1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
|
/*
* Copyright (c) 2003, 2004, 2005
* The Regents of The University of Michigan
* All Rights Reserved
*
* This code is part of the M5 simulator, developed by Nathan Binkert,
* Erik Hallnor, Steve Raasch, and Steve Reinhardt, with contributions
* from Ron Dreslinski, Dave Greene, Lisa Hsu, Ali Saidi, and Andrew
* Schultz.
*
* Permission is granted to use, copy, create derivative works and
* redistribute this software and such derivative works for any
* purpose, so long as the copyright notice above, this grant of
* permission, and the disclaimer below appear in all copies made; and
* so long as the name of The University of Michigan is not used in
* any advertising or publicity pertaining to the use or distribution
* of this software without specific, written prior authorization.
*
* THIS SOFTWARE IS PROVIDED AS IS, WITHOUT REPRESENTATION FROM THE
* UNIVERSITY OF MICHIGAN AS TO ITS FITNESS FOR ANY PURPOSE, AND
* WITHOUT WARRANTY BY THE UNIVERSITY OF MICHIGAN OF ANY KIND, EITHER
* EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE. THE REGENTS OF THE UNIVERSITY OF MICHIGAN SHALL NOT BE
* LIABLE FOR ANY DAMAGES, INCLUDING DIRECT, SPECIAL, INDIRECT,
* INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WITH RESPECT TO ANY CLAIM
* ARISING OUT OF OR IN CONNECTION WITH THE USE OF THE SOFTWARE, EVEN
* IF IT HAS BEEN OR IS HEREAFTER ADVISED OF THE POSSIBILITY OF SUCH
* DAMAGES.
*/
/*
Copyright 1993 Hewlett-Packard Development Company, L.P.
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
// build_fixed_image: not sure what means
// real_mm to be replaced during rewrite
// remove_save_state remove_restore_state can be remooved to save space ??
#define egore 0
#define acore 0
#define beh_model 0
#define ev5_p2 1
#define ev5_p1 0
#define ldvpte_bug_fix 1
#define spe_fix 0
#define osf_chm_fix 0
#define build_fixed_image 0
#define enable_p4_fixups 0
#define osf_svmin 1
#define enable_physical_console 0
#define fill_err_hack 0
#define icflush_on_tbix 0
#define max_cpuid 1
#define perfmon_debug 0
#define rax_mode 0
#define hw_rei_spe hw_rei
#include "ev5_defs.h"
#include "ev5_impure.h"
#include "ev5_alpha_defs.h"
#include "ev5_paldef.h"
#include "ev5_osfalpha_defs.h"
#include "fromHudsonMacros.h"
#include "fromHudsonOsf.h"
#include "dc21164FromGasSources.h"
#include "cserve.h"
#include "tlaser.h"
#define ldlp ldl_p
#define ldqp ldq_p
#define stlp stl_p
#define stqp stq_p
#define stqpc stqp
#ifdef SIMOS
#define ldqpl ldq_p
#define sdqpl sdq_p
#else
<--bomb>
#endif
#define pt_entInt pt_entint
#define pt_entArith pt_entarith
#define mchk_size ((mchk_cpu_base + 7 + 8) &0xfff8)
#define mchk_flag CNS_Q_FLAG
#define mchk_sys_base 56
#define mchk_cpu_base (CNS_Q_LD_LOCK + 8)
#define mchk_offsets CNS_Q_EXC_ADDR
#define mchk_mchk_code 8
#define mchk_ic_perr_stat CNS_Q_ICPERR_STAT
#define mchk_dc_perr_stat CNS_Q_DCPERR_STAT
#define mchk_sc_addr CNS_Q_SC_ADDR
#define mchk_sc_stat CNS_Q_SC_STAT
#define mchk_ei_addr CNS_Q_EI_ADDR
#define mchk_bc_tag_addr CNS_Q_BC_TAG_ADDR
#define mchk_fill_syn CNS_Q_FILL_SYN
#define mchk_ei_stat CNS_Q_EI_STAT
#define mchk_exc_addr CNS_Q_EXC_ADDR
#define mchk_ld_lock CNS_Q_LD_LOCK
#define osfpcb_q_Ksp pcb_q_ksp
#define pal_impure_common_size ((0x200 + 7) & 0xfff8)
#define ALIGN_BLOCK \
.align 5
#define ALIGN_BRANCH \
.align 3
#define EXPORT(_x) \
.align 5; \
.globl _x; \
_x:
// XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
// XXX the following is 'made up'
// XXX bugnion
// XXX bugnion not sure how to align 'quad'
#define ALIGN_QUAD \
.align 3
#define ALIGN_128 \
.align 7
#define GET_IMPURE(_r) mfpr _r,pt_impure
#define GET_ADDR(_r1,_off,_r2) lda _r1,_off(_r2)
#define BIT(_x) (1<<(_x))
// XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
// XXX back to original code
// .sbttl "System specific code - beh model version"
//
// Entry points
// SYS$CFLUSH - Cache flush
// SYS$CSERVE - Console service
// SYS$WRIPIR - interprocessor interrupts
// SYS$HALT_INTERRUPT - Halt interrupt
// SYS$PASSIVE_RELEASE - Interrupt, passive release
// SYS$INTERRUPT - Interrupt
// SYS$RESET - Reset
// SYS$ENTER_CONSOLE
//
// Macro to read TLINTRSUMx
//
// Based on the CPU_NUMBER, read either the TLINTRSUM0 or TLINTRSUM1 register
//
// Assumed register usage:
// rsum TLINTRSUMx contents
// raddr node space address
// scratch scratch register
// .macro Read_TLINTRSUMx rsum, raddr, scratch, ?label1, ?label2
//
// nop
// mfpr 'scratch', pt_whami // Get our whami (VID)
//
// extbl 'scratch', #1, 'scratch' // shift down to bit 0
// lda 'raddr', ^xff88(r31) // Get base node space address bits
//
// sll 'raddr', #24, 'raddr' // Shift up to proper position
// srl 'scratch', #1, 'rsum' // Shift off the cpu number
//
