summaryrefslogtreecommitdiff
path: root/system/alpha/palcode/osfpal.S
blob: 79bff6ca62c8f210d3b4976dac6fd13d38ddd38d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
/*
 * Copyright (c) 2003, 2004, 2005, 2006
 * The Regents of The University of Michigan
 * All Rights Reserved
 *
 * This code is part of the M5 simulator.
 *
 * Permission is granted to use, copy, create derivative works and
 * redistribute this software and such derivative works for any
 * purpose, so long as the copyright notice above, this grant of
 * permission, and the disclaimer below appear in all copies made; and
 * so long as the name of The University of Michigan is not used in
 * any advertising or publicity pertaining to the use or distribution
 * of this software without specific, written prior authorization.
 *
 * THIS SOFTWARE IS PROVIDED AS IS, WITHOUT REPRESENTATION FROM THE
 * UNIVERSITY OF MICHIGAN AS TO ITS FITNESS FOR ANY PURPOSE, AND
 * WITHOUT WARRANTY BY THE UNIVERSITY OF MICHIGAN OF ANY KIND, EITHER
 * EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE. THE REGENTS OF THE UNIVERSITY OF MICHIGAN SHALL NOT BE
 * LIABLE FOR ANY DAMAGES, INCLUDING DIRECT, SPECIAL, INDIRECT,
 * INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WITH RESPECT TO ANY CLAIM
 * ARISING OUT OF OR IN CONNECTION WITH THE USE OF THE SOFTWARE, EVEN
 * IF IT HAS BEEN OR IS HEREAFTER ADVISED OF THE POSSIBILITY OF SUCH
 * DAMAGES.
 *
 * Modified for M5 by: Ali G. Saidi
 *                     Nathan L. Binkert
 */

/*
 * Copyright 1992, 1993, 1994, 1995 Hewlett-Packard Development
 * Company, L.P.
 *
 * Permission is hereby granted, free of charge, to any person
 * obtaining a copy of this software and associated documentation
 * files (the "Software"), to deal in the Software without
 * restriction, including without limitation the rights to use, copy,
 * modify, merge, publish, distribute, sublicense, and/or sell copies
 * of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

// modified to use the Hudson style "impure.h" instead of ev5_impure.sdl
// since we don't have a mechanism to expand the data structures.... pb Nov/95
#include "ev5_defs.h"
#include "ev5_impure.h"
#include "ev5_alpha_defs.h"
#include "ev5_paldef.h"
#include "ev5_osfalpha_defs.h"
#include "fromHudsonMacros.h"
#include "fromHudsonOsf.h"
#include "dc21164FromGasSources.h"

#define DEBUGSTORE(c) nop

#define DEBUG_EXC_ADDR()\
        bsr	r25, put_exc_addr; \
        DEBUGSTORE(13)		; \
        DEBUGSTORE(10)

// This is the fix for the user-mode super page references causing the
// machine to crash.
#define hw_rei_spe	hw_rei

#define vmaj 1
#define vmin 18
#define vms_pal 1
#define osf_pal 2
#define pal_type osf_pal
#define osfpal_version_l ((pal_type<<16) | (vmaj<<8) | (vmin<<0))


///////////////////////////
// PALtemp register usage
///////////////////////////

//  The EV5 Ibox holds 24 PALtemp registers.  This maps the OSF PAL usage
//  for these PALtemps:
//
//	pt0   local scratch
//	pt1   local scratch
//	pt2   entUna					pt_entUna
//	pt3   CPU specific impure area pointer		pt_impure
//	pt4   memory management temp
//	pt5   memory management temp
//	pt6   memory management temp
//	pt7   entIF					pt_entIF
//	pt8   intmask					pt_intmask
//	pt9   entSys					pt_entSys
//	pt10
//	pt11  entInt					pt_entInt
//	pt12  entArith					pt_entArith
//	pt13  reserved for system specific PAL
//	pt14  reserved for system specific PAL
//	pt15  reserved for system specific PAL
//	pt16  MISC: scratch ! WHAMI<7:0> ! 0 0 0 MCES<4:0> pt_misc, pt_whami,
//                pt_mces
//	pt17  sysval					pt_sysval
//	pt18  usp					pt_usp
//	pt19  ksp					pt_ksp
//	pt20  PTBR					pt_ptbr
//	pt21  entMM					pt_entMM
//	pt22  kgp					pt_kgp
//	pt23  PCBB					pt_pcbb
//
//


/////////////////////////////
// PALshadow register usage
/////////////////////////////

//
// EV5 shadows R8-R14 and R25 when in PALmode and ICSR<shadow_enable> = 1.
// This maps the OSF PAL usage of R8 - R14 and R25:
//
// 	r8    ITBmiss/DTBmiss scratch
// 	r9    ITBmiss/DTBmiss scratch
// 	r10   ITBmiss/DTBmiss scratch
//	r11   PS
//	r12   local scratch
//	r13   local scratch
//	r14   local scratch
//	r25   local scratch
//



// .sbttl	"PALcode configuration options"

// There are a number of options that may be assembled into this version of
// PALcode. They should be adjusted in a prefix assembly file (i.e. do not edit
// the following). The options that can be adjusted cause the resultant PALcode
// to reflect the desired target system.

// multiprocessor support can be enabled for a max of n processors by
// setting the following to the number of processors on the system.
// Note that this is really the max cpuid.

#define max_cpuid 1
#ifndef max_cpuid
#define max_cpuid 8
#endif

#define osf_svmin 1
#define osfpal_version_h ((max_cpuid<<16) | (osf_svmin<<0))

//
// RESET	-  Reset Trap Entry Point
//
// RESET - offset 0000
// Entry:
//	Vectored into via hardware trap on reset, or branched to
//	on swppal.
//
//	r0 = whami
//	r1 = pal_base
//	r2 = base of scratch area
//	r3 = halt code
//
//
// Function:
//
//

        .text	0
        . = 0x0000
        .globl _start
        .globl Pal_Base
_start:
Pal_Base:
        HDW_VECTOR(PAL_RESET_ENTRY)
Trap_Reset:
        nop
        /*
         * store into r1
         */
        br r1,sys_reset

        // Specify PAL version info as a constant
        // at a known location (reset + 8).

        .long osfpal_version_l		// <pal_type@16> ! <vmaj@8> ! <vmin@0>
        .long osfpal_version_h		// <max_cpuid@16> ! <osf_svmin@0>
        .long 0
        .long 0
pal_impure_start:
        .quad 0
pal_debug_ptr:
        .quad 0				// reserved for debug pointer ; 20


//
// IACCVIO - Istream Access Violation Trap Entry Point
//
// IACCVIO - offset 0080
// Entry:
//	Vectored into via hardware trap on Istream access violation or sign check error on PC.
//
// Function:
//	Build stack frame
//	a0 <- Faulting VA
//	a1 <- MMCSR  (1 for ACV)
//	a2 <- -1 (for ifetch fault)
//	vector via entMM
//

        HDW_VECTOR(PAL_IACCVIO_ENTRY)
Trap_Iaccvio:
        DEBUGSTORE(0x42)
        sll	r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit
        mtpr	r31, ev5__ps		// Set Ibox current mode to kernel

        bis	r11, r31, r12		// Save PS
        bge	r25, TRAP_IACCVIO_10_		// no stack swap needed if cm=kern


        mtpr	r31, ev5__dtb_cm	// Set Mbox current mode to kernel -
                                        //     no virt ref for next 2 cycles
        mtpr	r30, pt_usp		// save user stack

        bis	r31, r31, r12		// Set new PS
        mfpr	r30, pt_ksp

TRAP_IACCVIO_10_:
        lda	sp, 0-osfsf_c_size(sp)// allocate stack space
        mfpr	r14, exc_addr		// get pc

        stq	r16, osfsf_a0(sp)	// save regs
        bic	r14, 3, r16		// pass pc/va as a0

        stq	r17, osfsf_a1(sp)	// a1
        or	r31, mmcsr_c_acv, r17	// pass mm_csr as a1

        stq	r18, osfsf_a2(sp) 	// a2
        mfpr	r13, pt_entmm		// get entry point

        stq	r11, osfsf_ps(sp)	// save old ps
        bis	r12, r31, r11		// update ps

        stq	r16, osfsf_pc(sp)	// save pc
        stq	r29, osfsf_gp(sp) 	// save gp

        mtpr	r13, exc_addr		// load exc_addr with entMM
                                        // 1 cycle to hw_rei
        mfpr	r29, pt_kgp		// get the kgp

        subq	r31, 1, r18		// pass flag of istream, as a2
        hw_rei_spe


//
// INTERRUPT - Interrupt Trap Entry Point
//
// INTERRUPT - offset 0100
// Entry:
//	Vectored into via trap on hardware interrupt
//
// Function:
//	check for halt interrupt
//	check for passive release (current ipl geq requestor)
//	if necessary, switch to kernel mode push stack frame,
//      update ps (including current mode and ipl copies), sp, and gp
//	pass the interrupt info to the system module
//
//
        HDW_VECTOR(PAL_INTERRUPT_ENTRY)
Trap_Interrupt:
        mfpr    r13, ev5__intid         // Fetch level of interruptor
        mfpr    r25, ev5__isr           // Fetch interrupt summary register

        srl     r25, isr_v_hlt, r9     // Get HLT bit
        mfpr	r14, ev5__ipl

        mtpr	r31, ev5__dtb_cm	// Set Mbox current mode to kern
        blbs    r9, sys_halt_interrupt	// halt_interrupt if HLT bit set

        cmple   r13, r14, r8            // R8 = 1 if intid .less than or eql. ipl
        bne     r8, sys_passive_release // Passive release is current rupt is lt or eq ipl

        and	r11, osfps_m_mode, r10 // get mode bit
        beq	r10, TRAP_INTERRUPT_10_		// Skip stack swap in kernel

        mtpr	r30, pt_usp		// save user stack
        mfpr	r30, pt_ksp		// get kern stack

TRAP_INTERRUPT_10_:
        lda	sp, (0-osfsf_c_size)(sp)// allocate stack space
        mfpr	r14, exc_addr		// get pc

        stq	r11, osfsf_ps(sp) 	// save ps
        stq	r14, osfsf_pc(sp) 	// save pc

        stq     r29, osfsf_gp(sp)       // push gp
        stq	r16, osfsf_a0(sp)	// a0

//	pvc_violate 354			// ps is cleared anyway,  if store to stack faults.
        mtpr    r31, ev5__ps            // Set Ibox current mode to kernel
        stq	r17, osfsf_a1(sp)	// a1

        stq	r18, osfsf_a2(sp) 	// a2
        subq	r13, 0x11, r12		// Start to translate from EV5IPL->OSFIPL

        srl	r12, 1, r8		// 1d, 1e: ipl 6.  1f: ipl 7.
        subq	r13, 0x1d, r9		// Check for 1d, 1e, 1f

        cmovge	r9, r8, r12		// if .ge. 1d, then take shifted value
        bis	r12, r31, r11		// set new ps

        mfpr	r12, pt_intmask
        and	r11, osfps_m_ipl, r14	// Isolate just new ipl (not really needed, since all non-ipl bits zeroed already)

        /*
         * Lance had space problems. We don't.
         */
        extbl	r12, r14, r14		// Translate new OSFIPL->EV5IPL
        mfpr	r29, pt_kgp		// update gp
        mtpr	r14, ev5__ipl		// load the new IPL into Ibox
        br	r31, sys_interrupt	// Go handle interrupt



//
// ITBMISS - Istream TBmiss Trap Entry Point
//
// ITBMISS - offset 0180
// Entry:
//	Vectored into via hardware trap on Istream translation buffer miss.
//
// Function:
//       Do a virtual fetch of the PTE, and fill the ITB if the PTE is valid.
//       Can trap into DTBMISS_DOUBLE.
//       This routine can use the PALshadow registers r8, r9, and r10
//
//

        HDW_VECTOR(PAL_ITB_MISS_ENTRY)
Trap_Itbmiss:
        // Real MM mapping
        nop
        mfpr	r8, ev5__ifault_va_form // Get virtual address of PTE.

        nop
        mfpr    r10, exc_addr           // Get PC of faulting instruction in case of DTBmiss.

pal_itb_ldq:
        ld_vpte r8, 0(r8)             	// Get PTE, traps to DTBMISS_DOUBLE in case of TBmiss
        mtpr	r10, exc_addr		// Restore exc_address if there was a trap.

        mfpr	r31, ev5__va		// Unlock VA in case there was a double miss
        nop

        and	r8, osfpte_m_foe, r25 	// Look for FOE set.
        blbc	r8, invalid_ipte_handler // PTE not valid.

        nop
        bne	r25, foe_ipte_handler	// FOE is set

        nop
        mtpr	r8, ev5__itb_pte	// Ibox remembers the VA, load the PTE into the ITB.

        hw_rei_stall			//


//
// DTBMISS_SINGLE - Dstream Single TBmiss Trap Entry Point
//
// DTBMISS_SINGLE - offset 0200
// Entry:
//	Vectored into via hardware trap on Dstream single translation
//      buffer miss.
//
// Function:
//	Do a virtual fetch of the PTE, and fill the DTB if the PTE is valid.
//	Can trap into DTBMISS_DOUBLE.
//	This routine can use the PALshadow registers r8, r9, and r10
//

        HDW_VECTOR(PAL_DTB_MISS_ENTRY)
Trap_Dtbmiss_Single:
        mfpr	r8, ev5__va_form      	// Get virtual address of PTE - 1 cycle delay.  E0.
        mfpr    r10, exc_addr           // Get PC of faulting instruction in case of error.  E1.

//	DEBUGSTORE(0x45)
//	DEBUG_EXC_ADDR()
                                        // Real MM mapping
        mfpr    r9, ev5__mm_stat	// Get read/write bit.  E0.
        mtpr	r10, pt6		// Stash exc_addr away

pal_dtb_ldq:
        ld_vpte r8, 0(r8)             	// Get PTE, traps to DTBMISS_DOUBLE in case of TBmiss
        nop				// Pad MF VA

        mfpr	r10, ev5__va            // Get original faulting VA for TB load.  E0.
        nop

        mtpr    r8, ev5__dtb_pte       	// Write DTB PTE part.   E0.
        blbc    r8, invalid_dpte_handler    // Handle invalid PTE

        mtpr    r10, ev5__dtb_tag      	// Write DTB TAG part, completes DTB load.  No virt ref for 3 cycles.
        mfpr	r10, pt6

                                        // Following 2 instructions take 2 cycles
        mtpr    r10, exc_addr           // Return linkage in case we trapped.  E1.
        mfpr	r31,  pt0		// Pad the write to dtb_tag

        hw_rei                          // Done, return


//
// DTBMISS_DOUBLE - Dstream Double TBmiss Trap Entry Point
//
//
// DTBMISS_DOUBLE - offset 0280
// Entry:
//	Vectored into via hardware trap on Double TBmiss from single
//      miss flows.
//
//	r8   - faulting VA
//	r9   - original MMstat
//	r10 - original exc_addr (both itb,dtb miss)
//	pt6 - original exc_addr (dtb miss flow only)
//	VA IPR - locked with original faulting VA
//
// Function:
// 	Get PTE, if valid load TB and return.
//	If not valid then take TNV/ACV exception.
//
//	pt4 and pt5 are reserved for this flow.
//
//
//

        HDW_VECTOR(PAL_DOUBLE_MISS_ENTRY)
Trap_Dtbmiss_double:
        mtpr 	r8, pt4			// save r8 to do exc_addr check
        mfpr	r8, exc_addr
        blbc	r8, Trap_Dtbmiss_Single	//if not in palmode, should be in the single routine, dummy!
        mfpr	r8, pt4			// restore r8
        nop
        mtpr	r22, pt5		// Get some scratch space. E1.
                                        // Due to virtual scheme, we can skip the first lookup and go
                                        // right to fetch of level 2 PTE
        sll     r8, (64-((2*page_seg_size_bits)+page_offset_size_bits)), r22  // Clean off upper bits of VA
        mtpr	r21, pt4		// Get some scratch space. E1.

        srl    	r22, 61-page_seg_size_bits, r22 // Get Va<seg1>*8
        mfpr	r21, pt_ptbr		// Get physical address of the page table.

        nop
        addq    r21, r22, r21           // Index into page table for level 2 PTE.

        sll    	r8, (64-((1*page_seg_size_bits)+page_offset_size_bits)), r22  // Clean off upper bits of VA
        ldq_p   	r21, 0(r21)            	// Get level 2 PTE (addr<2:0> ignored)

        srl    	r22, 61-page_seg_size_bits, r22	// Get Va<seg1>*8
        blbc 	r21, double_pte_inv		// Check for Invalid PTE.

        srl    	r21, 32, r21			// extract PFN from PTE
        sll     r21, page_offset_size_bits, r21	// get PFN * 2^13 for add to <seg3>*8

        addq    r21, r22, r21           // Index into page table for level 3 PTE.
        nop

        ldq_p   	r21, 0(r21)            	// Get level 3 PTE (addr<2:0> ignored)
        blbc	r21, double_pte_inv	// Check for invalid PTE.

        mtpr	r21, ev5__dtb_pte	// Write the PTE.  E0.
        mfpr	r22, pt5		// Restore scratch register

        mtpr	r8, ev5__dtb_tag	// Write the TAG. E0.  No virtual references in subsequent 3 cycles.
        mfpr	r21, pt4		// Restore scratch register

        nop				// Pad write to tag.
        nop

        nop				// Pad write to tag.
        nop

        hw_rei



//
// UNALIGN -- Dstream unalign trap
//
// UNALIGN - offset 0300
// Entry:
//	Vectored into via hardware trap on unaligned Dstream reference.
//
// Function:
//	Build stack frame
//	a0 <- Faulting VA
//	a1 <- Opcode
//	a2 <- src/dst register number
//	vector via entUna
//

        HDW_VECTOR(PAL_UNALIGN_ENTRY)
Trap_Unalign:
/*	DEBUGSTORE(0x47)*/
        sll	r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit
        mtpr	r31, ev5__ps		// Set Ibox current mode to kernel

        mfpr	r8, ev5__mm_stat	// Get mmstat --ok to use r8, no tbmiss
        mfpr	r14, exc_addr		// get pc

        srl	r8, mm_stat_v_ra, r13	// Shift Ra field to ls bits
        blbs	r14, pal_pal_bug_check  // Bugcheck if unaligned in PAL

        blbs	r8, UNALIGN_NO_DISMISS // lsb only set on store or fetch_m
                                        // not set, must be a load
        and	r13, 0x1F, r8		// isolate ra

        cmpeq   r8, 0x1F, r8		// check for r31/F31
        bne     r8, dfault_fetch_ldr31_err // if its a load to r31 or f31 -- dismiss the fault

