);
      
      // decode instruction
      decode(opcode, &the_instr);
      
      // execute
      execute(&the_instr);
    }
  }
}