// sll 'rsum', #22, 'rsum' // Get our node offset
// addq 'raddr', 'rsum', 'raddr' // Get our base node space address
//
// blbs 'scratch', label1
// lda 'raddr', <tlep$tlintrsum0_offset>('raddr')
//
// br r31, label2
//label1: lda 'raddr', <tlep$tlintrsum1_offset>('raddr')
//
//label2: ldlp 'rsum', 0('raddr') // read the right tlintrsum reg
//.endm
#define Read_TLINTRSUMx(_rsum,_raddr,_scratch) \
nop; \
mfpr _scratch,pt_whami; \
extbl _scratch,1,_scratch; \
lda _raddr,0xff88(zero); \
sll _raddr,24,_raddr; \
srl _scratch,1,_rsum; \
sll _rsum,22,_rsum; \
addq _raddr,_rsum,_raddr; \
blbs _scratch,1f; \
lda _raddr,0x1180(_raddr); \
br r31,2f; \
1: \
lda _raddr,0x11c0(_raddr); \
2: ldlp _rsum,0(_raddr)
//
// Macro to write TLINTRSUMx
//
// Based on the CPU_NUMBER, write either the TLINTRSUM0 or TLINTRSUM1 register
//
// Assumed register usage:
// rsum TLINTRSUMx write data
// raddr node space address
// scratch scratch register
// .macro Write_TLINTRSUMx rsum, raddr, whami, ?label1, ?label2
//
// nop
// mfpr 'whami', pt_whami // Get our whami (VID)
//
// extbl 'whami', #1, 'whami' // shift down to bit 0
// lda 'raddr', ^xff88(r31) // Get base node space address bits
//
// sll 'raddr', #24, 'raddr' // Shift up to proper position
// blbs 'whami', label1
//
// lda 'raddr', <tlep$tlintrsum0_offset>('raddr')
// br r31, label2
//
// label1: lda 'raddr', <tlep$tlintrsum1_offset>('raddr')
// label2: srl 'whami', #1, 'whami' // Shift off the cpu number
//
// sll 'whami', #22, 'whami' // Get our node offset
// addq 'raddr', 'whami', 'raddr' // Get our base node space address
//
// mb
// stqp 'rsum', 0('raddr') // write the right tlintrsum reg
// mb
// ldqp 'rsum', 0('raddr') // dummy read to tlintrsum
// bis 'rsum', 'rsum', 'rsum' // needed to complete the ldqp above -jpo
// .endm
#define Write_TLINTRSUMx(_rsum,_raddr,_whami) \
nop; \
mfpr _whami,pt_whami; \
extbl _whami,1,_whami; \
lda _raddr,0xff88(zero); \
sll _raddr,24,_raddr; \
blbs _whami,1f; \
lda _raddr,0x1180(_raddr);\
br zero,2f; \
1: lda _raddr,0x11c0(_raddr);\
2: srl _whami,1,_whami; \
addq _raddr,_whami,_raddr; \
mb; \
stqp _rsum,0(_raddr); \
ldqp _rsum,0(_raddr); \
bis _rsum,_rsum,_rsum
//
// Macro to determine highest priority TIOP Node ID from interrupt pending mask
//
// Assumed register usage:
// rmask - TLINTRSUMx contents, shifted to isolate IOx bits
// rid - TLSB Node ID of highest TIOP
//.macro Intr_Find_TIOP rmask, rid, ?l1, ?l2, ?l3, ?l4, ?l5, ?l6
// srl 'rmask', #4, 'rid' // check IOP8
// blbc 'rid', l1 // not IOP8
//
// lda 'rid', 8(r31) // IOP8
// br r31, l6
//
// l1: srl 'rmask', #3, 'rid' // check IOP7
// blbc 'rid', l2 // not IOP7
//
// lda 'rid', 7(r31) // IOP7
// br r31, l6
//
// l2: srl 'rmask', #2, 'rid' // check IOP6
// blbc 'rid', l3 // not IOP6
//
// lda 'rid', 6(r31) // IOP6
// br r31, l6
//
// l3: srl 'rmask', #1, 'rid' // check IOP5
// blbc 'rid', l4 // not IOP5
//
// lda 'rid', 5(r31) // IOP5
// br r31, l6
//
// l4: srl 'rmask', #0, 'rid' // check IOP4
// blbc 'rid', l5 // not IOP4
//
// lda r14, 4(r31) // IOP4
// br r31, l6
//
// l5: lda r14, 0(r31) // passive release
// l6:
// .endm
#define Intr_Find_TIOP(_rmask,_rid) \
srl _rmask,3,_rid; \
blbc _rid,1f; \
lda _rid,8(zero); \
br zero,6f; \
1: srl _rmask,3,_rid; \
blbc _rid, 2f; \
lda _rid, 7(r31); \
br r31, 6f; \
2: srl _rmask, 2, _rid; \
blbc _rid, 3f; \
lda _rid, 6(r31); \
br r31, 6f; \
3: srl _rmask, 1, _rid; \
blbc _rid, 4f; \
lda _rid, 5(r31); \
br r31, 6f; \
4: srl _rmask, 0, _rid; \
blbc _rid, 5f; \
lda r14, 4(r31); \
br r31, 6f; \
5: lda r14, 0(r31); \
6:
//
// Macro to calculate base node space address for given node id
//
// Assumed register usage:
// rid - TLSB node id
// raddr - base node space address
//.macro Get_TLSB_Node_Address rid, raddr
// sll 'rid', #22, 'rid' // Get offset of IOP node
// lda 'raddr', ^xff88(r31) // Get base node space address bits
//
// sll 'raddr', #24, 'raddr' // Shift up to proper position
// addq 'raddr', 'rid', 'raddr' // Get TIOP node space address
// .iif ne turbo_pcia_intr_fix, srl 'rid', #22, 'rid' // Restore IOP node id
//.endm
#define turbo_pcia_intr_fix 0
#if turbo_pcia_intr_fix != 0
#define Get_TLSB_Node_Address(_rid,_raddr) \
sll _rid,22,_rid; \
lda _raddr,0xff88(zero); \
sll _raddr,24,_raddr; \
addq _raddr,_rid,_raddr; \
srl _rid,22,_rid
#else
#define Get_TLSB_Node_Address(_rid,_raddr) \
sll _rid,22,_rid; \
lda _raddr,0xff88(zero); \
sll _raddr,24,_raddr; \
addq _raddr,_rid,_raddr
#endif
// .macro mchk$TLEPstore rlog, rs, rs1, nodebase, tlepreg, clr, tlsb, crd
// .iif eq tlsb, lda 'rs1',<tlep$'tlepreg'_offset>(r31)
// .iif ne tlsb, lda 'rs1',<tlsb$'tlepreg'_offset>(r31)
// or 'rs1', 'nodebase', 'rs1'
// ldlp 'rs', 0('rs1')
// .iif eq crd, stlp 'rs', mchk$'tlepreg'('rlog') // store in frame