UNALIGN_NO_DISMISS:
        bis	r11, r31, r12		// Save PS
        bge	r25, UNALIGN_NO_DISMISS_10_		// no stack swap needed if cm=kern


        mtpr	r31, ev5__dtb_cm	// Set Mbox current mode to kernel -
                                        //     no virt ref for next 2 cycles
        mtpr	r30, pt_usp		// save user stack

        bis	r31, r31, r12		// Set new PS
        mfpr	r30, pt_ksp

UNALIGN_NO_DISMISS_10_:
        mfpr	r25, ev5__va		// Unlock VA
        lda	sp, 0-osfsf_c_size(sp)// allocate stack space

        mtpr	r25, pt0		// Stash VA
        stq	r18, osfsf_a2(sp) 	// a2

        stq	r11, osfsf_ps(sp)	// save old ps
        srl	r13, mm_stat_v_opcode-mm_stat_v_ra, r25// Isolate opcode

        stq	r29, osfsf_gp(sp) 	// save gp
        addq	r14, 4, r14		// inc PC past the ld/st

        stq	r17, osfsf_a1(sp)	// a1
        and	r25, mm_stat_m_opcode, r17// Clean opocde for a1

        stq	r16, osfsf_a0(sp)	// save regs
        mfpr	r16, pt0		// a0 <- va/unlock

        stq	r14, osfsf_pc(sp)	// save pc
        mfpr	r25, pt_entuna		// get entry point


        bis	r12, r31, r11		// update ps
        br 	r31, unalign_trap_cont


//
// DFAULT	- Dstream Fault Trap Entry Point
//
// DFAULT - offset 0380
// Entry:
//	Vectored into via hardware trap on dstream fault or sign check
//      error on DVA.
//
// Function:
//	Ignore faults on FETCH/FETCH_M
//	Check for DFAULT in PAL
//	Build stack frame
//	a0 <- Faulting VA
//	a1 <- MMCSR (1 for ACV, 2 for FOR, 4 for FOW)
//	a2 <- R/W
//	vector via entMM
//
//
        HDW_VECTOR(PAL_D_FAULT_ENTRY)
Trap_Dfault:
//	DEBUGSTORE(0x48)
        sll	r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit
        mtpr	r31, ev5__ps		// Set Ibox current mode to kernel

        mfpr	r13, ev5__mm_stat	// Get mmstat
        mfpr	r8, exc_addr		// get pc, preserve r14

        srl	r13, mm_stat_v_opcode, r9 // Shift opcode field to ls bits
        blbs	r8, dfault_in_pal

        bis	r8, r31, r14		// move exc_addr to correct place
        bis	r11, r31, r12		// Save PS

        mtpr	r31, ev5__dtb_cm	// Set Mbox current mode to kernel -
                                        //     no virt ref for next 2 cycles
        and	r9, mm_stat_m_opcode, r9 // Clean all but opcode

        cmpeq   r9, evx_opc_sync, r9 	// Is the opcode fetch/fetchm?
        bne     r9, dfault_fetch_ldr31_err   // Yes, dismiss the fault

        //dismiss exception if load to r31/f31
        blbs	r13, dfault_no_dismiss	// mm_stat<0> set on store or fetchm

                                        // not a store or fetch, must be a load
        srl	r13, mm_stat_v_ra, r9	// Shift rnum to low bits

        and	r9, 0x1F, r9		// isolate rnum
        nop

        cmpeq   r9, 0x1F, r9   	// Is the rnum r31 or f31?
        bne     r9, dfault_fetch_ldr31_err    // Yes, dismiss the fault

dfault_no_dismiss:
        and	r13, 0xf, r13	// Clean extra bits in mm_stat
        bge	r25, dfault_trap_cont	// no stack swap needed if cm=kern


        mtpr	r30, pt_usp		// save user stack
        bis	r31, r31, r12		// Set new PS

        mfpr	r30, pt_ksp
        br	r31, dfault_trap_cont


//
// MCHK	-  Machine Check Trap Entry Point
//
// MCHK - offset 0400
// Entry:
//	Vectored into via hardware trap on machine check.
//
// Function:
//
//

        HDW_VECTOR(PAL_MCHK_ENTRY)
Trap_Mchk:
        DEBUGSTORE(0x49)
        mtpr    r31, ic_flush_ctl       // Flush the Icache
        br      r31, sys_machine_check


//
// OPCDEC	-  Illegal Opcode Trap Entry Point
//
// OPCDEC - offset 0480
// Entry:
//	Vectored into via hardware trap on illegal opcode.
//
//	Build stack frame
//	a0 <- code
//	a1 <- unpred
//	a2 <- unpred
//	vector via entIF
//
//

        HDW_VECTOR(PAL_OPCDEC_ENTRY)
Trap_Opcdec:
        DEBUGSTORE(0x4a)
//simos	DEBUG_EXC_ADDR()
        sll	r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit
        mtpr	r31, ev5__ps		// Set Ibox current mode to kernel

        mfpr	r14, exc_addr		// get pc
        blbs	r14, pal_pal_bug_check	// check opcdec in palmode

        bis	r11, r31, r12		// Save PS
        bge	r25, TRAP_OPCDEC_10_		// no stack swap needed if cm=kern


        mtpr	r31, ev5__dtb_cm	// Set Mbox current mode to kernel -
                                        //     no virt ref for next 2 cycles
        mtpr	r30, pt_usp		// save user stack

        bis	r31, r31, r12		// Set new PS
        mfpr	r30, pt_ksp

TRAP_OPCDEC_10_:
        lda	sp, 0-osfsf_c_size(sp)// allocate stack space
        addq	r14, 4, r14		// inc pc

        stq	r16, osfsf_a0(sp)	// save regs
        bis	r31, osf_a0_opdec, r16	// set a0

        stq	r11, osfsf_ps(sp)	// save old ps
        mfpr	r13, pt_entif		// get entry point

        stq	r18, osfsf_a2(sp) 	// a2
        stq	r17, osfsf_a1(sp)	// a1

        stq	r29, osfsf_gp(sp) 	// save gp
        stq	r14, osfsf_pc(sp)	// save pc

        bis	r12, r31, r11		// update ps
        mtpr	r13, exc_addr		// load exc_addr with entIF
                                        // 1 cycle to hw_rei, E1

        mfpr	r29, pt_kgp		// get the kgp, E1

        hw_rei_spe			// done, E1


//
// ARITH	-  Arithmetic Exception Trap Entry Point
//
// ARITH - offset 0500
// Entry:
//	Vectored into via hardware trap on arithmetic excpetion.
//
// Function:
//	Build stack frame
//	a0 <- exc_sum
//	a1 <- exc_mask
//	a2 <- unpred
//	vector via entArith
//
//
        HDW_VECTOR(PAL_ARITH_ENTRY)
Trap_Arith:
        DEBUGSTORE(0x4b)
        and	r11, osfps_m_mode, r12 // get mode bit
        mfpr	r31, ev5__va		// unlock mbox

        bis	r11, r31, r25		// save ps
        mfpr	r14, exc_addr		// get pc

        nop
        blbs	r14, pal_pal_bug_check	// arith trap from PAL

        mtpr    r31, ev5__dtb_cm        // Set Mbox current mode to kernel -
                                        //     no virt ref for next 2 cycles
        beq	r12, TRAP_ARITH_10_		// if zero we are in kern now

        bis	r31, r31, r25		// set the new ps
        mtpr	r30, pt_usp		// save user stack

        nop
        mfpr	r30, pt_ksp		// get kern stack

TRAP_ARITH_10_: 	lda	sp, 0-osfsf_c_size(sp)	// allocate stack space
        mtpr	r31, ev5__ps		// Set Ibox current mode to kernel

        nop				// Pad current mode write and stq
        mfpr	r13, ev5__exc_sum	// get the exc_sum

        mfpr	r12, pt_entarith
        stq	r14, osfsf_pc(sp)	// save pc

        stq	r17, osfsf_a1(sp)
        mfpr    r17, ev5__exc_mask      // Get exception register mask IPR - no mtpr exc_sum in next cycle

        stq	r11, osfsf_ps(sp)	// save ps
        bis	r25, r31, r11		// set new ps

        stq	r16, osfsf_a0(sp)	// save regs
        srl	r13, exc_sum_v_swc, r16	// shift data to correct position

        stq	r18, osfsf_a2(sp)
//	pvc_violate 354			// ok, but make sure reads of exc_mask/sum are not in same trap shadow
        mtpr	r31, ev5__exc_sum	// Unlock exc_sum and exc_mask

        stq	r29, osfsf_gp(sp)
        mtpr	r12, exc_addr		// Set new PC - 1 bubble to hw_rei - E1

        mfpr	r29, pt_kgp		// get the kern gp - E1
        hw_rei_spe			// done - E1


//
// FEN	-  Illegal Floating Point Operation Trap Entry Point
//
// FEN - offset 0580
// Entry:
//	Vectored into via hardware trap on illegal FP op.
//
// Function:
//	Build stack frame
//	a0 <- code
//	a1 <- unpred
//	a2 <- unpred
//	vector via entIF
//
//

        HDW_VECTOR(PAL_FEN_ENTRY)
Trap_Fen:
        sll	r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit
        mtpr	r31, ev5__ps		// Set Ibox current mode to kernel

        mfpr	r14, exc_addr		// get pc
        blbs	r14, pal_pal_bug_check	// check opcdec in palmode

        mfpr	r13, ev5__icsr
        nop

        bis	r11, r31, r12		// Save PS
        bge	r25, TRAP_FEN_10_		// no stack swap needed if cm=kern

        mtpr	r31, ev5__dtb_cm	// Set Mbox current mode to kernel -
                                        //     no virt ref for next 2 cycles
        mtpr	r30, pt_usp		// save user stack

        bis	r31, r31, r12		// Set new PS
        mfpr	r30, pt_ksp

TRAP_FEN_10_:
        lda	sp, 0-osfsf_c_size(sp)// allocate stack space
        srl     r13, icsr_v_fpe, r25   // Shift FP enable to bit 0


        stq	r16, osfsf_a0(sp)	// save regs
        mfpr	r13, pt_entif		// get entry point

        stq	r18, osfsf_a2(sp) 	// a2
        stq	r11, osfsf_ps(sp)	// save old ps

        stq	r29, osfsf_gp(sp) 	// save gp
        bis	r12, r31, r11		// set new ps

        stq	r17, osfsf_a1(sp)	// a1
        blbs	r25,fen_to_opcdec	// If FP is enabled, this is really OPCDEC.

        bis	r31, osf_a0_fen, r16	// set a0
        stq	r14, osfsf_pc(sp)	// save pc

        mtpr	r13, exc_addr		// load exc_addr with entIF
                                        // 1 cycle to hw_rei -E1

        mfpr	r29, pt_kgp		// get the kgp -E1

        hw_rei_spe			// done -E1

//	FEN trap was taken, but the fault is really opcdec.
        ALIGN_BRANCH
fen_to_opcdec:
        addq	r14, 4, r14		// save PC+4
        bis	r31, osf_a0_opdec, r16	// set a0

        stq	r14, osfsf_pc(sp)	// save pc
        mtpr	r13, exc_addr		// load exc_addr with entIF
                                        // 1 cycle to hw_rei

        mfpr	r29, pt_kgp		// get the kgp
        hw_rei_spe			// done



//////////////////////////////////////////////////////////////////////////////
// Misc handlers - Start area for misc code.
//////////////////////////////////////////////////////////////////////////////

//
// dfault_trap_cont
//	A dfault trap has been taken.  The sp has been updated if necessary.
//	Push a stack frame a vector via entMM.
//
//	Current state:
//		r12 - new PS
//		r13 - MMstat
//		VA - locked
//
//
        ALIGN_BLOCK
dfault_trap_cont:
        lda	sp, 0-osfsf_c_size(sp)// allocate stack space
        mfpr	r25, ev5__va		// Fetch VA/unlock

        stq	r18, osfsf_a2(sp) 	// a2
        and	r13, 1, r18		// Clean r/w bit for a2

        stq	r16, osfsf_a0(sp)	// save regs
        bis	r25, r31, r16		// a0 <- va

        stq	r17, osfsf_a1(sp)	// a1
        srl	r13, 1, r17		// shift fault bits to right position

        stq	r11, osfsf_ps(sp)	// save old ps
        bis	r12, r31, r11		// update ps

        stq	r14, osfsf_pc(sp)	// save pc
        mfpr	r25, pt_entmm		// get entry point

        stq	r29, osfsf_gp(sp) 	// save gp
        cmovlbs	r17, 1, r17		// a2. acv overrides fox.

        mtpr	r25, exc_addr		// load exc_addr with entMM
                                        // 1 cycle to hw_rei
        mfpr	r29, pt_kgp		// get the kgp

        hw_rei_spe			// done

//
//unalign_trap_cont
//	An unalign trap has been taken.  Just need to finish up a few things.
//
//	Current state:
//		r25 - entUna
//		r13 - shifted MMstat
//
//
        ALIGN_BLOCK
unalign_trap_cont:
        mtpr	r25, exc_addr		// load exc_addr with entUna
                                        // 1 cycle to hw_rei


        mfpr	r29, pt_kgp		// get the kgp
        and	r13, mm_stat_m_ra, r18	// Clean Ra for a2

        hw_rei_spe			// done



//
// dfault_in_pal
//	Dfault trap was taken, exc_addr points to a PAL PC.
//	r9 - mmstat<opcode> right justified
//	r8 - exception address
//
//	These are the cases:
//		opcode was STQ -- from a stack builder, KSP not valid halt
//			r14 - original exc_addr
//			r11 - original PS
//		opcode was STL_C  -- rti or retsys clear lock_flag by stack write,
//					KSP not valid halt
//			r11 - original PS
//			r14 - original exc_addr
//		opcode was LDQ -- retsys or rti stack read, KSP not valid halt
//			r11 - original PS
//			r14 - original exc_addr
//		opcode was HW_LD -- itbmiss or dtbmiss, bugcheck due to fault on page tables
//			r10 - original exc_addr
//			r11 - original PS
//
//
//
        ALIGN_BLOCK
dfault_in_pal:
        DEBUGSTORE(0x50)
        bic     r8, 3, r8            // Clean PC
        mfpr	r9, pal_base

        mfpr	r31, va			// unlock VA

        // if not real_mm, should never get here from miss flows

        subq    r9, r8, r8            // pal_base - offset

        lda     r9, pal_itb_ldq-pal_base(r8)
        nop

        beq 	r9, dfault_do_bugcheck
        lda     r9, pal_dtb_ldq-pal_base(r8)

        beq 	r9, dfault_do_bugcheck

//
// KSP invalid halt case --
ksp_inval_halt:
        DEBUGSTORE(76)
        bic	r11, osfps_m_mode, r11	// set ps to kernel mode
        mtpr    r0, pt0

        mtpr	r31, dtb_cm		// Make sure that the CM IPRs are all kernel mode
        mtpr	r31, ips

        mtpr	r14, exc_addr		// Set PC to instruction that caused trouble
        bsr     r0, pal_update_pcb      // update the pcb

        lda     r0, hlt_c_ksp_inval(r31)  // set halt code to hw halt
        br      r31, sys_enter_console  // enter the console

        ALIGN_BRANCH
dfault_do_bugcheck:
        bis	r10, r31, r14		// bugcheck expects exc_addr in r14
        br	r31, pal_pal_bug_check


//
// dfault_fetch_ldr31_err - ignore faults on fetch(m) and loads to r31/f31
//	On entry -
//		r14 - exc_addr
//		VA is locked
//
//
        ALIGN_BLOCK
dfault_fetch_ldr31_err:
        mtpr	r11, ev5__dtb_cm
        mtpr	r11, ev5__ps		// Make sure ps hasn't changed

        mfpr	r31, va			// unlock the mbox
        addq	r14, 4, r14		// inc the pc to skip the fetch

        mtpr	r14, exc_addr		// give ibox new PC
        mfpr	r31, pt0		// pad exc_addr write

        hw_rei



        ALIGN_BLOCK
//
// sys_from_kern
//	callsys from kernel mode - OS bugcheck machine check
//
//
sys_from_kern:
        mfpr	r14, exc_addr			// PC points to call_pal
        subq	r14, 4, r14

        lda	r25, mchk_c_os_bugcheck(r31)    // fetch mchk code
        br      r31, pal_pal_mchk


// Continuation of long call_pal flows
//
// wrent_tbl
//	Table to write *int in paltemps.
//	4 instructions/entry
//	r16 has new value
//
//
        ALIGN_BLOCK
wrent_tbl:
//orig	pvc_jsr	wrent, dest=1
        nop
        mtpr	r16, pt_entint

        mfpr	r31, pt0		// Pad for mt->mf paltemp rule
        hw_rei


//orig	pvc_jsr	wrent, dest=1
        nop
        mtpr	r16, pt_entarith

        mfpr    r31, pt0                // Pad for mt->mf paltemp rule
        hw_rei


//orig	pvc_jsr	wrent, dest=1
        nop
        mtpr	r16, pt_entmm

        mfpr    r31, pt0                // Pad for mt->mf paltemp rule
        hw_rei


//orig	pvc_jsr	wrent, dest=1
        nop
        mtpr	r16, pt_entif

        mfpr    r31, pt0                // Pad for mt->mf paltemp rule
        hw_rei


//orig	pvc_jsr	wrent, dest=1
        nop
        mtpr	r16, pt_entuna

        mfpr    r31, pt0                // Pad for mt->mf paltemp rule
        hw_rei


//orig	pvc_jsr	wrent, dest=1
        nop
        mtpr	r16, pt_entsys

        mfpr    r31, pt0                // Pad for mt->mf paltemp rule
        hw_rei

        ALIGN_BLOCK
//
// tbi_tbl
//	Table to do tbi instructions
//	4 instructions per entry
//
tbi_tbl:
        // -2 tbia
//orig	pvc_jsr tbi, dest=1
        mtpr	r31, ev5__dtb_ia	// Flush DTB
        mtpr	r31, ev5__itb_ia	// Flush ITB

        hw_rei_stall

        nop				// Pad table

        // -1 tbiap
//orig	pvc_jsr tbi, dest=1
        mtpr	r31, ev5__dtb_iap	// Flush DTB
        mtpr	r31, ev5__itb_iap	// Flush ITB

        hw_rei_stall

        nop				// Pad table


        // 0 unused
//orig	pvc_jsr tbi, dest=1
        hw_rei				// Pad table
        nop
        nop
        nop