// .iif ne crd, stlp 'rs', mchk$crd_'tlepreg'('rlog') // store in frame
// .iif ne clr, stlp 'rs',0('rs1') // optional write to clear
// .endm
// .macro OSFmchk$TLEPstore tlepreg, clr=0, tlsb=0
// mchk$TLEPstore r14, r8, r4, r13, <tlepreg>, <clr>, <tlsb>, crd=0
// .endm
#define CONCAT(_a,_b) _a ## _b
#define OSFmchk_TLEPstore_1(_rlog,_rs,_rs1,_nodebase,_tlepreg) \
lda _rs1,CONCAT(tlep_,_tlepreg)(zero); \
or _rs1,_nodebase,_rs1; \
ldlp _rs1,0(_rs1); \
stlp _rs,CONCAT(mchk_,_tlepreg)(_rlog)
#define OSFmchk_TLEPstore(_tlepreg) OSFmchk_TLEPstore_1(r14,r8,r4,r13,_tlepreg)
// .macro OSFcrd$TLEPstore tlepreg, clr=0, tlsb=0
// mchk$TLEPstore r14, r10, r1, r0, <tlepreg>, <clr>, <tlsb>, crd=1
// .endm
#define OSFcrd_TLEPstore_1(_rlog,_rs,_rs1,_nodebase,_tlepreg) \
lda _rs1,CONCAT(tlep_,_tlepreg)(zero); \
or _rs1,_nodebase,_rs1; \
ldlp _rs1,0(_rs1); \
stlp _rs,CONCAT(mchk_crd_,_tlepreg)(_rlog)
#define OSFcrd_TLEPstore_tlsb_1(_rlog,_rs,_rs1,_nodebase,_tlepreg) \
lda _rs1,CONCAT(tlsb_,_tlepreg)(zero); \
or _rs1,_nodebase,_rs1; \
ldlp _rs1,0(_rs1); \
stlp _rs,CONCAT(mchk_crd_,_tlepreg)(_rlog)
#define OSFcrd_TLEPstore_tlsb_clr_1(_rlog,_rs,_rs1,_nodebase,_tlepreg) \
lda _rs1,CONCAT(tlsb_,_tlepreg)(zero); \
or _rs1,_nodebase,_rs1; \
ldlp _rs1,0(_rs1); \
stlp _rs,CONCAT(mchk_crd_,_tlepreg)(_rlog); \
stlp _rs,0(_rs1)
#define OSFcrd_TLEPstore(_tlepreg) OSFcrd_TLEPstore_1(r14,r8,r4,r13,_tlepreg)
#define OSFcrd_TLEPstore_tlsb(_tlepreg) OSFcrd_TLEPstore_tlsb_1(r14,r8,r4,r13,_tlepreg)
#define OSFcrd_TLEPstore_tlsb_clr(_tlepreg) OSFcrd_TLEPstore_tlsb_clr_1(r14,r8,r4,r13,_tlepreg)
// .macro save_pcia_intr irq
// and r13, #^xf, r25 // isolate low 4 bits
// addq r14, #4, r14 // format the TIOP Node id field
// sll r14, #4, r14 // shift the TIOP Node id
// or r14, r25, r10 // merge Node id/hose/HPC
// mfpr r14, pt14 // get saved value
// extbl r14, #'irq', r25 // confirm none outstanding
// bne r25, sys$machine_check_while_in_pal
// insbl r10, #'irq', r10 // align new info
// or r14, r10, r14 // merge info
// mtpr r14, pt14 // save it
// bic r13, #^xf, r13 // clear low 4 bits of vector
// .endm
#define save_pcia_intr(_irq) \
and r13, 0xf, r25; \
addq r14, 4, r14; \
sll r14, 4, r14; \
or r14, r25, r10; \
mfpr r14, pt14; \
extbl r14, _irq, r25; \
bne r25, sys_machine_check_while_in_pal; \
insbl r10, _irq, r10; \
or r14, r10, r14; \
mtpr r14, pt14; \
bic r13, 0xf, r13
ALIGN_BLOCK
// .sbttl "wripir - PALcode for wripir instruction"
//orig SYS$WRIPIR: // R16 has the processor number.
EXPORT(sys_wripir)
//++
// Convert the processor number to a CPU mask
//--
and r16,0xf, r14 // mask the top stuff (16 CPUs supported)
bis r31,0x1,r16 // get a one
sll r16,r14,r14 // shift the bit to the right place
//++
// Build the Broadcast Space base address
//--
lda r13,0xff8e(r31) // Load the upper address bits
sll r13,24,r13 // shift them to the top
//++
// Send out the IP Intr
//--
stqp r14, 0x40(r13) // Write to TLIPINTR reg WAS TLSB_TLIPINTR_OFFSET
wmb // Push out the store
hw_rei
ALIGN_BLOCK
// .sbttl "CFLUSH- PALcode for CFLUSH instruction"
//+
// SYS$CFLUSH
// Entry:
//
// R16 - contains the PFN of the page to be flushed
//
// Function:
// Flush all Dstream caches of 1 entire page
//
//-
EXPORT(sys_cflush)
// #convert pfn to addr, and clean off <63:20>
// #sll r16, <page_offset_size_bits>+<63-20>>, r12
sll r16, page_offset_size_bits+(63-20),r12
// #ldah r13,<<1@22>+32768>@-16(r31)// + xxx<31:16>
// # stolen from srcmax code. XXX bugnion
lda r13, 0x10(r31) // assume 16Mbytes of cache
sll r13, 20, r13 // convert to bytes
srl r12, 63-20, r12 // shift back to normal position
xor r12, r13, r12 // xor addr<18>
or r31, 8192/(32*8), r13 // get count of loads
nop
cflush_loop:
subq r13, 1, r13 // decr counter
mfpr r25, ev5__intid // Fetch level of interruptor
ldqp r31, 32*0(r12) // do a load
ldqp r31, 32*1(r12) // do next load
ldqp r31, 32*2(r12) // do next load
ldqp r31, 32*3(r12) // do next load
ldqp r31, 32*4(r12) // do next load
ldqp r31, 32*5(r12) // do next load
ldqp r31, 32*6(r12) // do next load
ldqp r31, 32*7(r12) // do next load
mfpr r14, ev5__ipl // Fetch current level
lda r12, (32*8)(r12) // skip to next cache block addr
cmple r25, r14, r25 // R25 = 1 if intid .less than or eql ipl
beq r25, 1f // if any int's pending, re-queue CFLUSH -- need to check for hlt interrupt???
bne r13, cflush_loop // loop till done
hw_rei // back to user
ALIGN_BRANCH
1: // Here if interrupted
mfpr r12, exc_addr
subq r12, 4, r12 // Backup PC to point to CFLUSH
mtpr r12, exc_addr
nop
mfpr r31, pt0 // Pad exc_addr write
hw_rei
ALIGN_BLOCK
// .sbttl "CSERVE- PALcode for CSERVE instruction"
//+
// SYS$CSERVE
//
// Function:
// Various functions for private use of console software
//
// option selector in r0
// arguments in r16....