        // 1 tbisi
//orig	pvc_jsr tbi, dest=1

        nop
        nop
        mtpr	r17, ev5__itb_is	// Flush ITB
        hw_rei_stall

        // 2 tbisd
//orig	pvc_jsr tbi, dest=1
        mtpr	r17, ev5__dtb_is	// Flush DTB.
        nop

        nop
        hw_rei_stall


        // 3 tbis
//orig	pvc_jsr tbi, dest=1
        mtpr	r17, ev5__dtb_is	// Flush DTB
        br	r31, tbi_finish
        ALIGN_BRANCH
tbi_finish:
        mtpr	r17, ev5__itb_is	// Flush ITB
        hw_rei_stall



        ALIGN_BLOCK
//
// bpt_bchk_common:
//	Finish up the bpt/bchk instructions
//
bpt_bchk_common:
        stq	r18, osfsf_a2(sp) 	// a2
        mfpr	r13, pt_entif		// get entry point

        stq	r12, osfsf_ps(sp)	// save old ps
        stq	r14, osfsf_pc(sp)	// save pc

        stq	r29, osfsf_gp(sp) 	// save gp
        mtpr	r13, exc_addr		// load exc_addr with entIF
                                        // 1 cycle to hw_rei

        mfpr	r29, pt_kgp		// get the kgp


        hw_rei_spe			// done


        ALIGN_BLOCK
//
// rti_to_user
//	Finish up the rti instruction
//
rti_to_user:
        mtpr	r11, ev5__dtb_cm	// set Mbox current mode - no virt ref for 2 cycles
        mtpr	r11, ev5__ps		// set Ibox current mode - 2 bubble to hw_rei

        mtpr	r31, ev5__ipl		// set the ipl. No hw_rei for 2 cycles
        mtpr	r25, pt_ksp		// save off incase RTI to user

        mfpr	r30, pt_usp
        hw_rei_spe			// and back


        ALIGN_BLOCK
//
// rti_to_kern
//	Finish up the rti instruction
//
rti_to_kern:
        and	r12, osfps_m_ipl, r11	// clean ps
        mfpr	r12, pt_intmask		// get int mask

        extbl	r12, r11, r12		// get mask for this ipl
        mtpr	r25, pt_ksp		// save off incase RTI to user

        mtpr	r12, ev5__ipl		// set the new ipl.
        or	r25, r31, sp		// sp

//	pvc_violate 217			// possible hidden mt->mf ipl not a problem in callpals
        hw_rei

        ALIGN_BLOCK
//
// swpctx_cont
//	Finish up the swpctx instruction
//

swpctx_cont:

        bic	r25, r24, r25		// clean icsr<FPE,PMP>
        sll	r12, icsr_v_fpe, r12	// shift new fen to pos

        ldq_p	r14, osfpcb_q_mmptr(r16)// get new mmptr
        srl	r22, osfpcb_v_pme, r22	// get pme down to bit 0

        or	r25, r12, r25		// icsr with new fen
        srl	r23, 32, r24		// move asn to low asn pos

        and	r22, 1, r22
        sll	r24, itb_asn_v_asn, r12

        sll	r22, icsr_v_pmp, r22
        nop

        or	r25, r22, r25		// icsr with new pme

        sll	r24, dtb_asn_v_asn, r24

        subl	r23, r13, r13		// gen new cc offset
        mtpr	r12, itb_asn		// no hw_rei_stall in 0,1,2,3,4

        mtpr	r24, dtb_asn		// Load up new ASN
        mtpr	r25, icsr		// write the icsr

        sll	r14, page_offset_size_bits, r14 // Move PTBR into internal position.
        ldq_p	r25, osfpcb_q_usp(r16)	// get new usp

        insll	r13, 4, r13		// >> 32
//	pvc_violate 379			// ldq_p can't trap except replay.  only problem if mf same ipr in same shadow
        mtpr	r14, pt_ptbr		// load the new ptbr

        mtpr	r13, cc			// set new offset
        ldq_p	r30, osfpcb_q_ksp(r16)	// get new ksp

//	pvc_violate 379			// ldq_p can't trap except replay.  only problem if mf same ipr in same shadow
        mtpr	r25, pt_usp		// save usp

no_pm_change_10_:	hw_rei_stall			// back we go

        ALIGN_BLOCK
//
// swppal_cont - finish up the swppal call_pal
//

swppal_cont:
        mfpr	r2, pt_misc		// get misc bits
        sll	r0, pt_misc_v_switch, r0 // get the "I've switched" bit
        or	r2, r0, r2		// set the bit
        mtpr	r31, ev5__alt_mode	// ensure alt_mode set to 0 (kernel)
        mtpr	r2, pt_misc		// update the chip

        or	r3, r31, r4
        mfpr	r3, pt_impure		// pass pointer to the impure area in r3
//orig	fix_impure_ipr	r3		// adjust impure pointer for ipr read
//orig	restore_reg1	bc_ctl, r1, r3, ipr=1		// pass cns_bc_ctl in r1
//orig	restore_reg1	bc_config, r2, r3, ipr=1	// pass cns_bc_config in r2
//orig	unfix_impure_ipr r3		// restore impure pointer
        lda	r3, CNS_Q_IPR(r3)
        RESTORE_SHADOW(r1,CNS_Q_BC_CTL,r3);
        RESTORE_SHADOW(r1,CNS_Q_BC_CFG,r3);
        lda	r3, -CNS_Q_IPR(r3)

        or	r31, r31, r0		// set status to success
//	pvc_violate	1007
        jmp	r31, (r4)		// and call our friend, it's her problem now


swppal_fail:
        addq	r0, 1, r0		// set unknown pal or not loaded
        hw_rei				// and return


// .sbttl	"Memory management"

        ALIGN_BLOCK
//
//foe_ipte_handler
// IFOE detected on level 3 pte, sort out FOE vs ACV
//
// on entry:
//	with
//	R8	 = pte
//	R10	 = pc
//
// Function
//	Determine TNV vs ACV vs FOE. Build stack and dispatch
//	Will not be here if TNV.
//

foe_ipte_handler:
        sll	r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit
        mtpr	r31, ev5__ps		// Set Ibox current mode to kernel

        bis	r11, r31, r12		// Save PS for stack write
        bge	r25, foe_ipte_handler_10_		// no stack swap needed if cm=kern


        mtpr	r31, ev5__dtb_cm	// Set Mbox current mode to kernel -
                                        //     no virt ref for next 2 cycles
        mtpr	r30, pt_usp		// save user stack

        bis	r31, r31, r11		// Set new PS
        mfpr	r30, pt_ksp

        srl	r8, osfpte_v_ure-osfpte_v_kre, r8 // move pte user bits to kern
        nop

foe_ipte_handler_10_:	srl	r8, osfpte_v_kre, r25	// get kre to <0>
        lda	sp, 0-osfsf_c_size(sp)// allocate stack space

        or	r10, r31, r14		// Save pc/va in case TBmiss or fault on stack
        mfpr	r13, pt_entmm		// get entry point

        stq	r16, osfsf_a0(sp)	// a0
        or	r14, r31, r16		// pass pc/va as a0

        stq	r17, osfsf_a1(sp)	// a1
        nop

        stq	r18, osfsf_a2(sp) 	// a2
        lda	r17, mmcsr_c_acv(r31)	// assume ACV

        stq	r16, osfsf_pc(sp)	// save pc
        cmovlbs r25, mmcsr_c_foe, r17	// otherwise FOE

        stq	r12, osfsf_ps(sp)	// save ps
        subq	r31, 1, r18		// pass flag of istream as a2

        stq	r29, osfsf_gp(sp)
        mtpr	r13, exc_addr		// set vector address

        mfpr	r29, pt_kgp		// load kgp
        hw_rei_spe			// out to exec

        ALIGN_BLOCK
//
//invalid_ipte_handler
// TNV detected on level 3 pte, sort out TNV vs ACV
//
// on entry:
//	with
//	R8	 = pte
//	R10	 = pc
//
// Function
//	Determine TNV vs ACV. Build stack and dispatch.
//

invalid_ipte_handler:
        sll	r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit
        mtpr	r31, ev5__ps		// Set Ibox current mode to kernel

        bis	r11, r31, r12		// Save PS for stack write
        bge	r25, invalid_ipte_handler_10_		// no stack swap needed if cm=kern


        mtpr	r31, ev5__dtb_cm	// Set Mbox current mode to kernel -
                                        //     no virt ref for next 2 cycles
        mtpr	r30, pt_usp		// save user stack

        bis	r31, r31, r11		// Set new PS
        mfpr	r30, pt_ksp

        srl	r8, osfpte_v_ure-osfpte_v_kre, r8 // move pte user bits to kern
        nop

invalid_ipte_handler_10_:	srl	r8, osfpte_v_kre, r25	// get kre to <0>
        lda	sp, 0-osfsf_c_size(sp)// allocate stack space

        or	r10, r31, r14		// Save pc/va in case TBmiss on stack
        mfpr	r13, pt_entmm		// get entry point

        stq	r16, osfsf_a0(sp)	// a0
        or	r14, r31, r16		// pass pc/va as a0

        stq	r17, osfsf_a1(sp)	// a1
        nop

        stq	r18, osfsf_a2(sp) 	// a2
        and	r25, 1, r17		// Isolate kre

        stq	r16, osfsf_pc(sp)	// save pc
        xor	r17, 1, r17		// map to acv/tnv as a1

        stq	r12, osfsf_ps(sp)	// save ps
        subq	r31, 1, r18		// pass flag of istream as a2

        stq	r29, osfsf_gp(sp)
        mtpr	r13, exc_addr		// set vector address

        mfpr	r29, pt_kgp		// load kgp
        hw_rei_spe			// out to exec




        ALIGN_BLOCK
//
//invalid_dpte_handler
// INVALID detected on level 3 pte, sort out TNV vs ACV
//
// on entry:
//	with
//	R10	 = va
//	R8	 = pte
//	R9	 = mm_stat
//	PT6	 = pc
//
// Function
//	Determine TNV vs ACV. Build stack and dispatch
//


invalid_dpte_handler:
        mfpr	r12, pt6
        blbs	r12, tnv_in_pal		// Special handler if original faulting reference was in PALmode

        bis	r12, r31, r14		// save PC in case of tbmiss or fault
        srl	r9, mm_stat_v_opcode, r25	// shift opc to <0>

        mtpr	r11, pt0		// Save PS for stack write
        and 	r25, mm_stat_m_opcode, r25	// isolate opcode

        cmpeq	r25, evx_opc_sync, r25	// is it FETCH/FETCH_M?
        blbs	r25, nmiss_fetch_ldr31_err	// yes

        //dismiss exception if load to r31/f31
        blbs	r9, invalid_dpte_no_dismiss	// mm_stat<0> set on store or fetchm

                                        // not a store or fetch, must be a load
        srl	r9, mm_stat_v_ra, r25	// Shift rnum to low bits

        and	r25, 0x1F, r25		// isolate rnum
        nop

        cmpeq   r25, 0x1F, r25  	// Is the rnum r31 or f31?
        bne     r25, nmiss_fetch_ldr31_err    // Yes, dismiss the fault

invalid_dpte_no_dismiss:
        sll	r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit
        mtpr	r31, ev5__ps		// Set Ibox current mode to kernel

        mtpr	r31, ev5__dtb_cm	// Set Mbox current mode to kernel -
                                        //     no virt ref for next 2 cycles
        bge	r25, invalid_dpte_no_dismiss_10_		// no stack swap needed if cm=kern

        srl	r8, osfpte_v_ure-osfpte_v_kre, r8 // move pte user bits to kern
        mtpr	r30, pt_usp		// save user stack

        bis	r31, r31, r11		// Set new PS
        mfpr	r30, pt_ksp

invalid_dpte_no_dismiss_10_:	srl	r8, osfpte_v_kre, r12	// get kre to <0>
        lda	sp, 0-osfsf_c_size(sp)// allocate stack space

        or	r10, r31, r25		// Save va in case TBmiss on stack
        and	r9, 1, r13		// save r/w flag

        stq	r16, osfsf_a0(sp)	// a0
        or	r25, r31, r16		// pass va as a0

        stq	r17, osfsf_a1(sp)	// a1
        or	r31, mmcsr_c_acv, r17 	// assume acv

        srl	r12, osfpte_v_kwe-osfpte_v_kre, r25 // get write enable to <0>
        stq	r29, osfsf_gp(sp)

        stq	r18, osfsf_a2(sp) 	// a2
        cmovlbs r13, r25, r12		// if write access move acv based on write enable

        or	r13, r31, r18		// pass flag of dstream access and read vs write
        mfpr	r25, pt0		// get ps

        stq	r14, osfsf_pc(sp)	// save pc
        mfpr	r13, pt_entmm		// get entry point

        stq	r25, osfsf_ps(sp)	// save ps
        mtpr	r13, exc_addr		// set vector address

        mfpr	r29, pt_kgp		// load kgp
        cmovlbs	r12, mmcsr_c_tnv, r17 	// make p2 be tnv if access ok else acv

        hw_rei_spe			// out to exec

//
//
// We come here if we are erring on a dtb_miss, and the instr is a
// fetch, fetch_m, of load to r31/f31.
// The PC is incremented, and we return to the program.
// essentially ignoring the instruction and error.
//
//
        ALIGN_BLOCK
nmiss_fetch_ldr31_err:
        mfpr	r12, pt6
        addq	r12, 4, r12		// bump pc to pc+4

        mtpr	r12, exc_addr		// and set entry point
        mfpr	r31, pt0		// pad exc_addr write

        hw_rei				//

        ALIGN_BLOCK
//
// double_pte_inv
//	We had a single tbmiss which turned into a double tbmiss which found
//	an invalid PTE.  Return to single miss with a fake pte, and the invalid
//	single miss flow will report the error.
//
// on entry:
//	r21  	PTE
//	r22	available
//	VA IPR	locked with original fault VA
//       pt4  	saved r21
//	pt5  	saved r22
//	pt6	original exc_addr
//
// on return to tbmiss flow:
//	r8	fake PTE
//
//
//
double_pte_inv:
        srl	r21, osfpte_v_kre, r21	// get the kre bit to <0>
        mfpr	r22, exc_addr		// get the pc

        lda	r22, 4(r22)		// inc the pc
        lda	r8, osfpte_m_prot(r31)	 // make a fake pte with xre and xwe set

        cmovlbc r21, r31, r8		// set to all 0 for acv if pte<kre> is 0
        mtpr	r22, exc_addr		// set for rei

        mfpr	r21, pt4		// restore regs
        mfpr	r22, pt5		// restore regs

        hw_rei				// back to tb miss

        ALIGN_BLOCK
//
//tnv_in_pal
//	The only places in pal that ld or store are the
// 	stack builders, rti or retsys.  Any of these mean we
//	need to take a ksp not valid halt.
//
//
tnv_in_pal:


        br	r31, ksp_inval_halt


// .sbttl	"Icache flush routines"

        ALIGN_BLOCK
//
// Common Icache flush routine.
//
//
//
pal_ic_flush:
        nop
        mtpr	r31, ev5__ic_flush_ctl		// Icache flush - E1
        nop
        nop

// Now, do 44 NOPs.  3RFB prefetches (24) + IC buffer,IB,slot,issue (20)
        nop
        nop
        nop
        nop

        nop
        nop
        nop
        nop

        nop
        nop		// 10

        nop
        nop
        nop
        nop

        nop
        nop
        nop
        nop

        nop
        nop		// 20

        nop
        nop
        nop
        nop

        nop
        nop
        nop
        nop

        nop
        nop		// 30
        nop
        nop
        nop
        nop

        nop
        nop
        nop
        nop

        nop
        nop		// 40

        nop
        nop

one_cycle_and_hw_rei:
        nop
        nop

        hw_rei_stall

        ALIGN_BLOCK
//
//osfpal_calpal_opcdec
//  Here for all opcdec CALL_PALs
//
//	Build stack frame
//	a0 <- code
//	a1 <- unpred
//	a2 <- unpred
//	vector via entIF
//
//

osfpal_calpal_opcdec:
        sll	r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit
        mtpr	r31, ev5__ps		// Set Ibox current mode to kernel

        mfpr	r14, exc_addr		// get pc
        nop

        bis	r11, r31, r12		// Save PS for stack write
        bge	r25, osfpal_calpal_opcdec_10_		// no stack swap needed if cm=kern


        mtpr	r31, ev5__dtb_cm	// Set Mbox current mode to kernel -
                                        //     no virt ref for next 2 cycles
        mtpr	r30, pt_usp		// save user stack

        bis	r31, r31, r11		// Set new PS
        mfpr	r30, pt_ksp

osfpal_calpal_opcdec_10_:
        lda	sp, 0-osfsf_c_size(sp)// allocate stack space
        nop

        stq	r16, osfsf_a0(sp)	// save regs
        bis	r31, osf_a0_opdec, r16	// set a0

        stq	r18, osfsf_a2(sp) 	// a2
        mfpr	r13, pt_entif		// get entry point

        stq	r12, osfsf_ps(sp)	// save old ps
        stq	r17, osfsf_a1(sp)	// a1

        stq	r14, osfsf_pc(sp)	// save pc
        nop

        stq	r29, osfsf_gp(sp) 	// save gp
        mtpr	r13, exc_addr		// load exc_addr with entIF
                                        // 1 cycle to hw_rei

        mfpr	r29, pt_kgp		// get the kgp


        hw_rei_spe			// done





//
//pal_update_pcb
//	Update the PCB with the current SP, AST, and CC info
//
//	r0 - return linkage
//
        ALIGN_BLOCK

pal_update_pcb:
        mfpr	r12, pt_pcbb		// get pcbb
        and	r11, osfps_m_mode, r25	// get mode
        beq	r25, pal_update_pcb_10_		// in kern? no need to update user sp
        mtpr	r30, pt_usp		// save user stack
        stq_p	r30, osfpcb_q_usp(r12)	// store usp
        br	r31, pal_update_pcb_20_		// join common
pal_update_pcb_10_:	stq_p	r30, osfpcb_q_ksp(r12)	// store ksp
pal_update_pcb_20_:	rpcc	r13			// get cyccounter
        srl	r13, 32, r14		// move offset
        addl	r13, r14, r14		// merge for new time
        stl_p	r14, osfpcb_l_cc(r12)	// save time