//
//
// r0 = 0 unknown
//
// r0 = 1 ldqp
// r0 = 2 stqp
// args, are as for normal STQP/LDQP in VMS PAL
//
// r0 = 3 dump_tb's
// r16 = detination PA to dump tb's to.
//
// r0<0> = 1, success
// r0<0> = 0, failure, or option not supported
// r0<63:1> = (generally 0, but may be function dependent)
// r0 - load data on ldqp
//
//-
EXPORT(sys_cserve)
#ifdef SIMOS
/* taken from scrmax */
cmpeq r18, CSERVE_K_RD_IMPURE, r0
bne r0, Sys_Cserve_Rd_Impure
cmpeq r18, CSERVE_K_JTOPAL, r0
bne r0, Sys_Cserve_Jtopal
call_pal 0
or r31, r31, r0
hw_rei // and back we go
Sys_Cserve_Rd_Impure:
mfpr r0, pt_impure // Get base of impure scratch area.
hw_rei
ALIGN_BRANCH
Sys_Cserve_Jtopal:
bic a0, 3, t8 // Clear out low 2 bits of address
bis t8, 1, t8 // Or in PAL mode bit
mtpr t8,exc_addr
hw_rei
#else /* SIMOS */
cmpeq r16, cserve_ldlp, r12 // check for ldqp
bne r12, 1f // br if
cmpeq r16, cserve_stlp, r12 // check for stqp
bne r12, 2f // br if
cmpeq r16, cserve_callback, r12 // check for callback entry
bne r12, csrv_callback // br if
cmpeq r16, cserve_identify, r12 // check for callback entry
bne r12, csrv_identify // br if
or r31, r31, r0 // set failure
nop // pad palshadow write
hw_rei // and back we go
#endif /* SIMOS */
// ldqp
ALIGN_QUAD
1:
ldqp r0,0(r17) // get the data
nop // pad palshadow write
hw_rei // and back we go
// stqp
ALIGN_QUAD
2:
stqp r18, 0(r17) // store the data
#ifdef SIMOS
lda r0,17(r31) // bogus
#else
lda r0, CSERVE_SUCCESS(r31) // set success
#endif
hw_rei // and back we go
ALIGN_QUAD
csrv_callback:
ldq r16, 0(r17) // restore r16
ldq r17, 8(r17) // restore r17
lda r0, hlt_c_callback(r31)
br r31, sys_enter_console
csrv_identify:
mfpr r0, pal_base
ldqp r0, 8(r0)
hw_rei
// dump tb's
ALIGN_QUAD
0:
// DTB PTEs - 64 entries
addq r31, 64, r0 // initialize loop counter
nop
1: mfpr r12, ev5__dtb_pte_temp // read out next pte to temp
mfpr r12, ev5__dtb_pte // read out next pte to reg file
subq r0, 1, r0 // decrement loop counter
nop // Pad - no Mbox instr in cycle after mfpr
stqp r12, 0(r16) // store out PTE
addq r16, 8 ,r16 // increment pointer
bne r0, 1b
ALIGN_BRANCH
// ITB PTEs - 48 entries
addq r31, 48, r0 // initialize loop counter
nop
2: mfpr r12, ev5__itb_pte_temp // read out next pte to temp
mfpr r12, ev5__itb_pte // read out next pte to reg file
subq r0, 1, r0 // decrement loop counter
nop //
stqp r12, 0(r16) // store out PTE
addq r16, 8 ,r16 // increment pointer
bne r0, 2b
or r31, 1, r0 // set success
hw_rei // and back we go
// .sbttl "SYS$INTERRUPT - Interrupt processing code"
//+
// SYS$INTERRUPT
//
// Current state:
// Stack is pushed
// ps, sp and gp are updated
// r12, r14 - available
// r13 - INTID (new EV5 IPL)
// r25 - ISR
// r16, r17, r18 - available
//
//-
EXPORT(sys_interrupt)
cmpeq r13, 31, r12
bne r12, sys_int_mchk_or_crd // Check for level 31 interrupt (machine check or crd)
cmpeq r13, 30, r12
bne r12, sys_int_powerfail // Check for level 30 interrupt (powerfail)
cmpeq r13, 29, r12
bne r12, sys_int_perf_cnt // Check for level 29 interrupt (performance counters)
cmpeq r13, 23, r12
bne r12, sys_int_23 // Check for level 23 interrupt
cmpeq r13, 22, r12
bne r12, sys_int_22 // Check for level 22 interrupt (might be
// interprocessor or timer interrupt)
cmpeq r13, 21, r12
bne r12, sys_int_21 // Check for level 21 interrupt
cmpeq r13, 20, r12
bne r12, sys_int_20 // Check for level 20 interrupt (might be corrected
// system error interrupt)
mfpr r14, exc_addr // ooops, something is wrong
br r31, pal_pal_bug_check_from_int
//+
//sys$int_2*
// Routines to handle device interrupts at IPL 23-20.
// System specific method to ack/clear the interrupt, detect passive release,
// detect interprocessor (22), interval clock (22), corrected
// system error (20)
//
// Current state:
// Stack is pushed
// ps, sp and gp are updated
// r12, r14 - available
// r13 - INTID (new EV5 IPL)
// r25 - ISR
//
// On exit:
// Interrupt has been ack'd/cleared
// a0/r16 - signals IO device interrupt
// a1/r17 - contains interrupt vector
// exit to ent_int address
//
//-
ALIGN_BRANCH
sys_int_23:
Read_TLINTRSUMx(r13,r10,r14) // read the right TLINTRSUMx
srl r13, 22, r13 // shift down to examine IPL17
Intr_Find_TIOP(r13,r14)
beq r14, 1f
Get_TLSB_Node_Address(r14,r10)
lda r10, 0xac0(r10) // Get base TLILID address
ldlp r13, 0(r10) // Read the TLILID register
bne r13, pal_post_dev_interrupt
1: lda r16, osfint_c_passrel(r31) // passive release
br r31, pal_post_interrupt //
ALIGN_BRANCH
sys_int_22:
Read_TLINTRSUMx(r13,r10,r14) // read the right TLINTRSUMx
srl r13, 6, r14 // check the Intim bit
blbs r14, tlep_intim // go service Intim
srl r13, 5, r14 // check the IP Int bit
blbs r14, tlep_ipint // go service IP Int
srl r13, 17, r13 // shift down to examine IPL16
Intr_Find_TIOP(r13,r14)
beq r14, 1f
Get_TLSB_Node_Address(r14,r10)
lda r10, 0xa80(r10) // Get base TLILID address
ldlp r13, 0(r10) // Read the TLILID register
#if turbo_pcia_intr_fix == 0
// .if eq turbo_pcia_intr_fix
bne r13, pal_post_dev_interrupt
//orig .iff
beq r13, 1f
and r13, 0x3, r10 // check for PCIA bits
beq r10, pal_post_dev_interrupt // done if nothing set
save_pcia_intr(2)
br r31, pal_post_dev_interrupt //
// .endc
#endif /* turbo_pcia_intr_fix == 0 */
1: lda r16, osfint_c_passrel(r31) // passive release
br r31, pal_post_interrupt //
ALIGN_BRANCH
sys_int_21:
Read_TLINTRSUMx(r13,r10,r14) // read the right TLINTRSUMx
srl r13, 12, r13 // shift down to examine IPL15
Intr_Find_TIOP(r13,r14)
beq r14, 1f
Get_TLSB_Node_Address(r14,r10)
lda r10, 0xa40(r10) // Get base TLILID address
ldlp r13, 0(r10) // Read the TLILID register
#if turbo_pcia_intr_fix == 0
//orig .if eq turbo_pcia_intr_fix
bne r13, pal_post_dev_interrupt
//orig .iff
beq r13, 1f
and r13, 0x3, r10 // check for PCIA bits
beq r10, pal_post_dev_interrupt // done if nothing set
save_pcia_intr(1)
br r31, pal_post_dev_interrupt //
// orig .endc
#endif /* turbo_pcia_intr_fix == 0 */
1: lda r16, osfint_c_passrel(r31) // passive release
br r31, pal_post_interrupt //
ALIGN_BRANCH
sys_int_20:
lda r13, 1(r31) // Duart0 bit
Write_TLINTRSUMx(r13,r10,r14) // clear the duart0 bit
Read_TLINTRSUMx(r13,r10,r14) // read the right TLINTRSUMx
blbs r13, tlep_uart0 // go service UART int
srl r13, 7, r13 // shift down to examine IPL14
Intr_Find_TIOP(r13,r14)
beq r14, tlep_ecc // Branch if not IPL14
Get_TLSB_Node_Address(r14,r10)
lda r10, 0xa00(r10) // Get base TLILID0 address
ldlp r13, 0(r10) // Read the TLILID register
#if turbo_pcia_intr_fix == 0
// orig .if eq turbo_pcia_intr_fix
bne r13, pal_post_dev_interrupt
// orig .iff
beq r13, 1f
and r13, 0x3, r10 // check for PCIA bits
beq r10, pal_post_dev_interrupt // done if nothing set
save_pcia_intr(0)
br r31, pal_post_dev_interrupt //
// orig .endc
#endif
1: lda r16, osfint_c_passrel(r31) // passive release
br r31, pal_post_interrupt //
ALIGN_BRANCH
tlep_intim:
lda r13, 0xffb(r31) // get upper GBUS address bits
sll r13, 28, r13 // shift up to top
lda r13, (0x300)(r13) // full CSRC address (tlep watch csrc offset)
ldqp r13, 0(r13) // read CSRC
lda r13, 0x40(r31) // load Intim bit
Write_TLINTRSUMx(r13,r10,r14) // clear the Intim bit
lda r16, osfint_c_clk(r31) // passive release
br r31, pal_post_interrupt // Build the stack frame
ALIGN_BRANCH
tlep_ipint:
lda r13, 0x20(r31) // load IP Int bit
Write_TLINTRSUMx(r13,r10,r14) // clear the IP Int bit
lda r16, osfint_c_ip(r31) // passive release
br r31, pal_post_interrupt // Build the stack frame
ALIGN_BRANCH
tlep_uart0:
lda r13, 0xffa(r31) // get upper GBUS address bits
sll r13, 28, r13 // shift up to top
ldlp r14, 0x80(r13) // zero pointer register
lda r14, 3(r31) // index to RR3
stlp r14, 0x80(r13) // write pointer register
mb
mb
ldlp r14, 0x80(r13) // read RR3
srl r14, 5, r10 // is it Channel A RX?
blbs r10, uart0_rx
srl r14, 4, r10 // is it Channel A TX?
blbs r10, uart0_tx
srl r14, 2, r10 // is it Channel B RX?
blbs r10, uart1_rx
srl r14, 1, r10 // is it Channel B TX?
blbs r10, uart1_tx
lda r8, 0(r31) // passive release
br r31, clear_duart0_int // clear tlintrsum and post
ALIGN_BRANCH
uart0_rx:
lda r8, 0x680(r31) // UART0 RX vector
br r31, clear_duart0_int // clear tlintrsum and post
ALIGN_BRANCH
uart0_tx:
lda r14, 0x28(r31) // Reset TX Int Pending code
mb
stlp r14, 0x80(r13) // write Channel A WR0
mb
lda r8, 0x6c0(r31) // UART0 TX vector
br r31, clear_duart0_int // clear tlintrsum and post
ALIGN_BRANCH
uart1_rx:
lda r8, 0x690(r31) // UART1 RX vector
br r31, clear_duart0_int // clear tlintrsum and post
ALIGN_BRANCH
uart1_tx:
lda r14, 0x28(r31) // Reset TX Int Pending code
stlp r14, 0(r13) // write Channel B WR0
lda r8, 0x6d0(r31) // UART1 TX vector
br r31, clear_duart0_int // clear tlintrsum and post
ALIGN_BRANCH
clear_duart0_int:
lda r13, 1(r31) // load duart0 bit
Write_TLINTRSUMx(r13,r10,r14) // clear the duart0 bit
beq r8, 1f
or r8, r31, r13 // move vector to r13
br r31, pal_post_dev_interrupt // Build the stack frame
1: nop
nop
hw_rei
// lda r16, osfint_c_passrel(r31) // passive release
// br r31, pal_post_interrupt //
ALIGN_BRANCH
tlep_ecc:
mfpr r14, pt_whami // get our node id
extbl r14, 1, r14 // shift to bit 0
srl r14, 1, r14 // shift off cpu number
Get_TLSB_Node_Address(r14,r10) // compute our nodespace address
ldlp r13, 0x40(r10) // read our TLBER WAS tlsb_tlber_offset
srl r13, 17, r13 // shift down the CWDE/CRDE bits
and r13, 3, r13 // mask the CWDE/CRDE bits
beq r13, 1f
ornot r31, r31, r12 // set flag
lda r9, mchk_c_sys_ecc(r31) // System Correctable error MCHK code
br r31, sys_merge_sys_corr // jump to CRD logout frame code
1: lda r16, osfint_c_passrel(r31) // passive release
ALIGN_BRANCH
pal_post_dev_interrupt:
or r13, r31, r17 // move vector to a1
or r31, osfint_c_dev, r16 // a0 signals IO device interrupt
pal_post_interrupt:
mfpr r12, pt_entint
mtpr r12, exc_addr
nop
nop
hw_rei_spe
//+
// sys_passive_release
// Just pretend the interrupt never occurred.