//orig	pvc_jsr	updpcb, bsr=1, dest=1
        ret	r31, (r0)


//
// pal_save_state
//
//	Function
//		All chip state saved, all PT's, SR's FR's, IPR's
//
//
// Regs' on entry...
//
//	R0 	= halt code
//	pt0	= r0
//	R1	= pointer to impure
//	pt4	= r1
//	R3	= return addr
//	pt5	= r3
//
//	register usage:
//		r0 = halt_code
//		r1 = addr of impure area
//		r3 = return_address
//		r4 = scratch
//
//

        ALIGN_BLOCK
        .globl pal_save_state
pal_save_state:
//
//
// start of implementation independent save routine
//
// 		the impure area is larger than the addressibility of hw_ld and hw_st
//		therefore, we need to play some games:  The impure area
//		is informally divided into the "machine independent" part and the
//		"machine dependent" part.  The state that will be saved in the
//    		"machine independent" part are gpr's, fpr's, hlt, flag, mchkflag (use  (un)fix_impure_gpr macros).
//		All others will be in the "machine dependent" part (use (un)fix_impure_ipr macros).
//		The impure pointer will need to be adjusted by a different offset for each.  The store/restore_reg
//		macros will automagically adjust the offset correctly.
//

// The distributed code is commented out and followed by corresponding SRC code.
// Beware: SAVE_IPR and RESTORE_IPR blow away r0(v0)

//orig	fix_impure_gpr	r1		// adjust impure area pointer for stores to "gpr" part of impure area
        lda	r1, 0x200(r1)		// Point to center of CPU segment
//orig	store_reg1 flag, r31, r1, ipr=1	// clear dump area flag
        SAVE_GPR(r31,CNS_Q_FLAG,r1)	// Clear the valid flag
//orig	store_reg1 hlt, r0, r1, ipr=1
        SAVE_GPR(r0,CNS_Q_HALT,r1)	// Save the halt code

        mfpr	r0, pt0			// get r0 back			//orig
//orig	store_reg1 0, r0, r1		// save r0
        SAVE_GPR(r0,CNS_Q_GPR+0x00,r1)	// Save r0

        mfpr	r0, pt4			// get r1 back			//orig
//orig	store_reg1 1, r0, r1		// save r1
        SAVE_GPR(r0,CNS_Q_GPR+0x08,r1)	// Save r1

//orig	store_reg 2			// save r2
        SAVE_GPR(r2,CNS_Q_GPR+0x10,r1)	// Save r2

        mfpr	r0, pt5			// get r3 back			//orig
//orig	store_reg1 3, r0, r1		// save r3
        SAVE_GPR(r0,CNS_Q_GPR+0x18,r1)	// Save r3

        // reason code has been saved
        // r0 has been saved
        // r1 has been saved
        // r2 has been saved
        // r3 has been saved
        // pt0, pt4, pt5 have been lost

        //
        // Get out of shadow mode
        //

        mfpr	r2, icsr		// Get icsr
        ldah	r0, (1<<(icsr_v_sde-16))(r31)
        bic	r2, r0, r0		// ICSR with SDE clear
        mtpr	r0, icsr		// Turn off SDE

        mfpr	r31, pt0		// SDE bubble cycle 1
        mfpr	r31, pt0		// SDE bubble cycle 2
        mfpr	r31, pt0		// SDE bubble cycle 3
        nop


        // save integer regs R4-r31
        SAVE_GPR(r4,CNS_Q_GPR+0x20,r1)
        SAVE_GPR(r5,CNS_Q_GPR+0x28,r1)
        SAVE_GPR(r6,CNS_Q_GPR+0x30,r1)
        SAVE_GPR(r7,CNS_Q_GPR+0x38,r1)
        SAVE_GPR(r8,CNS_Q_GPR+0x40,r1)
        SAVE_GPR(r9,CNS_Q_GPR+0x48,r1)
        SAVE_GPR(r10,CNS_Q_GPR+0x50,r1)
        SAVE_GPR(r11,CNS_Q_GPR+0x58,r1)
        SAVE_GPR(r12,CNS_Q_GPR+0x60,r1)
        SAVE_GPR(r13,CNS_Q_GPR+0x68,r1)
        SAVE_GPR(r14,CNS_Q_GPR+0x70,r1)
        SAVE_GPR(r15,CNS_Q_GPR+0x78,r1)
        SAVE_GPR(r16,CNS_Q_GPR+0x80,r1)
        SAVE_GPR(r17,CNS_Q_GPR+0x88,r1)
        SAVE_GPR(r18,CNS_Q_GPR+0x90,r1)
        SAVE_GPR(r19,CNS_Q_GPR+0x98,r1)
        SAVE_GPR(r20,CNS_Q_GPR+0xA0,r1)
        SAVE_GPR(r21,CNS_Q_GPR+0xA8,r1)
        SAVE_GPR(r22,CNS_Q_GPR+0xB0,r1)
        SAVE_GPR(r23,CNS_Q_GPR+0xB8,r1)
        SAVE_GPR(r24,CNS_Q_GPR+0xC0,r1)
        SAVE_GPR(r25,CNS_Q_GPR+0xC8,r1)
        SAVE_GPR(r26,CNS_Q_GPR+0xD0,r1)
        SAVE_GPR(r27,CNS_Q_GPR+0xD8,r1)
        SAVE_GPR(r28,CNS_Q_GPR+0xE0,r1)
        SAVE_GPR(r29,CNS_Q_GPR+0xE8,r1)
        SAVE_GPR(r30,CNS_Q_GPR+0xF0,r1)
        SAVE_GPR(r31,CNS_Q_GPR+0xF8,r1)

        // save all paltemp regs except pt0

//orig	unfix_impure_gpr	r1		// adjust impure area pointer for gpr stores
//orig	fix_impure_ipr	r1			// adjust impure area pointer for pt stores

        lda	r1, -0x200(r1)		// Restore the impure base address.
        lda	r1, CNS_Q_IPR(r1)	// Point to the base of IPR area.
        SAVE_IPR(pt0,CNS_Q_PT+0x00,r1)		// the osf code didn't save/restore palTemp 0 ?? pboyle
        SAVE_IPR(pt1,CNS_Q_PT+0x08,r1)
        SAVE_IPR(pt2,CNS_Q_PT+0x10,r1)
        SAVE_IPR(pt3,CNS_Q_PT+0x18,r1)
        SAVE_IPR(pt4,CNS_Q_PT+0x20,r1)
        SAVE_IPR(pt5,CNS_Q_PT+0x28,r1)
        SAVE_IPR(pt6,CNS_Q_PT+0x30,r1)
        SAVE_IPR(pt7,CNS_Q_PT+0x38,r1)
        SAVE_IPR(pt8,CNS_Q_PT+0x40,r1)
        SAVE_IPR(pt9,CNS_Q_PT+0x48,r1)
        SAVE_IPR(pt10,CNS_Q_PT+0x50,r1)
        SAVE_IPR(pt11,CNS_Q_PT+0x58,r1)
        SAVE_IPR(pt12,CNS_Q_PT+0x60,r1)
        SAVE_IPR(pt13,CNS_Q_PT+0x68,r1)
        SAVE_IPR(pt14,CNS_Q_PT+0x70,r1)
        SAVE_IPR(pt15,CNS_Q_PT+0x78,r1)
        SAVE_IPR(pt16,CNS_Q_PT+0x80,r1)
        SAVE_IPR(pt17,CNS_Q_PT+0x88,r1)
        SAVE_IPR(pt18,CNS_Q_PT+0x90,r1)
        SAVE_IPR(pt19,CNS_Q_PT+0x98,r1)
        SAVE_IPR(pt20,CNS_Q_PT+0xA0,r1)
        SAVE_IPR(pt21,CNS_Q_PT+0xA8,r1)
        SAVE_IPR(pt22,CNS_Q_PT+0xB0,r1)
        SAVE_IPR(pt23,CNS_Q_PT+0xB8,r1)

        // Restore shadow mode
        mfpr	r31, pt0		// pad write to icsr out of shadow of store (trap does not abort write)
        mfpr	r31, pt0
        mtpr	r2, icsr		// Restore original ICSR

        mfpr	r31, pt0		// SDE bubble cycle 1
        mfpr	r31, pt0		// SDE bubble cycle 2
        mfpr	r31, pt0		// SDE bubble cycle 3
        nop

        // save all integer shadow regs
        SAVE_SHADOW( r8,CNS_Q_SHADOW+0x00,r1)	// also called p0...p7 in the Hudson code
        SAVE_SHADOW( r9,CNS_Q_SHADOW+0x08,r1)
        SAVE_SHADOW(r10,CNS_Q_SHADOW+0x10,r1)
        SAVE_SHADOW(r11,CNS_Q_SHADOW+0x18,r1)
        SAVE_SHADOW(r12,CNS_Q_SHADOW+0x20,r1)
        SAVE_SHADOW(r13,CNS_Q_SHADOW+0x28,r1)
        SAVE_SHADOW(r14,CNS_Q_SHADOW+0x30,r1)
        SAVE_SHADOW(r25,CNS_Q_SHADOW+0x38,r1)

        SAVE_IPR(excAddr,CNS_Q_EXC_ADDR,r1)
        SAVE_IPR(palBase,CNS_Q_PAL_BASE,r1)
        SAVE_IPR(mmStat,CNS_Q_MM_STAT,r1)
        SAVE_IPR(va,CNS_Q_VA,r1)
        SAVE_IPR(icsr,CNS_Q_ICSR,r1)
        SAVE_IPR(ipl,CNS_Q_IPL,r1)
        SAVE_IPR(ips,CNS_Q_IPS,r1)
        SAVE_IPR(itbAsn,CNS_Q_ITB_ASN,r1)
        SAVE_IPR(aster,CNS_Q_ASTER,r1)
        SAVE_IPR(astrr,CNS_Q_ASTRR,r1)
        SAVE_IPR(sirr,CNS_Q_SIRR,r1)
        SAVE_IPR(isr,CNS_Q_ISR,r1)
        SAVE_IPR(iVptBr,CNS_Q_IVPTBR,r1)
        SAVE_IPR(mcsr,CNS_Q_MCSR,r1)
        SAVE_IPR(dcMode,CNS_Q_DC_MODE,r1)

//orig	pvc_violate 379			// mf maf_mode after a store ok (pvc doesn't distinguish ld from st)
//orig	store_reg maf_mode,	ipr=1	// save ipr -- no mbox instructions for
//orig                                  // PVC violation applies only to
pvc$osf35$379:				    // loads. HW_ST ok here, so ignore
        SAVE_IPR(mafMode,CNS_Q_MAF_MODE,r1) // MBOX INST->MF MAF_MODE IN 0,1,2


        //the following iprs are informational only -- will not be restored

        SAVE_IPR(icPerr,CNS_Q_ICPERR_STAT,r1)
        SAVE_IPR(PmCtr,CNS_Q_PM_CTR,r1)
        SAVE_IPR(intId,CNS_Q_INT_ID,r1)
        SAVE_IPR(excSum,CNS_Q_EXC_SUM,r1)
        SAVE_IPR(excMask,CNS_Q_EXC_MASK,r1)
        ldah	r14, 0xFFF0(zero)
        zap	r14, 0xE0, r14		// Get base address of CBOX IPRs
        NOP				// Pad mfpr dcPerr out of shadow of
        NOP				// last store
        NOP
        SAVE_IPR(dcPerr,CNS_Q_DCPERR_STAT,r1)

        // read cbox ipr state

        mb
        ldq_p	r2, scCtl(r14)
        ldq_p	r13, ldLock(r14)
        ldq_p	r4, scAddr(r14)
        ldq_p	r5, eiAddr(r14)
        ldq_p	r6, bcTagAddr(r14)
        ldq_p	r7, fillSyn(r14)
        bis	r5, r4, zero		// Make sure all loads complete before
        bis	r7, r6, zero		// reading registers that unlock them.
        ldq_p	r8, scStat(r14)		// Unlocks scAddr.
        ldq_p	r9, eiStat(r14)		// Unlocks eiAddr, bcTagAddr, fillSyn.
        ldq_p	zero, eiStat(r14)	// Make sure it is really unlocked.
        mb

        // save cbox ipr state
        SAVE_SHADOW(r2,CNS_Q_SC_CTL,r1);
        SAVE_SHADOW(r13,CNS_Q_LD_LOCK,r1);
        SAVE_SHADOW(r4,CNS_Q_SC_ADDR,r1);
        SAVE_SHADOW(r5,CNS_Q_EI_ADDR,r1);
        SAVE_SHADOW(r6,CNS_Q_BC_TAG_ADDR,r1);
        SAVE_SHADOW(r7,CNS_Q_FILL_SYN,r1);
        SAVE_SHADOW(r8,CNS_Q_SC_STAT,r1);
        SAVE_SHADOW(r9,CNS_Q_EI_STAT,r1);
        //bc_config? sl_rcv?

// restore impure base
//orig	unfix_impure_ipr r1
        lda	r1, -CNS_Q_IPR(r1)

// save all floating regs
        mfpr	r0, icsr		// get icsr
        or	r31, 1, r2		// get a one
        sll	r2, icsr_v_fpe, r2	// Shift it into ICSR<FPE> position
        or	r2, r0, r0		// set FEN on
        mtpr	r0, icsr		// write to icsr, enabling FEN

// map the save area virtually
        mtpr	r31, dtbIa		// Clear all DTB entries
        srl	r1, va_s_off, r0	// Clean off byte-within-page offset
        sll	r0, pte_v_pfn, r0	// Shift to form PFN
        lda	r0, pte_m_prot(r0)	// Set all read/write enable bits
        mtpr	r0, dtbPte		// Load the PTE and set valid
        mtpr	r1, dtbTag		// Write the PTE and tag into the DTB


// map the next page too - in case the impure area crosses a page boundary
        lda	r4, (1<<va_s_off)(r1)	// Generate address for next page
        srl	r4, va_s_off, r0	// Clean off byte-within-page offset
        sll	r0, pte_v_pfn, r0	// Shift to form PFN
        lda	r0, pte_m_prot(r0)	// Set all read/write enable bits
        mtpr	r0, dtbPte		// Load the PTE and set valid
        mtpr	r4, dtbTag		// Write the PTE and tag into the DTB

        sll	r31, 0, r31		// stall cycle 1
        sll	r31, 0, r31		// stall cycle 2
        sll	r31, 0, r31		// stall cycle 3
        nop

// add offset for saving fpr regs
//orig	fix_impure_gpr r1
        lda	r1, 0x200(r1)		// Point to center of CPU segment

// now save the regs - F0-F31
        mf_fpcr  f0			// original

        SAVE_FPR(f0,CNS_Q_FPR+0x00,r1)
        SAVE_FPR(f1,CNS_Q_FPR+0x08,r1)
        SAVE_FPR(f2,CNS_Q_FPR+0x10,r1)
        SAVE_FPR(f3,CNS_Q_FPR+0x18,r1)
        SAVE_FPR(f4,CNS_Q_FPR+0x20,r1)
        SAVE_FPR(f5,CNS_Q_FPR+0x28,r1)
        SAVE_FPR(f6,CNS_Q_FPR+0x30,r1)
        SAVE_FPR(f7,CNS_Q_FPR+0x38,r1)
        SAVE_FPR(f8,CNS_Q_FPR+0x40,r1)
        SAVE_FPR(f9,CNS_Q_FPR+0x48,r1)
        SAVE_FPR(f10,CNS_Q_FPR+0x50,r1)
        SAVE_FPR(f11,CNS_Q_FPR+0x58,r1)
        SAVE_FPR(f12,CNS_Q_FPR+0x60,r1)
        SAVE_FPR(f13,CNS_Q_FPR+0x68,r1)
        SAVE_FPR(f14,CNS_Q_FPR+0x70,r1)
        SAVE_FPR(f15,CNS_Q_FPR+0x78,r1)
        SAVE_FPR(f16,CNS_Q_FPR+0x80,r1)
        SAVE_FPR(f17,CNS_Q_FPR+0x88,r1)
        SAVE_FPR(f18,CNS_Q_FPR+0x90,r1)
        SAVE_FPR(f19,CNS_Q_FPR+0x98,r1)
        SAVE_FPR(f20,CNS_Q_FPR+0xA0,r1)
        SAVE_FPR(f21,CNS_Q_FPR+0xA8,r1)
        SAVE_FPR(f22,CNS_Q_FPR+0xB0,r1)
        SAVE_FPR(f23,CNS_Q_FPR+0xB8,r1)
        SAVE_FPR(f24,CNS_Q_FPR+0xC0,r1)
        SAVE_FPR(f25,CNS_Q_FPR+0xC8,r1)
        SAVE_FPR(f26,CNS_Q_FPR+0xD0,r1)
        SAVE_FPR(f27,CNS_Q_FPR+0xD8,r1)
        SAVE_FPR(f28,CNS_Q_FPR+0xE0,r1)
        SAVE_FPR(f29,CNS_Q_FPR+0xE8,r1)
        SAVE_FPR(f30,CNS_Q_FPR+0xF0,r1)
        SAVE_FPR(f31,CNS_Q_FPR+0xF8,r1)

//switch impure offset from gpr to ipr---
//orig	unfix_impure_gpr	r1
//orig	fix_impure_ipr	r1
//orig	store_reg1 fpcsr, f0, r1, fpcsr=1

        SAVE_FPR(f0,CNS_Q_FPCSR,r1)	// fpcsr loaded above into f0 -- can it reach
        lda	r1, -0x200(r1)		// Restore the impure base address

// and back to gpr ---
//orig	unfix_impure_ipr	r1
//orig	fix_impure_gpr	r1

//orig	lda	r0, cns_mchksize(r31)	// get size of mchk area
//orig	store_reg1 mchkflag, r0, r1, ipr=1
//orig	mb

        lda	r1, CNS_Q_IPR(r1)	// Point to base of IPR area again
        // save this using the IPR base (it is closer) not the GRP base as they used...pb
        lda	r0, MACHINE_CHECK_SIZE(r31)	// get size of mchk area
        SAVE_SHADOW(r0,CNS_Q_MCHK,r1);
        mb

//orig	or	r31, 1, r0		// get a one
//orig	store_reg1 flag, r0, r1, ipr=1	// set dump area flag
//orig	mb

        lda	r1, -CNS_Q_IPR(r1)	// back to the base
        lda	r1, 0x200(r1)		// Point to center of CPU segment
        or	r31, 1, r0		// get a one
        SAVE_GPR(r0,CNS_Q_FLAG,r1)	// // set dump area valid flag
        mb

        // restore impure area base
//orig	unfix_impure_gpr r1
        lda	r1, -0x200(r1)		// Point to center of CPU segment

        mtpr	r31, dtb_ia		// clear the dtb
        mtpr	r31, itb_ia		// clear the itb

//orig	pvc_jsr	savsta, bsr=1, dest=1
        ret	r31, (r3)		// and back we go



// .sbttl  "PAL_RESTORE_STATE"
//
//
//	Pal_restore_state
//
//
//	register usage:
//		r1 = addr of impure area
//		r3 = return_address
//		all other regs are scratchable, as they are about to
//		be reloaded from ram.
//
//	Function:
//		All chip state restored, all SRs, FRs, PTs, IPRs
//					*** except R1, R3, PT0, PT4, PT5 ***
//
//
        ALIGN_BLOCK
pal_restore_state:

//need to restore sc_ctl,bc_ctl,bc_config??? if so, need to figure out a safe way to do so.

// map the console io area virtually
        mtpr	r31, dtbIa		// Clear all DTB entries
        srl	r1, va_s_off, r0	// Clean off byte-within-page offset
        sll	r0, pte_v_pfn, r0	// Shift to form PFN
        lda	r0, pte_m_prot(r0)	// Set all read/write enable bits
        mtpr	r0, dtbPte		// Load the PTE and set valid
        mtpr	r1, dtbTag		// Write the PTE and tag into the DTB


// map the next page too, in case impure area crosses page boundary
        lda	r4, (1<<VA_S_OFF)(r1)	// Generate address for next page
        srl	r4, va_s_off, r0	// Clean off byte-within-page offset
        sll	r0, pte_v_pfn, r0	// Shift to form PFN
        lda	r0, pte_m_prot(r0)	// Set all read/write enable bits
        mtpr	r0, dtbPte		// Load the PTE and set valid
        mtpr	r4, dtbTag		// Write the PTE and tag into the DTB

// save all floating regs
        mfpr	r0, icsr		// Get current ICSR
        bis	zero, 1, r2		// Get a '1'
        or	r2, (1<<(icsr_v_sde-icsr_v_fpe)), r2
        sll	r2, icsr_v_fpe, r2	// Shift bits into position
        bis	r2, r2, r0		// Set ICSR<SDE> and ICSR<FPE>
        mtpr	r0, icsr		// Update the chip

        mfpr	r31, pt0		// FPE bubble cycle 1		//orig
        mfpr	r31, pt0		// FPE bubble cycle 2		//orig
        mfpr	r31, pt0		// FPE bubble cycle 3		//orig

//orig	fix_impure_ipr r1
//orig	restore_reg1 fpcsr, f0, r1, fpcsr=1
//orig	mt_fpcr  f0
//orig
//orig	unfix_impure_ipr r1
//orig	fix_impure_gpr r1		// adjust impure pointer offset for gpr access
        lda	r1, 200(r1)	// Point to base of IPR area again
        RESTORE_FPR(f0,CNS_Q_FPCSR,r1)		// can it reach?? pb
        mt_fpcr  f0			// original

        lda	r1, 0x200(r1)		// point to center of CPU segment

// restore all floating regs
        RESTORE_FPR(f0,CNS_Q_FPR+0x00,r1)
        RESTORE_FPR(f1,CNS_Q_FPR+0x08,r1)
        RESTORE_FPR(f2,CNS_Q_FPR+0x10,r1)
        RESTORE_FPR(f3,CNS_Q_FPR+0x18,r1)
        RESTORE_FPR(f4,CNS_Q_FPR+0x20,r1)
        RESTORE_FPR(f5,CNS_Q_FPR+0x28,r1)
        RESTORE_FPR(f6,CNS_Q_FPR+0x30,r1)
        RESTORE_FPR(f7,CNS_Q_FPR+0x38,r1)
        RESTORE_FPR(f8,CNS_Q_FPR+0x40,r1)
        RESTORE_FPR(f9,CNS_Q_FPR+0x48,r1)
        RESTORE_FPR(f10,CNS_Q_FPR+0x50,r1)
        RESTORE_FPR(f11,CNS_Q_FPR+0x58,r1)
        RESTORE_FPR(f12,CNS_Q_FPR+0x60,r1)
        RESTORE_FPR(f13,CNS_Q_FPR+0x68,r1)
        RESTORE_FPR(f14,CNS_Q_FPR+0x70,r1)
        RESTORE_FPR(f15,CNS_Q_FPR+0x78,r1)
        RESTORE_FPR(f16,CNS_Q_FPR+0x80,r1)
        RESTORE_FPR(f17,CNS_Q_FPR+0x88,r1)
        RESTORE_FPR(f18,CNS_Q_FPR+0x90,r1)
        RESTORE_FPR(f19,CNS_Q_FPR+0x98,r1)
        RESTORE_FPR(f20,CNS_Q_FPR+0xA0,r1)
        RESTORE_FPR(f21,CNS_Q_FPR+0xA8,r1)
        RESTORE_FPR(f22,CNS_Q_FPR+0xB0,r1)
        RESTORE_FPR(f23,CNS_Q_FPR+0xB8,r1)
        RESTORE_FPR(f24,CNS_Q_FPR+0xC0,r1)
        RESTORE_FPR(f25,CNS_Q_FPR+0xC8,r1)
        RESTORE_FPR(f26,CNS_Q_FPR+0xD0,r1)
        RESTORE_FPR(f27,CNS_Q_FPR+0xD8,r1)
        RESTORE_FPR(f28,CNS_Q_FPR+0xE0,r1)
        RESTORE_FPR(f29,CNS_Q_FPR+0xE8,r1)
        RESTORE_FPR(f30,CNS_Q_FPR+0xF0,r1)
        RESTORE_FPR(f31,CNS_Q_FPR+0xF8,r1)

// switch impure pointer from gpr to ipr area --
//orig	unfix_impure_gpr r1
//orig	fix_impure_ipr r1
        lda	r1, -0x200(r1)		// Restore base address of impure area.
        lda	r1, CNS_Q_IPR(r1)	// Point to base of IPR area.

// restore all pal regs
        RESTORE_IPR(pt0,CNS_Q_PT+0x00,r1)		// the osf code didn't save/restore palTemp 0 ?? pboyle
        RESTORE_IPR(pt1,CNS_Q_PT+0x08,r1)
        RESTORE_IPR(pt2,CNS_Q_PT+0x10,r1)
        RESTORE_IPR(pt3,CNS_Q_PT+0x18,r1)
        RESTORE_IPR(pt4,CNS_Q_PT+0x20,r1)
        RESTORE_IPR(pt5,CNS_Q_PT+0x28,r1)
        RESTORE_IPR(pt6,CNS_Q_PT+0x30,r1)
        RESTORE_IPR(pt7,CNS_Q_PT+0x38,r1)
        RESTORE_IPR(pt8,CNS_Q_PT+0x40,r1)
        RESTORE_IPR(pt9,CNS_Q_PT+0x48,r1)
        RESTORE_IPR(pt10,CNS_Q_PT+0x50,r1)
        RESTORE_IPR(pt11,CNS_Q_PT+0x58,r1)
        RESTORE_IPR(pt12,CNS_Q_PT+0x60,r1)
        RESTORE_IPR(pt13,CNS_Q_PT+0x68,r1)
        RESTORE_IPR(pt14,CNS_Q_PT+0x70,r1)
        RESTORE_IPR(pt15,CNS_Q_PT+0x78,r1)
        RESTORE_IPR(pt16,CNS_Q_PT+0x80,r1)
        RESTORE_IPR(pt17,CNS_Q_PT+0x88,r1)
        RESTORE_IPR(pt18,CNS_Q_PT+0x90,r1)
        RESTORE_IPR(pt19,CNS_Q_PT+0x98,r1)
        RESTORE_IPR(pt20,CNS_Q_PT+0xA0,r1)
        RESTORE_IPR(pt21,CNS_Q_PT+0xA8,r1)
        RESTORE_IPR(pt22,CNS_Q_PT+0xB0,r1)
        RESTORE_IPR(pt23,CNS_Q_PT+0xB8,r1)


//orig	restore_reg exc_addr,	ipr=1	// restore ipr
//orig	restore_reg pal_base,	ipr=1	// restore ipr
//orig	restore_reg ipl,	ipr=1	// restore ipr
//orig	restore_reg ps,		ipr=1	// restore ipr
//orig	mtpr	r0, dtb_cm		// set current mode in mbox too
//orig	restore_reg itb_asn,	ipr=1
//orig	srl	r0, itb_asn_v_asn, r0
//orig	sll	r0, dtb_asn_v_asn, r0
//orig	mtpr	r0, dtb_asn		// set ASN in Mbox too
//orig	restore_reg ivptbr,	ipr=1
//orig	mtpr	r0, mvptbr			// use ivptbr value to restore mvptbr
//orig	restore_reg mcsr,	ipr=1
//orig	restore_reg aster,	ipr=1
//orig	restore_reg astrr,	ipr=1
//orig	restore_reg sirr,	ipr=1
//orig	restore_reg maf_mode, 	ipr=1		// no mbox instruction for 3 cycles
//orig	mfpr	r31, pt0			// (may issue with mt maf_mode)
//orig	mfpr	r31, pt0			// bubble cycle 1
//orig	mfpr	r31, pt0                        // bubble cycle 2
//orig	mfpr	r31, pt0                        // bubble cycle 3
//orig	mfpr	r31, pt0			// (may issue with following ld)

        // r0 gets the value of RESTORE_IPR in the macro and this code uses this side effect (gag)
        RESTORE_IPR(excAddr,CNS_Q_EXC_ADDR,r1)
        RESTORE_IPR(palBase,CNS_Q_PAL_BASE,r1)
        RESTORE_IPR(ipl,CNS_Q_IPL,r1)
        RESTORE_IPR(ips,CNS_Q_IPS,r1)
        mtpr	r0, dtbCm			// Set Mbox current mode too.
        RESTORE_IPR(itbAsn,CNS_Q_ITB_ASN,r1)
        srl	r0, 4, r0
        sll	r0, 57, r0
        mtpr	r0, dtbAsn			// Set Mbox ASN too
        RESTORE_IPR(iVptBr,CNS_Q_IVPTBR,r1)
        mtpr	r0, mVptBr			// Set Mbox VptBr too
        RESTORE_IPR(mcsr,CNS_Q_MCSR,r1)
        RESTORE_IPR(aster,CNS_Q_ASTER,r1)
        RESTORE_IPR(astrr,CNS_Q_ASTRR,r1)
        RESTORE_IPR(sirr,CNS_Q_SIRR,r1)
        RESTORE_IPR(mafMode,CNS_Q_MAF_MODE,r1)
        STALL
        STALL
        STALL
        STALL
        STALL


        // restore all integer shadow regs
        RESTORE_SHADOW( r8,CNS_Q_SHADOW+0x00,r1)	// also called p0...p7 in the Hudson code
        RESTORE_SHADOW( r9,CNS_Q_SHADOW+0x08,r1)
        RESTORE_SHADOW(r10,CNS_Q_SHADOW+0x10,r1)
        RESTORE_SHADOW(r11,CNS_Q_SHADOW+0x18,r1)
        RESTORE_SHADOW(r12,CNS_Q_SHADOW+0x20,r1)
        RESTORE_SHADOW(r13,CNS_Q_SHADOW+0x28,r1)
        RESTORE_SHADOW(r14,CNS_Q_SHADOW+0x30,r1)
        RESTORE_SHADOW(r25,CNS_Q_SHADOW+0x38,r1)
        RESTORE_IPR(dcMode,CNS_Q_DC_MODE,r1)

        //
        // Get out of shadow mode
        //

        mfpr	r31, pt0		// pad last load to icsr write (in case of replay, icsr will be written anyway)
        mfpr	r31, pt0		// ""
        mfpr	r0, icsr		// Get icsr
        ldah	r2,  (1<<(ICSR_V_SDE-16))(r31)	// Get a one in SHADOW_ENABLE bit location
        bic	r0, r2, r2		// ICSR with SDE clear
        mtpr	r2, icsr		// Turn off SDE - no palshadow rd/wr for 3 bubble cycles

        mfpr	r31, pt0		// SDE bubble cycle 1
        mfpr	r31, pt0		// SDE bubble cycle 2
        mfpr	r31, pt0		// SDE bubble cycle 3
        nop

// switch impure pointer from ipr to gpr area --
//orig	unfix_impure_ipr	r1
//orig	fix_impure_gpr	r1

// Restore GPRs (r0, r2 are restored later, r1 and r3 are trashed) ...

        lda	r1, -CNS_Q_IPR(r1)	// Restore base address of impure area
        lda	r1, 0x200(r1)		// Point to center of CPU segment

        // restore all integer regs
        RESTORE_GPR(r4,CNS_Q_GPR+0x20,r1)
        RESTORE_GPR(r5,CNS_Q_GPR+0x28,r1)
        RESTORE_GPR(r6,CNS_Q_GPR+0x30,r1)
        RESTORE_GPR(r7,CNS_Q_GPR+0x38,r1)
        RESTORE_GPR(r8,CNS_Q_GPR+0x40,r1)
        RESTORE_GPR(r9,CNS_Q_GPR+0x48,r1)
        RESTORE_GPR(r10,CNS_Q_GPR+0x50,r1)
        RESTORE_GPR(r11,CNS_Q_GPR+0x58,r1)
        RESTORE_GPR(r12,CNS_Q_GPR+0x60,r1)
        RESTORE_GPR(r13,CNS_Q_GPR+0x68,r1)
        RESTORE_GPR(r14,CNS_Q_GPR+0x70,r1)
        RESTORE_GPR(r15,CNS_Q_GPR+0x78,r1)
        RESTORE_GPR(r16,CNS_Q_GPR+0x80,r1)
        RESTORE_GPR(r17,CNS_Q_GPR+0x88,r1)
        RESTORE_GPR(r18,CNS_Q_GPR+0x90,r1)
        RESTORE_GPR(r19,CNS_Q_GPR+0x98,r1)
        RESTORE_GPR(r20,CNS_Q_GPR+0xA0,r1)
        RESTORE_GPR(r21,CNS_Q_GPR+0xA8,r1)
        RESTORE_GPR(r22,CNS_Q_GPR+0xB0,r1)
        RESTORE_GPR(r23,CNS_Q_GPR+0xB8,r1)
        RESTORE_GPR(r24,CNS_Q_GPR+0xC0,r1)
        RESTORE_GPR(r25,CNS_Q_GPR+0xC8,r1)
        RESTORE_GPR(r26,CNS_Q_GPR+0xD0,r1)
        RESTORE_GPR(r27,CNS_Q_GPR+0xD8,r1)
        RESTORE_GPR(r28,CNS_Q_GPR+0xE0,r1)
        RESTORE_GPR(r29,CNS_Q_GPR+0xE8,r1)
        RESTORE_GPR(r30,CNS_Q_GPR+0xF0,r1)
        RESTORE_GPR(r31,CNS_Q_GPR+0xF8,r1)

//orig	// switch impure pointer from gpr to ipr area --
//orig	unfix_impure_gpr	r1
//orig	fix_impure_ipr	r1
//orig	restore_reg icsr, ipr=1		// restore original icsr- 4 bubbles to hw_rei

        lda	t0, -0x200(t0)		// Restore base address of impure area.
        lda	t0, CNS_Q_IPR(t0)	// Point to base of IPR area again.
        RESTORE_IPR(icsr,CNS_Q_ICSR,r1)

//orig	// and back again --
//orig	unfix_impure_ipr	r1
//orig	fix_impure_gpr	r1
//orig	store_reg1 	flag, r31, r1, ipr=1 // clear dump area valid flag
//orig	mb

        lda	t0, -CNS_Q_IPR(t0)	// Back to base of impure area again,
        lda	t0, 0x200(t0)		// and back to center of CPU segment
        SAVE_GPR(r31,CNS_Q_FLAG,r1)	// Clear the dump area valid flag
        mb

//orig	// and back we go
//orig//	restore_reg 3
//orig	restore_reg 2
//orig//	restore_reg 1
//orig	restore_reg 0
//orig	// restore impure area base
//orig	unfix_impure_gpr r1

        RESTORE_GPR(r2,CNS_Q_GPR+0x10,r1)
        RESTORE_GPR(r0,CNS_Q_GPR+0x00,r1)
        lda	r1, -0x200(r1)		// Restore impure base address

        mfpr	r31, pt0		// stall for ldq_p above		//orig

        mtpr	r31, dtb_ia		// clear the tb			//orig
        mtpr	r31, itb_ia		// clear the itb		//orig

//orig	pvc_jsr	rststa, bsr=1, dest=1
        ret	r31, (r3)		// back we go			//orig


//
// pal_pal_bug_check -- code has found a bugcheck situation.
//	Set things up and join common machine check flow.
//
// Input:
//	r14 	- exc_addr
//
// On exit:
//	pt0	- saved r0
//	pt1	- saved	r1
//	pt4	- saved r4
//	pt5	- saved r5
//	pt6	- saved r6
//	pt10	- saved exc_addr
//       pt_misc<47:32> - mchk code
//       pt_misc<31:16> - scb vector
//	r14	- base of Cbox IPRs in IO space
//	MCES<mchk> is set
//

                ALIGN_BLOCK
        .globl pal_pal_bug_check_from_int
pal_pal_bug_check_from_int:
        DEBUGSTORE(0x79)
//simos	DEBUG_EXC_ADDR()
        DEBUGSTORE(0x20)
//simos	bsr	r25, put_hex
        lda	r25, mchk_c_bugcheck(r31)
        addq	r25, 1, r25			// set flag indicating we came from interrupt and stack is already pushed
        br	r31, pal_pal_mchk
        nop

pal_pal_bug_check:
        lda     r25, mchk_c_bugcheck(r31)

pal_pal_mchk:
        sll	r25, 32, r25			// Move mchk code to position

        mtpr	r14, pt10			// Stash exc_addr
        mtpr	r14, exc_addr

        mfpr	r12, pt_misc			// Get MCES and scratch
        zap	r12, 0x3c, r12

        or	r12, r25, r12			// Combine mchk code
        lda	r25, scb_v_procmchk(r31)	// Get SCB vector

        sll	r25, 16, r25			// Move SCBv to position
        or	r12, r25, r25			// Combine SCBv

        mtpr	r0, pt0				// Stash for scratch
        bis	r25, mces_m_mchk, r25	// Set MCES<MCHK> bit

        mtpr	r25, pt_misc			// Save mchk code!scbv!whami!mces
        ldah	r14, 0xfff0(r31)

        mtpr	r1, pt1				// Stash for scratch
        zap	r14, 0xE0, r14			// Get Cbox IPR base

        mtpr	r4, pt4
        mtpr	r5, pt5

        mtpr	r6, pt6
        blbs	r12, sys_double_machine_check   // MCHK halt if double machine check

        br	r31, sys_mchk_collect_iprs	// Join common machine check flow



//	align_to_call_pal_section
//      Align to address of first call_pal entry point - 2000