//-
EXPORT(sys_passive_release)
mtpr r11, ev5__dtb_cm // Restore Mbox current mode for ps
nop
mfpr r31, pt0 // Pad write to dtb_cm
hw_rei
//+
//sys_int_powerfail
// A powerfail interrupt has been detected. The stack has been pushed.
// IPL and PS are updated as well.
//
// I'm not sure what to do here, I'm treating it as an IO device interrupt
//
//-
ALIGN_BLOCK
sys_int_powerfail:
lda r12, 0xffc4(r31) // get GBUS_MISCR address bits
sll r12, 24, r12 // shift to proper position
ldqp r12, 0(r12) // read GBUS_MISCR
srl r12, 5, r12 // isolate bit <5>
blbc r12, 1f // if clear, no missed mchk
// Missed a CFAIL mchk
lda r13, 0xffc7(r31) // get GBUS$SERNUM address bits
sll r13, 24, r13 // shift to proper position
lda r14, 0x40(r31) // get bit <6> mask
ldqp r12, 0(r13) // read GBUS$SERNUM
or r12, r14, r14 // set bit <6>
stqp r14, 0(r13) // clear GBUS$SERNUM<6>
mb
mb
1: br r31, sys_int_mchk // do a machine check
lda r17, scb_v_pwrfail(r31) // a1 to interrupt vector
mfpr r25, pt_entint
lda r16, osfint_c_dev(r31) // a0 to device code
mtpr r25, exc_addr
nop // pad exc_addr write
nop
hw_rei_spe
//+
// sys$halt_interrupt
// A halt interrupt has been detected. Pass control to the console.
//
//
//-
EXPORT(sys_halt_interrupt)
ldah r13, 0x1800(r31) // load Halt/^PHalt bits
Write_TLINTRSUMx(r13,r10,r14) // clear the ^PHalt bits
mtpr r11, dtb_cm // Restore Mbox current mode
nop
nop
mtpr r0, pt0
#ifndef SIMOS
pvc_jsr updpcb, bsr=1
bsr r0, pal_update_pcb // update the pcb
#endif
lda r0, hlt_c_hw_halt(r31) // set halt code to hw halt
br r31, sys_enter_console // enter the console
//+
// sys$int_mchk_or_crd
//
// Current state:
// Stack is pushed
// ps, sp and gp are updated
// r12
// r13 - INTID (new EV5 IPL)
// r14 - exc_addr
// r25 - ISR
// r16, r17, r18 - available
//
//-
ALIGN_BLOCK
sys_int_mchk_or_crd:
srl r25, isr_v_mck, r12
blbs r12, sys_int_mchk
//+
// Not a Machine check interrupt, so must be an Internal CRD interrupt
//-
mb //Clear out Cbox prior to reading IPRs
srl r25, isr_v_crd, r13 //Check for CRD
blbc r13, pal_pal_bug_check_from_int //If CRD not set, shouldn't be here!!!
lda r9, 1(r31)
sll r9, hwint_clr_v_crdc, r9 // get ack bit for crd
mtpr r9, ev5__hwint_clr // ack the crd interrupt
or r31, r31, r12 // clear flag
lda r9, mchk_c_ecc_c(r31) // Correctable error MCHK code
sys_merge_sys_corr:
ldah r14, 0xfff0(r31)
mtpr r0, pt0 // save r0 for scratch
zap r14, 0xE0, r14 // Get Cbox IPR base
mtpr r1, pt1 // save r0 for scratch
ldqp r0, ei_addr(r14) // EI_ADDR IPR
ldqp r10, fill_syn(r14) // FILL_SYN IPR
bis r0, r10, r31 // Touch lds to make sure they complete before doing scrub
blbs r12, 1f // no scrubbing for IRQ0 case
// XXX bugnion pvc_jsr crd_scrub_mem, bsr=1
bsr r13, sys_crd_scrub_mem // and go scrub
// ld/st pair in scrub routine will have finished due
// to ibox stall of stx_c. Don't need another mb.
ldqp r8, ei_stat(r14) // EI_STAT, unlock EI_ADDR, BC_TAG_ADDR, FILL_SYN
or r8, r31, r12 // Must only be executed once in this flow, and must
br r31, 2f // be after the scrub routine.
1: ldqp r8, ei_stat(r14) // EI_STAT, unlock EI_ADDR, BC_TAG_ADDR, FILL_SYN
// For IRQ0 CRD case only - meaningless data.
2: mfpr r13, pt_mces // Get MCES
srl r12, ei_stat_v_ei_es, r14 // Isolate EI_STAT:EI_ES
blbc r14, 6f // branch if 630
srl r13, mces_v_dsc, r14 // check if 620 reporting disabled
blbc r14, 5f // branch if enabled
or r13, r31, r14 // don't set SCE if disabled
br r31, 8f // continue
5: bis r13, BIT(mces_v_sce), r14 // Set MCES<SCE> bit
br r31, 8f
6: srl r13, mces_v_dpc, r14 // check if 630 reporting disabled
blbc r14, 7f // branch if enabled
or r13, r31, r14 // don't set PCE if disabled
br r31, 8f // continue
7: bis r13, BIT(mces_v_pce), r14 // Set MCES<PCE> bit
// Setup SCB if dpc is not set
8: mtpr r14, pt_mces // Store updated MCES
srl r13, mces_v_sce, r1 // Get SCE
srl r13, mces_v_pce, r14 // Get PCE
or r1, r14, r1 // SCE OR PCE, since they share
// the CRD logout frame
// Get base of the logout area.