//
// HALT	- PALcode for HALT instruction
//
// Entry:
//	Vectored into via hardware PALcode instruction dispatch.
//
// Function:
//	GO to console code
//
//

        .text	1
//	. = 0x2000
       CALL_PAL_PRIV(PAL_HALT_ENTRY)
call_pal_halt:
        mfpr	r31, pt0		// Pad exc_addr read
        mfpr	r31, pt0

        mfpr	r12, exc_addr		// get PC
        subq	r12, 4, r12		// Point to the HALT

        mtpr	r12, exc_addr
        mtpr	r0, pt0

//orig	pvc_jsr updpcb, bsr=1
        bsr    r0, pal_update_pcb      	// update the pcb
        lda    r0, hlt_c_sw_halt(r31)  	// set halt code to sw halt
        br     r31, sys_enter_console  	// enter the console

//
// CFLUSH - PALcode for CFLUSH instruction
//
// Entry:
//	Vectored into via hardware PALcode instruction dispatch.
//
//	R16 - contains the PFN of the page to be flushed
//
// Function:
//	Flush all Dstream caches of 1 entire page
//	The CFLUSH routine is in the system specific module.
//
//

        CALL_PAL_PRIV(PAL_CFLUSH_ENTRY)
Call_Pal_Cflush:
        br	r31, sys_cflush

//
// DRAINA	- PALcode for DRAINA instruction
//
// Entry:
//	Vectored into via hardware PALcode instruction dispatch.
//	Implicit TRAPB performed by hardware.
//
// Function:
//	Stall instruction issue until all prior instructions are guaranteed to
//	complete without incurring aborts.  For the EV5 implementation, this
//	means waiting until all pending DREADS are returned.
//
//

        CALL_PAL_PRIV(PAL_DRAINA_ENTRY)
Call_Pal_Draina:
        ldah	r14, 0x100(r31)		// Init counter.  Value?
        nop

DRAINA_LOOP:
        subq	r14, 1, r14		// Decrement counter
        mfpr	r13, ev5__maf_mode	// Fetch status bit

        srl	r13, maf_mode_v_dread_pending, r13
        ble	r14, DRAINA_LOOP_TOO_LONG

        nop
        blbs	r13, DRAINA_LOOP	// Wait until all DREADS clear

        hw_rei

DRAINA_LOOP_TOO_LONG:
        br	r31, call_pal_halt

// CALL_PAL OPCDECs

        CALL_PAL_PRIV(0x0003)
CallPal_OpcDec03:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_PRIV(0x0004)
CallPal_OpcDec04:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_PRIV(0x0005)
CallPal_OpcDec05:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_PRIV(0x0006)
CallPal_OpcDec06:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_PRIV(0x0007)
CallPal_OpcDec07:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_PRIV(0x0008)
CallPal_OpcDec08:
        br	r31, osfpal_calpal_opcdec

//
// CSERVE - PALcode for CSERVE instruction
//
// Entry:
//	Vectored into via hardware PALcode instruction dispatch.
//
// Function:
//       Various functions for private use of console software
//
//       option selector in r0
//       arguments in r16....
//	The CSERVE routine is in the system specific module.
//
//

        CALL_PAL_PRIV(PAL_CSERVE_ENTRY)
Call_Pal_Cserve:
        br	r31, sys_cserve

//
// swppal - PALcode for swppal instruction
//
// Entry:
//	Vectored into via hardware PALcode instruction dispatch.
//       Vectored into via hardware PALcode instruction dispatch.
//               R16 contains the new PAL identifier
//               R17:R21 contain implementation-specific entry parameters
//
//               R0  receives status:
//                0 success (PAL was switched)
//                1 unknown PAL variant
//                2 known PAL variant, but PAL not loaded
//
//
// Function:
//       Swap control to another PAL.
//

        CALL_PAL_PRIV(PAL_SWPPAL_ENTRY)
Call_Pal_Swppal:
        cmpule	r16, 255, r0		// see if a kibble was passed
        cmoveq  r16, r16, r0            // if r16=0 then a valid address (ECO 59)

        or	r16, r31, r3		// set r3 incase this is a address
        blbc	r0, swppal_cont		// nope, try it as an address

        cmpeq	r16, 2, r0		// is it our friend OSF?
        blbc	r0, swppal_fail		// nope, don't know this fellow

        br	r2, CALL_PAL_SWPPAL_10_			// tis our buddy OSF

//	.global	osfpal_hw_entry_reset
//	.weak	osfpal_hw_entry_reset
//	.long	<osfpal_hw_entry_reset-pal_start>
//orig	halt				// don't know how to get the address here - kludge ok, load pal at 0
        .long	0			// ?? hack upon hack...pb

CALL_PAL_SWPPAL_10_: 	ldl_p	r3, 0(r2)		// fetch target addr
//	ble	r3, swppal_fail		; if OSF not linked in say not loaded.
        mfpr	r2, pal_base		// fetch pal base

        addq	r2, r3, r3		// add pal base
        lda	r2, 0x3FFF(r31)		// get pal base checker mask

        and	r3, r2, r2		// any funky bits set?
        cmpeq	r2, 0, r0		//

        blbc	r0, swppal_fail		// return unknown if bad bit set.
        br	r31, swppal_cont

// .sbttl	"CALL_PAL OPCDECs"

        CALL_PAL_PRIV(0x000B)
CallPal_OpcDec0B:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_PRIV(0x000C)
CallPal_OpcDec0C:
        br	r31, osfpal_calpal_opcdec

//
// wripir - PALcode for wripir instruction
//
// Entry:
//	Vectored into via hardware PALcode instruction dispatch.
//	r16 = processor number to interrupt
//
// Function:
//	IPIR	<- R16
//	Handled in system-specific code
//
// Exit:
//	interprocessor interrupt is recorded on the target processor
//	and is initiated when the proper enabling conditions are present.
//

        CALL_PAL_PRIV(PAL_WRIPIR_ENTRY)
Call_Pal_Wrpir:
        br	r31, sys_wripir

// .sbttl	"CALL_PAL OPCDECs"

        CALL_PAL_PRIV(0x000E)
CallPal_OpcDec0E:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_PRIV(0x000F)
CallPal_OpcDec0F:
        br	r31, osfpal_calpal_opcdec

//
// rdmces - PALcode for rdmces instruction
//
// Entry:
//	Vectored into via hardware PALcode instruction dispatch.
//
// Function:
//	R0 <- ZEXT(MCES)
//

        CALL_PAL_PRIV(PAL_RDMCES_ENTRY)
Call_Pal_Rdmces:
        mfpr	r0, pt_mces		// Read from PALtemp
        and	r0, mces_m_all, r0	// Clear other bits

        hw_rei

//
// wrmces - PALcode for wrmces instruction
//
// Entry:
//	Vectored into via hardware PALcode instruction dispatch.
//
// Function:
//	If {R16<0> EQ 1} then MCES<0> <- 0 (MCHK)
//	If {R16<1> EQ 1} then MCES<1> <- 0 (SCE)
//	If {R16<2> EQ 1} then MCES<2> <- 0 (PCE)
//	MCES<3> <- R16<3>		   (DPC)
//	MCES<4> <- R16<4>		   (DSC)
//
//

        CALL_PAL_PRIV(PAL_WRMCES_ENTRY)
Call_Pal_Wrmces:
        and	r16, ((1<<mces_v_mchk) | (1<<mces_v_sce) | (1<<mces_v_pce)), r13	// Isolate MCHK, SCE, PCE
        mfpr	r14, pt_mces		// Get current value

        ornot	r31, r13, r13		// Flip all the bits
        and	r16, ((1<<mces_v_dpc) | (1<<mces_v_dsc)), r17

        and	r14, r13, r1		// Update MCHK, SCE, PCE
        bic	r1, ((1<<mces_v_dpc) | (1<<mces_v_dsc)), r1	// Clear old DPC, DSC

        or	r1, r17, r1		// Update DPC and DSC
        mtpr	r1, pt_mces		// Write MCES back

        nop				// Pad to fix PT write->read restriction

        nop
        hw_rei



// CALL_PAL OPCDECs

        CALL_PAL_PRIV(0x0012)
CallPal_OpcDec12:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_PRIV(0x0013)
CallPal_OpcDec13:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_PRIV(0x0014)
CallPal_OpcDec14:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_PRIV(0x0015)
CallPal_OpcDec15:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_PRIV(0x0016)
CallPal_OpcDec16:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_PRIV(0x0017)
CallPal_OpcDec17:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_PRIV(0x0018)
CallPal_OpcDec18:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_PRIV(0x0019)
CallPal_OpcDec19:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_PRIV(0x001A)
CallPal_OpcDec1A:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_PRIV(0x001B)
CallPal_OpcDec1B:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_PRIV(0x001C)
CallPal_OpcDec1C:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_PRIV(0x001D)
CallPal_OpcDec1D:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_PRIV(0x001E)
CallPal_OpcDec1E:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_PRIV(0x001F)
CallPal_OpcDec1F:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_PRIV(0x0020)
CallPal_OpcDec20:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_PRIV(0x0021)
CallPal_OpcDec21:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_PRIV(0x0022)
CallPal_OpcDec22:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_PRIV(0x0023)
CallPal_OpcDec23:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_PRIV(0x0024)
CallPal_OpcDec24:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_PRIV(0x0025)
CallPal_OpcDec25:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_PRIV(0x0026)
CallPal_OpcDec26:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_PRIV(0x0027)
CallPal_OpcDec27:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_PRIV(0x0028)
CallPal_OpcDec28:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_PRIV(0x0029)
CallPal_OpcDec29:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_PRIV(0x002A)
CallPal_OpcDec2A:
        br	r31, osfpal_calpal_opcdec

//
// wrfen - PALcode for wrfen instruction
//
// Entry:
//	Vectored into via hardware PALcode instruction dispatch.
//
// Function:
//	a0<0> -> ICSR<FPE>
//	Store new FEN in PCB
//	Final value of t0 (r1), t8..t10 (r22..r24) and a0 (r16)
//          are UNPREDICTABLE
//
// Issue: What about pending FP loads when FEN goes from on->off????
//

        CALL_PAL_PRIV(PAL_WRFEN_ENTRY)
Call_Pal_Wrfen:
        or	r31, 1, r13		// Get a one
        mfpr	r1, ev5__icsr		// Get current FPE

        sll	r13, icsr_v_fpe, r13	// shift 1 to icsr<fpe> spot, e0
        and	r16, 1, r16		// clean new fen

        sll	r16, icsr_v_fpe, r12	// shift new fen to correct bit position
        bic	r1, r13, r1		// zero icsr<fpe>

        or	r1, r12, r1		// Or new FEN into ICSR
        mfpr	r12, pt_pcbb		// Get PCBB - E1

        mtpr	r1, ev5__icsr		// write new ICSR.  3 Bubble cycles to HW_REI
        stl_p	r16, osfpcb_q_fen(r12)	// Store FEN in PCB.

        mfpr	r31, pt0		// Pad ICSR<FPE> write.
        mfpr	r31, pt0

        mfpr	r31, pt0
//	pvc_violate 	225		// cuz PVC can't distinguish which bits changed
        hw_rei


        CALL_PAL_PRIV(0x002C)
CallPal_OpcDec2C:
        br	r31, osfpal_calpal_opcdec

//
// wrvptpr - PALcode for wrvptpr instruction
//
// Entry:
//	Vectored into via hardware PALcode instruction dispatch.
//
// Function:
//	vptptr <- a0 (r16)
//

        CALL_PAL_PRIV(PAL_WRVPTPTR_ENTRY)
Call_Pal_Wrvptptr:
        mtpr    r16, ev5__mvptbr                // Load Mbox copy
        mtpr    r16, ev5__ivptbr                // Load Ibox copy
        nop                                     // Pad IPR write
        nop
        hw_rei

        CALL_PAL_PRIV(0x002E)
CallPal_OpcDec2E:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_PRIV(0x002F)
CallPal_OpcDec2F:
        br	r31, osfpal_calpal_opcdec


//
// swpctx - PALcode for swpctx instruction
//
// Entry:
//       hardware dispatch via callPal instruction
//       R16 -> new pcb
//
// Function:
//       dynamic state moved to old pcb
//       new state loaded from new pcb
//       pcbb pointer set
//       old pcbb returned in R0
//
//  Note: need to add perf monitor stuff
//

        CALL_PAL_PRIV(PAL_SWPCTX_ENTRY)
Call_Pal_Swpctx:
        rpcc	r13			// get cyccounter
        mfpr	r0, pt_pcbb		// get pcbb

        ldq_p	r22, osfpcb_q_fen(r16)	// get new fen/pme
        ldq_p	r23, osfpcb_l_cc(r16)	// get new asn

        srl	r13, 32, r25		// move offset
        mfpr	r24, pt_usp		// get usp

        stq_p	r30, osfpcb_q_ksp(r0)	// store old ksp
//	pvc_violate 379			// stq_p can't trap except replay.  only problem if mf same ipr in same shadow.
        mtpr	r16, pt_pcbb		// set new pcbb

        stq_p	r24, osfpcb_q_usp(r0)	// store usp
        addl	r13, r25, r25		// merge for new time

        stl_p	r25, osfpcb_l_cc(r0)	// save time
        ldah	r24, (1<<(icsr_v_fpe-16))(r31)

        and	r22, 1, r12		// isolate fen
        mfpr	r25, icsr		// get current icsr

        lda	r24, (1<<icsr_v_pmp)(r24)
        br	r31, swpctx_cont

//
// wrval - PALcode for wrval instruction
//
// Entry:
//	Vectored into via hardware PALcode instruction dispatch.
//
// Function:
//	sysvalue <- a0 (r16)
//

        CALL_PAL_PRIV(PAL_WRVAL_ENTRY)
Call_Pal_Wrval:
        nop
        mtpr	r16, pt_sysval		// Pad paltemp write
        nop
        nop
        hw_rei

//
// rdval - PALcode for rdval instruction
//
// Entry:
//	Vectored into via hardware PALcode instruction dispatch.
//
// Function:
//	v0 (r0) <- sysvalue
//

        CALL_PAL_PRIV(PAL_RDVAL_ENTRY)
Call_Pal_Rdval:
        nop
        mfpr	r0, pt_sysval
        nop
        hw_rei

//
// tbi - PALcode for tbi instruction
//
// Entry:
//	Vectored into via hardware PALcode instruction dispatch.
//
// Function:
//	TB invalidate
//       r16/a0 = TBI type
//       r17/a1 = Va for TBISx instructions
//

        CALL_PAL_PRIV(PAL_TBI_ENTRY)
Call_Pal_Tbi:
        addq	r16, 2, r16			// change range to 0-2
        br	r23, CALL_PAL_tbi_10_		// get our address

CALL_PAL_tbi_10_: cmpult	r16, 6, r22		// see if in range
        lda	r23, tbi_tbl-CALL_PAL_tbi_10_(r23)	// set base to start of table
        sll	r16, 4, r16		// * 16
        blbc	r22, CALL_PAL_tbi_30_		// go rei, if not

        addq	r23, r16, r23		// addr of our code
//orig	pvc_jsr	tbi
        jmp	r31, (r23)		// and go do it

CALL_PAL_tbi_30_:
        hw_rei
        nop

//
// wrent - PALcode for wrent instruction
//
// Entry:
//	Vectored into via hardware PALcode instruction dispatch.
//
// Function:
//	Update ent* in paltemps
//       r16/a0 = Address of entry routine
//       r17/a1 = Entry Number 0..5
//
//       r22, r23 trashed
//

        CALL_PAL_PRIV(PAL_WRENT_ENTRY)
Call_Pal_Wrent:
        cmpult	r17, 6, r22			// see if in range
        br	r23, CALL_PAL_wrent_10_		// get our address

CALL_PAL_wrent_10_:	bic	r16, 3, r16	// clean pc
        blbc	r22, CALL_PAL_wrent_30_		// go rei, if not in range

        lda	r23, wrent_tbl-CALL_PAL_wrent_10_(r23)	// set base to start of table
        sll	r17, 4, r17				// *16

        addq  	r17, r23, r23		// Get address in table
//orig	pvc_jsr	wrent
        jmp	r31, (r23)		// and go do it

CALL_PAL_wrent_30_:
        hw_rei				// out of range, just return

//
// swpipl - PALcode for swpipl instruction
//
// Entry:
//	Vectored into via hardware PALcode instruction dispatch.
//
// Function:
//	v0 (r0)  <- PS<IPL>
//	PS<IPL>  <- a0<2:0>  (r16)
//
//	t8 (r22) is scratch
//

        CALL_PAL_PRIV(PAL_SWPIPL_ENTRY)
Call_Pal_Swpipl:
        and	r16, osfps_m_ipl, r16	// clean New ipl
        mfpr	r22, pt_intmask		// get int mask

        extbl	r22, r16, r22		// get mask for this ipl
        bis	r11, r31, r0		// return old ipl

        bis	r16, r31, r11		// set new ps
        mtpr	r22, ev5__ipl		// set new mask

        mfpr	r31, pt0		// pad ipl write
        mfpr	r31, pt0		// pad ipl write

        hw_rei				// back

//
// rdps - PALcode for rdps instruction
//
// Entry:
//	Vectored into via hardware PALcode instruction dispatch.
//
// Function:
//	v0 (r0) <- ps
//

        CALL_PAL_PRIV(PAL_RDPS_ENTRY)
Call_Pal_Rdps:
        bis	r11, r31, r0		// Fetch PALshadow PS
        nop				// Must be 2 cycles long
        hw_rei

//
// wrkgp - PALcode for wrkgp instruction
//
// Entry:
//	Vectored into via hardware PALcode instruction dispatch.
//
// Function:
//	kgp <- a0 (r16)
//