GET_IMPURE(r14) // addr of per-cpu impure area
GET_ADDR(r14,(pal_logout_area+mchk_crd_base),r14)
blbc r1, sys_crd_write_logout_frame // If pce/sce not set, build the frame
// Set the 2nd error flag in the logout area:
lda r1, 3(r31) // Set retry and 2nd error flags
sll r1, 30, r1 // Move to bits 31:30 of logout frame flag longword
stlp r1, mchk_crd_flag+4(r14) // store flag longword
br sys_crd_ack
sys_crd_write_logout_frame:
// should only be here if neither the pce or sce bits are set
//+
// Write the mchk code to the logout area
//-
stqp r9, mchk_crd_mchk_code(r14)
//+
// Write the first 2 quadwords of the logout area:
//-
lda r1, 1(r31) // Set retry flag
sll r1, 63, r9 // Move retry flag to bit 63
lda r1, mchk_crd_size(r9) // Combine retry flag and frame size
stqp r1, mchk_crd_flag(r14) // store flag/frame size
#ifndef SIMOS
/* needed? bugnion */
lda r1, mchk_crd_sys_base(r31) // sys offset
sll r1, 32, r1
lda r1, mchk_crd_cpu_base(r1) // cpu offset
stqp r1, mchk_crd_offsets(r14) // store sys offset/cpu offset into logout frame
#endif
//+
// Write error IPRs already fetched to the logout area
//-
stqp r0, mchk_crd_ei_addr(r14)
stqp r10, mchk_crd_fill_syn(r14)
stqp r8, mchk_crd_ei_stat(r14)
stqp r25, mchk_crd_isr(r14)
//+
// Log system specific info here
//-
crd_storeTLEP_:
lda r1, 0xffc4(r31) // Get GBUS$MISCR address
sll r1, 24, r1
ldqp r1, 0(r1) // Read GBUS$MISCR
sll r1, 16, r1 // shift up to proper field
mfpr r10, pt_whami // get our node id
extbl r10, 1, r10 // shift to bit 0
or r1, r10, r1 // merge MISCR and WHAMI
stlp r1, mchk_crd_whami(r14) // write to crd logout area
srl r10, 1, r10 // shift off cpu number
Get_TLSB_Node_Address(r10,r0) // compute our nodespace address
OSFcrd_TLEPstore_tlsb(tldev)
OSFcrd_TLEPstore_tlsb_clr(tlber)
OSFcrd_TLEPstore_tlsb_clr(tlesr0)
OSFcrd_TLEPstore_tlsb_clr(tlesr1)
OSFcrd_TLEPstore_tlsb_clr(tlesr2)
OSFcrd_TLEPstore_tlsb_clr(tlesr3)
sys_crd_ack:
mfpr r0, pt0 // restore r0
mfpr r1, pt1 // restore r1
srl r12, ei_stat_v_ei_es, r12
blbc r12, 5f
srl r13, mces_v_dsc, r10 // logging enabled?
br r31, 6f
5: srl r13, mces_v_dpc, r10 // logging enabled?
6: blbc r10, sys_crd_post_interrupt // logging enabled -- report it
// logging not enabled --
// Get base of the logout area.
GET_IMPURE(r13) // addr of per-cpu impure area
GET_ADDR(r13,(pal_logout_area+mchk_crd_base),r13)
ldlp r10, mchk_crd_rsvd(r13) // bump counter
addl r10, 1, r10
stlp r10, mchk_crd_rsvd(r13)
mb
br r31, sys_crd_dismiss_interrupt // just return
//+
// The stack is pushed. Load up a0,a1,a2 and vector via entInt
//
//-
ALIGN_BRANCH
sys_crd_post_interrupt:
lda r16, osfint_c_mchk(r31) // flag as mchk/crd in a0
lda r17, scb_v_proc_corr_err(r31) // a1 <- interrupt vector
blbc r12, 1f
lda r17, scb_v_sys_corr_err(r31) // a1 <- interrupt vector
1: subq r31, 1, r18 // get a -1
mfpr r25, pt_entInt
srl r18, 42, r18 // shift off low bits of kseg addr
mtpr r25, exc_addr // load interrupt vector
sll r18, 42, r18 // shift back into position
or r14, r18, r18 // EV4 algorithm - pass pointer to mchk frame as kseg address
hw_rei_spe // done
//+
// The stack is pushed. Need to back out of it all.
//-
sys_crd_dismiss_interrupt:
br r31, Call_Pal_Rti
// .sbttl sys_crd_scrub_mem
//+
//
// sys_crd_scrub_mem
// called
// jsr r13, sys$crd_scrub_mem
// r0 = addr of cache block
//
//-
ALIGN_BLOCK // align for branch target
sys_crd_scrub_mem:
// now find error in memory, and attempt to scrub that cache block
// This routine just scrubs the failing octaword
// Only need to "touch" one quadword per octaword to accomplish the scrub
srl r0, 39, r8 // get high bit of bad pa
blbs r8, 1f // don't attempt fixup on IO space addrs
nop // needed to align the ldqpl to octaword boundary
nop // "
ldqpl r8, 0(r0) // attempt to read the bad memory
// location
// (Note bits 63:40,3:0 of ei_addr
// are set to 1, but as long as
// we are doing a phys ref, should
// be ok)
nop // Needed to keep the Ibox from swapping the ldqpl into E1
stqpc r8, 0(r0) // Store it back if it is still there.
// If store fails, location already
// scrubbed by someone else
nop // needed to align the ldqpl to octaword boundary
lda r8, 0x20(r31) // flip bit 5 to touch next hexaword
xor r8, r0, r0
nop // needed to align the ldqpl to octaword boundary
nop // "
ldqpl r8, 0(r0) // attempt to read the bad memory
// location
// (Note bits 63:40,3:0 of ei_addr
// are set to 1, but as long as
// we are doing a phys ref, should
// be ok)
nop // Needed to keep the Ibox from swapping the ldqpl into E1
stqpc r8, 0(r0) // Store it back if it is still there.
// If store fails, location already
// scrubbed by someone else
lda r8, 0x20(r31) // restore r0 to original address
xor r8, r0, r0
//at this point, ei_stat could be locked due to a new corr error on the ld,
//so read ei_stat to unlock AFTER this routine.
// XXX bugnion pvc$jsr crd_scrub_mem, bsr=1, dest=1
1: ret r31, (r13) // and back we go
// .sbttl "SYS$INT_MCHK - MCHK Interrupt code"
//+
// Machine check interrupt from the system. Setup and join the
// regular machine check flow.