        CALL_PAL_PRIV(PAL_WRKGP_ENTRY)
Call_Pal_Wrkgp:
        nop
        mtpr	r16, pt_kgp
        nop				// Pad for pt write->read restriction
        nop
        hw_rei

//
// wrusp - PALcode for wrusp instruction
//
// Entry:
//	Vectored into via hardware PALcode instruction dispatch.
//
// Function:
//       usp <- a0 (r16)
//

        CALL_PAL_PRIV(PAL_WRUSP_ENTRY)
Call_Pal_Wrusp:
        nop
        mtpr	r16, pt_usp
        nop				// Pad possible pt write->read restriction
        nop
        hw_rei

//
// wrperfmon - PALcode for wrperfmon instruction
//
// Entry:
//	Vectored into via hardware PALcode instruction dispatch.
//
//
// Function:
//	Various control functions for the onchip performance counters
//
//	option selector in r16
//	option argument in r17
//	returned status in r0
//
//
//	r16 = 0	Disable performance monitoring for one or more cpu's
//	  r17 = 0		disable no counters
//	  r17 = bitmask		disable counters specified in bit mask (1=disable)
//
//	r16 = 1	Enable performance monitoring for one or more cpu's
//	  r17 = 0		enable no counters
//	  r17 = bitmask		enable counters specified in bit mask (1=enable)
//
//	r16 = 2	Mux select for one or more cpu's
//	  r17 = Mux selection (cpu specific)
//    		<24:19>  	 bc_ctl<pm_mux_sel> field (see spec)
//		<31>,<7:4>,<3:0> pmctr <sel0>,<sel1>,<sel2> fields (see spec)
//
//	r16 = 3	Options
//	  r17 = (cpu specific)
//		<0> = 0 	log all processes
//		<0> = 1		log only selected processes
//		<30,9,8> 		mode select - ku,kp,kk
//
//	r16 = 4	Interrupt frequency select
//	  r17 = (cpu specific)	indicates interrupt frequencies desired for each
//				counter, with "zero interrupts" being an option
//				frequency info in r17 bits as defined by PMCTR_CTL<FRQx> below
//
//	r16 = 5	Read Counters
//	  r17 = na
//	  r0  = value (same format as ev5 pmctr)
//	        <0> = 0		Read failed
//	        <0> = 1		Read succeeded
//
//	r16 = 6	Write Counters
//	  r17 = value (same format as ev5 pmctr; all counters written simultaneously)
//
//	r16 = 7	Enable performance monitoring for one or more cpu's and reset counter to 0
//	  r17 = 0		enable no counters
//	  r17 = bitmask		enable & clear counters specified in bit mask (1=enable & clear)
//
//=============================================================================
//Assumptions:
//PMCTR_CTL:
//
//       <15:14>         CTL0 -- encoded frequency select and enable - CTR0
//       <13:12>         CTL1 --			"		   - CTR1
//       <11:10>         CTL2 --			"		   - CTR2
//
//       <9:8>           FRQ0 -- frequency select for CTR0 (no enable info)
//       <7:6>           FRQ1 -- frequency select for CTR1
//       <5:4>           FRQ2 -- frequency select for CTR2
//
//       <0>		all vs. select processes (0=all,1=select)
//
//     where
//	FRQx<1:0>
//	     0 1	disable interrupt
//	     1 0	frequency = 65536 (16384 for ctr2)
//	     1 1	frequency = 256
//	note:  FRQx<1:0> = 00 will keep counters from ever being enabled.
//
//=============================================================================
//
        CALL_PAL_PRIV(0x0039)
// unsupported in Hudson code .. pboyle Nov/95
CALL_PAL_Wrperfmon:
        // "real" performance monitoring code
        cmpeq	r16, 1, r0		// check for enable
        bne	r0, perfmon_en		// br if requested to enable

        cmpeq	r16, 2, r0		// check for mux ctl
        bne	r0, perfmon_muxctl	// br if request to set mux controls

        cmpeq	r16, 3, r0		// check for options
        bne	r0, perfmon_ctl		// br if request to set options

        cmpeq	r16, 4, r0		// check for interrupt frequency select
        bne	r0, perfmon_freq	// br if request to change frequency select

        cmpeq	r16, 5, r0		// check for counter read request
        bne	r0, perfmon_rd		// br if request to read counters

        cmpeq	r16, 6, r0		// check for counter write request
        bne	r0, perfmon_wr		// br if request to write counters

        cmpeq	r16, 7, r0		// check for counter clear/enable request
        bne	r0, perfmon_enclr	// br if request to clear/enable counters

        beq	r16, perfmon_dis	// br if requested to disable (r16=0)
        br	r31, perfmon_unknown	// br if unknown request

//
// rdusp - PALcode for rdusp instruction
//
// Entry:
//	Vectored into via hardware PALcode instruction dispatch.
//
// Function:
//	v0 (r0) <- usp
//

        CALL_PAL_PRIV(PAL_RDUSP_ENTRY)
Call_Pal_Rdusp:
        nop
        mfpr	r0, pt_usp
        hw_rei


        CALL_PAL_PRIV(0x003B)
CallPal_OpcDec3B:
        br	r31, osfpal_calpal_opcdec

//
// whami - PALcode for whami instruction
//
// Entry:
//	Vectored into via hardware PALcode instruction dispatch.
//
// Function:
//	v0 (r0) <- whami
//
        CALL_PAL_PRIV(PAL_WHAMI_ENTRY)
Call_Pal_Whami:
        nop
        mfpr    r0, pt_whami            // Get Whami
        extbl	r0, 1, r0		// Isolate just whami bits
        hw_rei

//
// retsys - PALcode for retsys instruction
//
// Entry:
//	Vectored into via hardware PALcode instruction dispatch.
//       00(sp) contains return pc
//       08(sp) contains r29
//
// Function:
//	Return from system call.
//       mode switched from kern to user.
//       stacks swapped, ugp, upc restored.
//       r23, r25 junked
//

        CALL_PAL_PRIV(PAL_RETSYS_ENTRY)
Call_Pal_Retsys:
        lda	r25, osfsf_c_size(sp) 	// pop stack
        bis	r25, r31, r14		// touch r25 & r14 to stall mf exc_addr

        mfpr	r14, exc_addr		// save exc_addr in case of fault
        ldq	r23, osfsf_pc(sp) 	// get pc

        ldq	r29, osfsf_gp(sp) 	// get gp
        stl_c	r31, -4(sp)		// clear lock_flag

        lda	r11, 1<<osfps_v_mode(r31)// new PS:mode=user
        mfpr	r30, pt_usp		// get users stack

        bic	r23, 3, r23		// clean return pc
        mtpr	r31, ev5__ipl		// zero ibox IPL - 2 bubbles to hw_rei

        mtpr	r11, ev5__dtb_cm	// set Mbox current mode - no virt ref for 2 cycles
        mtpr	r11, ev5__ps		// set Ibox current mode - 2 bubble to hw_rei

        mtpr	r23, exc_addr		// set return address - 1 bubble to hw_rei
        mtpr	r25, pt_ksp		// save kern stack

        rc	r31			// clear inter_flag
//	pvc_violate 248			// possible hidden mt->mf pt violation ok in callpal
        hw_rei_spe			// and back


        CALL_PAL_PRIV(0x003E)
CallPal_OpcDec3E:
        br	r31, osfpal_calpal_opcdec

//
// rti - PALcode for rti instruction
//
// Entry:
//	Vectored into via hardware PALcode instruction dispatch.
//
// Function:
//	00(sp) -> ps
//	08(sp) -> pc
//	16(sp) -> r29 (gp)
//	24(sp) -> r16 (a0)
//	32(sp) -> r17 (a1)
//	40(sp) -> r18 (a3)
//

        CALL_PAL_PRIV(PAL_RTI_ENTRY)
        /* called once by platform_tlaser */
        .globl Call_Pal_Rti
Call_Pal_Rti:
        lda	r25, osfsf_c_size(sp)	// get updated sp
        bis	r25, r31, r14		// touch r14,r25 to stall mf exc_addr

        mfpr	r14, exc_addr		// save PC in case of fault
        rc	r31			// clear intr_flag

        ldq	r12, -6*8(r25)		// get ps
        ldq	r13, -5*8(r25)		// pc

        ldq	r18, -1*8(r25)		// a2
        ldq	r17, -2*8(r25)		// a1

        ldq	r16, -3*8(r25)		// a0
        ldq	r29, -4*8(r25)		// gp

        bic	r13, 3, r13		// clean return pc
        stl_c	r31, -4(r25)		// clear lock_flag

        and	r12, osfps_m_mode, r11	// get mode
        mtpr	r13, exc_addr		// set return address

        beq	r11, rti_to_kern	// br if rti to Kern
        br	r31, rti_to_user	// out of call_pal space


///////////////////////////////////////////////////
// Start the Unprivileged CALL_PAL Entry Points
///////////////////////////////////////////////////

//
// bpt - PALcode for bpt instruction
//
// Entry:
//	Vectored into via hardware PALcode instruction dispatch.
//
// Function:
//	Build stack frame
//	a0 <- code
//	a1 <- unpred
//	a2 <- unpred
//	vector via entIF
//
//
//
        .text	1
//	. = 0x3000
        CALL_PAL_UNPRIV(PAL_BPT_ENTRY)
Call_Pal_Bpt:
        sll	r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit
        mtpr	r31, ev5__ps		// Set Ibox current mode to kernel

        bis	r11, r31, r12		// Save PS for stack write
        bge	r25, CALL_PAL_bpt_10_		// no stack swap needed if cm=kern

        mtpr	r31, ev5__dtb_cm	// Set Mbox current mode to kernel -
                                        //     no virt ref for next 2 cycles
        mtpr	r30, pt_usp		// save user stack

        bis	r31, r31, r11		// Set new PS
        mfpr	r30, pt_ksp

CALL_PAL_bpt_10_:
        lda	sp, 0-osfsf_c_size(sp)// allocate stack space
        mfpr	r14, exc_addr		// get pc

        stq	r16, osfsf_a0(sp)	// save regs
        bis	r31, osf_a0_bpt, r16	// set a0

        stq	r17, osfsf_a1(sp)	// a1
        br	r31, bpt_bchk_common	// out of call_pal space


//
// bugchk - PALcode for bugchk instruction
//
// Entry:
//	Vectored into via hardware PALcode instruction dispatch.
//
// Function:
//	Build stack frame
//	a0 <- code
//	a1 <- unpred
//	a2 <- unpred
//	vector via entIF
//
//
//
        CALL_PAL_UNPRIV(PAL_BUGCHK_ENTRY)
Call_Pal_Bugchk:
        sll	r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit
        mtpr	r31, ev5__ps		// Set Ibox current mode to kernel

        bis	r11, r31, r12		// Save PS for stack write
        bge	r25, CALL_PAL_bugchk_10_		// no stack swap needed if cm=kern

        mtpr	r31, ev5__dtb_cm	// Set Mbox current mode to kernel -
                                        //     no virt ref for next 2 cycles
        mtpr	r30, pt_usp		// save user stack

        bis	r31, r31, r11		// Set new PS
        mfpr	r30, pt_ksp

CALL_PAL_bugchk_10_:
        lda	sp, 0-osfsf_c_size(sp)// allocate stack space
        mfpr	r14, exc_addr		// get pc

        stq	r16, osfsf_a0(sp)	// save regs
        bis	r31, osf_a0_bugchk, r16	// set a0

        stq	r17, osfsf_a1(sp)	// a1
        br	r31, bpt_bchk_common	// out of call_pal space


        CALL_PAL_UNPRIV(0x0082)
CallPal_OpcDec82:
        br	r31, osfpal_calpal_opcdec

//
// callsys - PALcode for callsys instruction
//
// Entry:
//	Vectored into via hardware PALcode instruction dispatch.
//
// Function:
// 	Switch mode to kernel and build a callsys stack frame.
//       sp = ksp
//       gp = kgp
//	t8 - t10 (r22-r24) trashed
//
//
//
        CALL_PAL_UNPRIV(PAL_CALLSYS_ENTRY)
Call_Pal_Callsys:

        and	r11, osfps_m_mode, r24	// get mode
        mfpr	r22, pt_ksp		// get ksp

        beq	r24, sys_from_kern 	// sysCall from kern is not allowed
        mfpr	r12, pt_entsys		// get address of callSys routine

//
// from here on we know we are in user going to Kern
//
        mtpr	r31, ev5__dtb_cm	// set Mbox current mode - no virt ref for 2 cycles
        mtpr	r31, ev5__ps		// set Ibox current mode - 2 bubble to hw_rei

        bis	r31, r31, r11		// PS=0 (mode=kern)
        mfpr	r23, exc_addr		// get pc

        mtpr	r30, pt_usp		// save usp
        lda	sp, 0-osfsf_c_size(r22)// set new sp

        stq	r29, osfsf_gp(sp)	// save user gp/r29
        stq	r24, osfsf_ps(sp)	// save ps

        stq	r23, osfsf_pc(sp)	// save pc
        mtpr	r12, exc_addr		// set address
                                        // 1 cycle to hw_rei

        mfpr	r29, pt_kgp		// get the kern gp/r29

        hw_rei_spe			// and off we go!


        CALL_PAL_UNPRIV(0x0084)
CallPal_OpcDec84:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x0085)
CallPal_OpcDec85:
        br	r31, osfpal_calpal_opcdec

//
// imb - PALcode for imb instruction
//
// Entry:
//	Vectored into via hardware PALcode instruction dispatch.
//
// Function:
//       Flush the writebuffer and flush the Icache
//
//
//
        CALL_PAL_UNPRIV(PAL_IMB_ENTRY)
Call_Pal_Imb:
        mb                              // Clear the writebuffer
        mfpr    r31, ev5__mcsr          // Sync with clear
        nop
        nop
        br      r31, pal_ic_flush           // Flush Icache


// CALL_PAL OPCDECs

        CALL_PAL_UNPRIV(0x0087)
CallPal_OpcDec87:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x0088)
CallPal_OpcDec88:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x0089)
CallPal_OpcDec89:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x008A)
CallPal_OpcDec8A:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x008B)
CallPal_OpcDec8B:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x008C)
CallPal_OpcDec8C:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x008D)
CallPal_OpcDec8D:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x008E)
CallPal_OpcDec8E:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x008F)
CallPal_OpcDec8F:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x0090)
CallPal_OpcDec90:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x0091)
CallPal_OpcDec91:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x0092)
CallPal_OpcDec92:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x0093)
CallPal_OpcDec93:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x0094)
CallPal_OpcDec94:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x0095)
CallPal_OpcDec95:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x0096)
CallPal_OpcDec96:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x0097)
CallPal_OpcDec97:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x0098)
CallPal_OpcDec98:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x0099)
CallPal_OpcDec99:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x009A)
CallPal_OpcDec9A:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x009B)
CallPal_OpcDec9B:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x009C)
CallPal_OpcDec9C:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x009D)
CallPal_OpcDec9D:
        br	r31, osfpal_calpal_opcdec

//
// rdunique - PALcode for rdunique instruction
//
// Entry:
//	Vectored into via hardware PALcode instruction dispatch.
//
// Function:
//	v0 (r0) <- unique
//
//
//
        CALL_PAL_UNPRIV(PAL_RDUNIQUE_ENTRY)
CALL_PALrdunique_:
        mfpr	r0, pt_pcbb		// get pcb pointer
        ldq_p	r0, osfpcb_q_unique(r0) // get new value

        hw_rei

//
// wrunique - PALcode for wrunique instruction
//
// Entry:
//	Vectored into via hardware PALcode instruction dispatch.
//
// Function:
//	unique <- a0 (r16)
//
//
//
CALL_PAL_UNPRIV(PAL_WRUNIQUE_ENTRY)
CALL_PAL_Wrunique:
        nop
        mfpr	r12, pt_pcbb		// get pcb pointer
        stq_p	r16, osfpcb_q_unique(r12)// get new value
        nop				// Pad palshadow write
        hw_rei				// back

// CALL_PAL OPCDECs

        CALL_PAL_UNPRIV(0x00A0)
CallPal_OpcDecA0:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x00A1)
CallPal_OpcDecA1:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x00A2)
CallPal_OpcDecA2:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x00A3)
CallPal_OpcDecA3:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x00A4)
CallPal_OpcDecA4:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x00A5)
CallPal_OpcDecA5:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x00A6)
CallPal_OpcDecA6:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x00A7)
CallPal_OpcDecA7:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x00A8)
CallPal_OpcDecA8:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x00A9)
CallPal_OpcDecA9:
        br	r31, osfpal_calpal_opcdec


//
// gentrap - PALcode for gentrap instruction
//
// CALL_PAL_gentrap:
// Entry:
//	Vectored into via hardware PALcode instruction dispatch.
//
// Function:
//	Build stack frame
//	a0 <- code
//	a1 <- unpred
//	a2 <- unpred
//	vector via entIF
//
//

        CALL_PAL_UNPRIV(0x00AA)
// unsupported in Hudson code .. pboyle Nov/95
CALL_PAL_gentrap:
        sll	r11, 63-osfps_v_mode, r25 // Shift mode up to MS bit
        mtpr	r31, ev5__ps		// Set Ibox current mode to kernel

        bis	r11, r31, r12			// Save PS for stack write
        bge	r25, CALL_PAL_gentrap_10_	// no stack swap needed if cm=kern

        mtpr	r31, ev5__dtb_cm	// Set Mbox current mode to kernel -
                                        //     no virt ref for next 2 cycles
        mtpr	r30, pt_usp		// save user stack

        bis	r31, r31, r11		// Set new PS
        mfpr	r30, pt_ksp

CALL_PAL_gentrap_10_:
        lda	sp, 0-osfsf_c_size(sp)// allocate stack space
        mfpr	r14, exc_addr		// get pc

        stq	r16, osfsf_a0(sp)	// save regs
        bis	r31, osf_a0_gentrap, r16// set a0

        stq	r17, osfsf_a1(sp)	// a1
        br	r31, bpt_bchk_common	// out of call_pal space


// CALL_PAL OPCDECs

        CALL_PAL_UNPRIV(0x00AB)
CallPal_OpcDecAB:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x00AC)
CallPal_OpcDecAC:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x00AD)
CallPal_OpcDecAD:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x00AE)
CallPal_OpcDecAE:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x00AF)
CallPal_OpcDecAF:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x00B0)
CallPal_OpcDecB0:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x00B1)
CallPal_OpcDecB1:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x00B2)
CallPal_OpcDecB2:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x00B3)
CallPal_OpcDecB3:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x00B4)
CallPal_OpcDecB4:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x00B5)
CallPal_OpcDecB5:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x00B6)
CallPal_OpcDecB6:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x00B7)
CallPal_OpcDecB7:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x00B8)
CallPal_OpcDecB8:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x00B9)
CallPal_OpcDecB9:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x00BA)
CallPal_OpcDecBA:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x00BB)
CallPal_OpcDecBB:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x00BC)
CallPal_OpcDecBC:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x00BD)
CallPal_OpcDecBD:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x00BE)
CallPal_OpcDecBE:
        br	r31, osfpal_calpal_opcdec

        CALL_PAL_UNPRIV(0x00BF)
CallPal_OpcDecBF:
        // MODIFIED BY EGH 2/25/04
        br	r31, copypal_impl


/*======================================================================*/
/*                   OSF/1 CALL_PAL CONTINUATION AREA                   */
/*======================================================================*/

        .text	2

        . = 0x4000


// Continuation of MTPR_PERFMON
        ALIGN_BLOCK
          // "real" performance monitoring code
// mux ctl
perfmon_muxctl:
        lda     r8, 1(r31) 			// get a 1
        sll     r8, pmctr_v_sel0, r8		// move to sel0 position
        or      r8, ((0xf<<pmctr_v_sel1) | (0xf<<pmctr_v_sel2)), r8	// build mux select mask
        and	r17, r8, r25			// isolate pmctr mux select bits
        mfpr	r0, ev5__pmctr
        bic	r0, r8, r0			// clear old mux select bits
        or	r0,r25, r25			// or in new mux select bits
        mtpr	r25, ev5__pmctr

        // ok, now tackle cbox mux selects
        ldah    r14, 0xfff0(r31)
        zap     r14, 0xE0, r14                 // Get Cbox IPR base
//orig	get_bc_ctl_shadow	r16		// bc_ctl returned in lower longword
// adapted from ev5_pal_macros.mar
        mfpr	r16, pt_impure
        lda	r16, CNS_Q_IPR(r16)
        RESTORE_SHADOW(r16,CNS_Q_BC_CTL,r16);

        lda	r8, 0x3F(r31)			// build mux select mask
        sll	r8, bc_ctl_v_pm_mux_sel, r8

        and	r17, r8, r25			// isolate bc_ctl mux select bits
        bic	r16, r8, r16			// isolate old mux select bits
        or	r16, r25, r25			// create new bc_ctl
        mb					// clear out cbox for future ipr write
        stq_p	r25, ev5__bc_ctl(r14)		// store to cbox ipr
        mb					// clear out cbox for future ipr write

//orig	update_bc_ctl_shadow	r25, r16	// r25=value, r16-overwritten with adjusted impure ptr
// adapted from ev5_pal_macros.mar
        mfpr	r16, pt_impure
        lda	r16, CNS_Q_IPR(r16)
        SAVE_SHADOW(r25,CNS_Q_BC_CTL,r16);

        br 	r31, perfmon_success


// requested to disable perf monitoring
perfmon_dis:
        mfpr	r14, ev5__pmctr		// read ibox pmctr ipr
perfmon_dis_ctr0:			// and begin with ctr0
        blbc	r17, perfmon_dis_ctr1	// do not disable ctr0
        lda 	r8, 3(r31)
        sll	r8, pmctr_v_ctl0, r8
        bic	r14, r8, r14		// disable ctr0
perfmon_dis_ctr1:
        srl	r17, 1, r17
        blbc	r17, perfmon_dis_ctr2	// do not disable ctr1
        lda 	r8, 3(r31)
        sll	r8, pmctr_v_ctl1, r8
        bic	r14, r8, r14		// disable ctr1
perfmon_dis_ctr2:
        srl	r17, 1, r17
        blbc	r17, perfmon_dis_update	// do not disable ctr2
        lda 	r8, 3(r31)
        sll	r8, pmctr_v_ctl2, r8
        bic	r14, r8, r14		// disable ctr2
perfmon_dis_update:
        mtpr	r14, ev5__pmctr		// update pmctr ipr
//;the following code is not needed for ev5 pass2 and later, but doesn't hurt anything to leave in
// adapted from ev5_pal_macros.mar
//orig	get_pmctr_ctl	r8, r25		// pmctr_ctl bit in r8.  adjusted impure pointer in r25
        mfpr	r25, pt_impure
        lda	r25, CNS_Q_IPR(r25)
        RESTORE_SHADOW(r8,CNS_Q_PM_CTL,r25);

        lda	r17, 0x3F(r31)		// build mask
        sll	r17, pmctr_v_ctl2, r17 // shift mask to correct position
        and 	r14, r17, r14		// isolate ctl bits
        bic	r8, r17, r8		// clear out old ctl bits
        or	r14, r8, r14		// create shadow ctl bits
//orig	store_reg1 pmctr_ctl, r14, r25, ipr=1	// update pmctr_ctl register
//adjusted impure pointer still in r25
        SAVE_SHADOW(r14,CNS_Q_PM_CTL,r25);

        br 	r31, perfmon_success


// requested to enable perf monitoring
//;the following code can be greatly simplified for pass2, but should work fine as is.


perfmon_enclr:
        lda	r9, 1(r31)		// set enclr flag
        br perfmon_en_cont

perfmon_en:
        bis	r31, r31, r9		// clear enclr flag

perfmon_en_cont:
        mfpr	r8, pt_pcbb		// get PCB base
//orig	get_pmctr_ctl r25, r25
        mfpr	r25, pt_impure
        lda	r25, CNS_Q_IPR(r25)
        RESTORE_SHADOW(r25,CNS_Q_PM_CTL,r25);

        ldq_p	r16, osfpcb_q_fen(r8)	// read DAT/PME/FEN quadword
        mfpr	r14, ev5__pmctr		// read ibox pmctr ipr
        srl 	r16, osfpcb_v_pme, r16	// get pme bit
        mfpr	r13, icsr
        and	r16,  1, r16		// isolate pme bit

        // this code only needed in pass2 and later
        lda	r12, 1<<icsr_v_pmp(r31)		// pb
        bic	r13, r12, r13		// clear pmp bit
        sll	r16, icsr_v_pmp, r12	// move pme bit to icsr<pmp> position
        or	r12, r13, r13		// new icsr with icsr<pmp> bit set/clear
        mtpr	r13, icsr		// update icsr

        bis	r31, 1, r16		// set r16<0> on pass2 to update pmctr always (icsr provides real enable)

        sll	r25, 6, r25		// shift frequency bits into pmctr_v_ctl positions
        bis	r14, r31, r13		// copy pmctr

perfmon_en_ctr0:			// and begin with ctr0
        blbc	r17, perfmon_en_ctr1	// do not enable ctr0

        blbc	r9, perfmon_en_noclr0	// enclr flag set, clear ctr0 field
        lda	r8, 0xffff(r31)
        zapnot  r8, 3, r8		// ctr0<15:0> mask
        sll	r8, pmctr_v_ctr0, r8
        bic	r14, r8, r14		// clear ctr bits
        bic	r13, r8, r13		// clear ctr bits

perfmon_en_noclr0:
//orig	get_addr r8, 3<<pmctr_v_ctl0, r31
        LDLI(r8, (3<<pmctr_v_ctl0))
        and 	r25, r8, r12		//isolate frequency select bits for ctr0
        bic	r14, r8, r14		// clear ctl0 bits in preparation for enabling
        or	r14,r12,r14		// or in new ctl0 bits

perfmon_en_ctr1:			// enable ctr1
        srl	r17, 1, r17		// get ctr1 enable
        blbc	r17, perfmon_en_ctr2	// do not enable ctr1

        blbc	r9, perfmon_en_noclr1   // if enclr flag set, clear ctr1 field
        lda	r8, 0xffff(r31)
        zapnot  r8, 3, r8		// ctr1<15:0> mask
        sll	r8, pmctr_v_ctr1, r8
        bic	r14, r8, r14		// clear ctr bits
        bic	r13, r8, r13		// clear ctr bits

perfmon_en_noclr1:
//orig	get_addr r8, 3<<pmctr_v_ctl1, r31
        LDLI(r8, (3<<pmctr_v_ctl1))
        and 	r25, r8, r12		//isolate frequency select bits for ctr1
        bic	r14, r8, r14		// clear ctl1 bits in preparation for enabling
        or	r14,r12,r14		// or in new ctl1 bits

perfmon_en_ctr2:			// enable ctr2
        srl	r17, 1, r17		// get ctr2 enable
        blbc	r17, perfmon_en_return	// do not enable ctr2 - return

        blbc	r9, perfmon_en_noclr2	// if enclr flag set, clear ctr2 field
        lda	r8, 0x3FFF(r31)		// ctr2<13:0> mask
        sll	r8, pmctr_v_ctr2, r8
        bic	r14, r8, r14		// clear ctr bits
        bic	r13, r8, r13		// clear ctr bits

perfmon_en_noclr2:
//orig	get_addr r8, 3<<pmctr_v_ctl2, r31
        LDLI(r8, (3<<pmctr_v_ctl2))
        and 	r25, r8, r12		//isolate frequency select bits for ctr2
        bic	r14, r8, r14		// clear ctl2 bits in preparation for enabling
        or	r14,r12,r14		// or in new ctl2 bits

perfmon_en_return:
        cmovlbs	r16, r14, r13		// if pme enabled, move enables into pmctr
                                        // else only do the counter clears
        mtpr	r13, ev5__pmctr		// update pmctr ipr

//;this code not needed for pass2 and later, but does not hurt to leave it in
        lda	r8, 0x3F(r31)
//orig	get_pmctr_ctl r25, r12         	// read pmctr ctl; r12=adjusted impure pointer
        mfpr	r12, pt_impure
        lda	r12, CNS_Q_IPR(r12)
        RESTORE_SHADOW(r25,CNS_Q_PM_CTL,r12);

        sll	r8, pmctr_v_ctl2, r8	// build ctl mask
        and	r8, r14, r14		// isolate new ctl bits
        bic	r25, r8, r25		// clear out old ctl value
        or	r25, r14, r14		// create new pmctr_ctl
//orig	store_reg1 pmctr_ctl, r14, r12, ipr=1
        SAVE_SHADOW(r14,CNS_Q_PM_CTL,r12); // r12 still has the adjusted impure ptr

        br 	r31, perfmon_success


// options...
perfmon_ctl:

// set mode
//orig	get_pmctr_ctl r14, r12         	// read shadow pmctr ctl; r12=adjusted impure pointer
        mfpr	r12, pt_impure
        lda	r12, CNS_Q_IPR(r12)
        RESTORE_SHADOW(r14,CNS_Q_PM_CTL,r12);

        // build mode mask for pmctr register
        LDLI(r8, ((1<<pmctr_v_killu) | (1<<pmctr_v_killp) | (1<<pmctr_v_killk)))
        mfpr	r0, ev5__pmctr
        and	r17, r8, r25			// isolate pmctr mode bits
        bic	r0, r8, r0			// clear old mode bits
        or	r0, r25, r25			// or in new mode bits
        mtpr	r25, ev5__pmctr

        // the following code will only be used in pass2, but should
        // not hurt anything if run in pass1.
        mfpr	r8, icsr
        lda	r25, 1<<icsr_v_pma(r31)		// set icsr<pma> if r17<0>=0
        bic 	r8, r25, r8			// clear old pma bit
        cmovlbs r17, r31, r25			// and clear icsr<pma> if r17<0>=1
        or	r8, r25, r8
        mtpr	r8, icsr		// 4 bubbles to hw_rei
        mfpr	r31, pt0			// pad icsr write
        mfpr	r31, pt0			// pad icsr write

        // the following code not needed for pass2 and later, but
        // should work anyway.
        bis     r14, 1, r14       		// set for select processes
        blbs	r17, perfmon_sp			// branch if select processes
        bic	r14, 1, r14			// all processes
perfmon_sp:
//orig	store_reg1 pmctr_ctl, r14, r12, ipr=1   // update pmctr_ctl register
        SAVE_SHADOW(r14,CNS_Q_PM_CTL,r12); // r12 still has the adjusted impure ptr
        br 	r31, perfmon_success

// counter frequency select
perfmon_freq:
//orig	get_pmctr_ctl r14, r12         	// read shadow pmctr ctl; r12=adjusted impure pointer
        mfpr	r12, pt_impure
        lda	r12, CNS_Q_IPR(r12)
        RESTORE_SHADOW(r14,CNS_Q_PM_CTL,r12);

        lda	r8, 0x3F(r31)
//orig	sll	r8, pmctr_ctl_v_frq2, r8		// build mask for frequency select field
// I guess this should be a shift of 4 bits from the above control register structure
#define	pmctr_ctl_v_frq2_SHIFT 4
        sll	r8, pmctr_ctl_v_frq2_SHIFT, r8		// build mask for frequency select field

        and 	r8, r17, r17
        bic 	r14, r8, r14				// clear out old frequency select bits

        or 	r17, r14, r14				// or in new frequency select info
//orig	store_reg1 pmctr_ctl, r14, r12, ipr=1   // update pmctr_ctl register
        SAVE_SHADOW(r14,CNS_Q_PM_CTL,r12); // r12 still has the adjusted impure ptr

        br 	r31, perfmon_success

// read counters
perfmon_rd:
        mfpr	r0, ev5__pmctr
        or	r0, 1, r0	// or in return status
        hw_rei			// back to user

// write counters
perfmon_wr:
        mfpr	r14, ev5__pmctr
        lda	r8, 0x3FFF(r31)		// ctr2<13:0> mask
        sll	r8, pmctr_v_ctr2, r8

        LDLI(r9, (0xFFFFFFFF))		// ctr2<15:0>,ctr1<15:0> mask
        sll	r9, pmctr_v_ctr1, r9
        or	r8, r9, r8		// or ctr2, ctr1, ctr0 mask
        bic	r14, r8, r14		// clear ctr fields
        and	r17, r8, r25		// clear all but ctr  fields
        or	r25, r14, r14		// write ctr fields
        mtpr	r14, ev5__pmctr		// update pmctr ipr

        mfpr	r31, pt0		// pad pmctr write (needed only to keep PVC happy)

perfmon_success:
        or      r31, 1, r0                     // set success
        hw_rei					// back to user

perfmon_unknown:
        or	r31, r31, r0		// set fail
        hw_rei				// back to user


//////////////////////////////////////////////////////////
// Copy code
//////////////////////////////////////////////////////////

copypal_impl:
        mov r16, r0
#ifdef CACHE_COPY
#ifndef CACHE_COPY_UNALIGNED
        and r16, 63, r8
        and r17, 63, r9
        bis r8, r9, r8
        bne r8, cache_copy_done
#endif
        bic r18, 63, r8
        and r18, 63, r18
        beq r8, cache_copy_done
cache_loop:
        ldf f17, 0(r16)
        stf f17, 0(r16)
        addq r17, 64, r17
        addq r16, 64, r16
        subq r8, 64, r8
        bne r8, cache_loop
cache_copy_done:
#endif
        ble r18, finished	// if len <=0 we are finished
        ldq_u r8, 0(r17)
        xor r17, r16, r9
        and r9, 7, r9
        and r16, 7, r10
        bne r9, unaligned
        beq r10, aligned
        ldq_u r9, 0(r16)
        addq r18, r10, r18
        mskqh r8, r17, r8
        mskql r9, r17, r9
        bis r8, r9, r8
aligned:
        subq r18, 1, r10
        bic r10, 7, r10
        and r18, 7, r18
        beq r10, aligned_done
loop:
        stq_u r8, 0(r16)
        ldq_u r8, 8(r17)
        subq r10, 8, r10
        lda r16,8(r16)
        lda r17,8(r17)
        bne r10, loop
aligned_done:
        bne r18, few_left
        stq_u r8, 0(r16)
        br r31, finished
        few_left:
        mskql r8, r18, r10
        ldq_u r9, 0(r16)
        mskqh r9, r18, r9
        bis r10, r9, r10
        stq_u r10, 0(r16)
        br r31, finished
unaligned:
        addq r17, r18, r25
        cmpule r18, 8, r9
        bne r9, unaligned_few_left
        beq r10, unaligned_dest_aligned
        and r16, 7, r10
        subq r31, r10, r10
        addq r10, 8, r10
        ldq_u r9, 7(r17)
        extql r8, r17, r8
        extqh r9, r17, r9
        bis r8, r9, r12
        insql r12, r16, r12
        ldq_u r13, 0(r16)
        mskql r13, r16, r13
        bis r12, r13, r12
        stq_u r12, 0(r16)
        addq r16, r10, r16
        addq r17, r10, r17
        subq r18, r10, r18
        ldq_u r8, 0(r17)
unaligned_dest_aligned:
        subq r18, 1, r10
        bic r10, 7, r10
        and r18, 7, r18
        beq r10, unaligned_partial_left
unaligned_loop:
        ldq_u r9, 7(r17)
        lda r17, 8(r17)
        extql r8, r17, r12
        extqh r9, r17, r13
        subq r10, 8, r10
        bis r12, r13, r13
        stq r13, 0(r16)
        lda r16, 8(r16)
        beq r10, unaligned_second_partial_left
        ldq_u r8, 7(r17)
        lda r17, 8(r17)
        extql r9, r17, r12
        extqh r8, r17, r13
        bis r12, r13, r13
        subq r10, 8, r10
        stq r13, 0(r16)
        lda r16, 8(r16)
        bne r10, unaligned_loop
unaligned_partial_left:
        mov r8, r9
unaligned_second_partial_left:
        ldq_u r8, -1(r25)
        extql r9, r17, r9
        extqh r8, r17, r8
        bis r8, r9, r8
        bne r18, few_left
        stq_u r8, 0(r16)
        br r31, finished
unaligned_few_left:
        ldq_u r9, -1(r25)
        extql r8, r17, r8
        extqh r9, r17, r9
        bis r8, r9, r8
        insqh r8, r16, r9
        insql r8, r16, r8
        lda r12, -1(r31)
        mskql r12, r18, r13
        cmovne r13, r13, r12
        insqh r12, r16, r13
        insql r12, r16, r12
        addq r16, r18, r10
        ldq_u r14, 0(r16)
        ldq_u r25, -1(r10)
        bic r14, r12, r14
        bic r25, r13, r25
        and r8, r12, r8
        and r9, r13, r9
        bis r8, r14, r8
        bis r9, r25, r9
        stq_u r9, -1(r10)
        stq_u r8, 0(r16)
finished:
        hw_rei