// On exit:
// pt0 - saved r0
// pt1 - saved r1
// pt4 - saved r4
// pt5 - saved r5
// pt6 - saved r6
// pt10 - saved exc_addr
// pt_misc<47:32> - mchk code
// pt_misc<31:16> - scb vector
// r14 - base of Cbox IPRs in IO space
// MCES<mchk> is set
//-
ALIGN_BLOCK
sys_int_mchk:
lda r14, mchk_c_sys_hrd_error(r31)
mfpr r12, exc_addr
addq r14, 1, r14 // Flag as interrupt
nop
sll r14, 32, r14 // Move mchk code to position
mtpr r12, pt10 // Stash exc_addr
mfpr r12, pt_misc // Get MCES and scratch
mtpr r0, pt0 // Stash for scratch
zap r12, 0x3c, r12 // Clear scratch
blbs r12, sys_double_machine_check // MCHK halt if double machine check
or r12, r14, r12 // Combine mchk code
lda r14, scb_v_sysmchk(r31) // Get SCB vector
sll r14, 16, r14 // Move SCBv to position
or r12, r14, r14 // Combine SCBv
bis r14, BIT(mces_v_mchk), r14 // Set MCES<MCHK> bit
mtpr r14, pt_misc // Save mchk code!scbv!whami!mces
ldah r14, 0xfff0(r31)
mtpr r1, pt1 // Stash for scratch
zap r14, 0xE0, r14 // Get Cbox IPR base
mtpr r4, pt4
mtpr r5, pt5
#if beh_model
// .if ne beh_model
ldah r25, 0xC000(r31) // Get base of demon space
lda r25, 0x340(r25) // Add interrupt demon offset
ldqp r13, 0(r25) // Read the control register
nop
and r13, 0x10, r8 // For debug, check that the interrupt is expected
beq r8, interrupt_not_expected
bic r13, 0x10, r13
stqp r13, 0(r25) // Ack and clear the interrupt
// XXX bugnion pvc$violate 379 // stqp can't trap except replay. mt ipr only problem if mf same ipr in same shadow
.endc
#endif
mtpr r6, pt6
br r31, sys_mchk_collect_iprs // Join common machine check flow
// .sbttl "SYS$INT_PERF_CNT - Performance counter interrupt code"
//+
//sys$int_perf_cnt
//
// A performance counter interrupt has been detected. The stack has been pushed.
// IPL and PS are updated as well.
//
// on exit to interrupt entry point ENTINT::
// a0 = osfint$c_perf
// a1 = scb$v_perfmon (650)
// a2 = 0 if performance counter 0 fired
// a2 = 1 if performance counter 1 fired
// a2 = 2 if performance counter 2 fired
// (if more than one counter overflowed, an interrupt will be
// generated for each counter that overflows)
//
//
//-
ALIGN_BLOCK
sys_int_perf_cnt: // Performance counter interrupt
lda r17, scb_v_perfmon(r31) // a1 to interrupt vector
mfpr r25, pt_entint
lda r16, osfint_c_perf(r31) // a0 to perf counter code
mtpr r25, exc_addr
//isolate which perf ctr fired, load code in a2, and ack
mfpr r25, isr
or r31, r31, r18 // assume interrupt was pc0
srl r25, isr_v_pc1, r25 // isolate
cmovlbs r25, 1, r18 // if pc1 set, load 1 into r14
srl r25, 1, r25 // get pc2
cmovlbs r25, 2, r18 // if pc2 set, load 2 into r14
lda r25, 1(r31) // get a one
sll r25, r18, r25
sll r25, hwint_clr_v_pc0c, r25 // ack only the perf counter that generated the interrupt
mtpr r25, hwint_clr
hw_rei_spe
ALIGN_BLOCK
// .sbttl "System specific RESET code"
//+
// RESET code
// On entry:
// r1 = pal_base +8
//
// Entry state on trap:
// r0 = whami
// r2 = base of scratch area
// r3 = halt code
// and the following 3 if init_cbox is enabled:
// r5 = sc_ctl
// r6 = bc_ctl
// r7 = bc_cnfg
//
// Entry state on switch:
// r17 - new PC
// r18 - new PCBB
// r19 - new VPTB
//
//-
#if rax_mode==0
.globl sys_reset
sys_reset:
// mtpr r31, ic_flush_ctl // do not flush the icache - done by hardware before SROM load
mtpr r31, itb_ia // clear the ITB
mtpr r31, dtb_ia // clear the DTB
lda r1, -8(r1) // point to start of code
mtpr r1, pal_base // initialize PAL_BASE
// Interrupts
mtpr r31, astrr // stop ASTs
mtpr r31, aster // stop ASTs
mtpr r31, sirr // clear software interrupts
mtpr r0, pt1 // r0 is whami (unless we entered via swp)
//orig ldah r1, <<1@<icsr$v_sde-16>> ! <1@<icsr$v_fpe-16>> ! <2@<icsr$v_spe-16>>>(r31)
ldah r1,(BIT(icsr_v_sde-16)|BIT(icsr_v_fpe-16)|BIT(icsr_v_spe-16+1))(zero)
#if disable_crd == 0
// .if eq disable_crd
bis r31, 1, r0
sll r0, icsr_v_crde, r0 // A 1 in iscr<corr_read_enable>
or r0, r1, r1 // Set the bit
#endif
mtpr r1, icsr // ICSR - Shadows enabled, Floating point enable,
// super page enabled, correct read per assembly option
// Mbox/Dcache init
//orig lda r1, <1@<mcsr$v_sp1>>(r31)
lda r1,BIT(mcsr_v_sp1)(zero)
mtpr r1, mcsr // MCSR - Super page enabled
lda r1, BIT(dc_mode_v_dc_ena)(r31)
ALIGN_BRANCH
// mtpr r1, dc_mode // turn Dcache on
nop
mfpr r31, pt0 // No Mbox instr in 1,2,3,4
mfpr r31, pt0
mfpr r31, pt0
mfpr r31, pt0
mtpr r31, dc_flush // flush Dcache
// build PS (IPL=7,CM=K,VMM=0,SW=0)
lda r11, 0x7(r31) // Set shadow copy of PS - kern mode, IPL=7
lda r1, 0x1F(r31)
mtpr r1, ipl // set internal <ipl>=1F
mtpr r31, ev5__ps // set new ps<cm>=0, Ibox copy
mtpr r31, dtb_cm // set new ps<cm>=0, Mbox copy
// Create the PALtemp pt_intmask -
// MAP:
// OSF IPL EV5 internal IPL(hex) note
// 0 0
// 1 1
// 2 2
// 3 14 device
// 4 15 device
// 5 16 device
// 6 1E device,performance counter, powerfail
// 7 1F
//
ldah r1, 0x1f1E(r31) // Create upper lw of int_mask
lda r1, 0x1615(r1)
sll r1, 32, r1
ldah r1, 0x1402(r1) // Create lower lw of int_mask
lda r1, 0x0100(r1)
mtpr r1, pt_intmask // Stash in PALtemp
// Unlock a bunch of chip internal IPRs
mtpr r31, exc_sum // clear out exeception summary and exc_mask
mfpr r31, va // unlock va, mmstat
//rig lda r8, <<1@icperr_stat$v_dpe> ! <1@icperr_stat$v_tpe> ! <1@icperr_stat$v_tmr>>(r31)
lda r8,(BIT(icperr_stat_v_dpe)|BIT(icperr_stat_v_tpe)|BIT(icperr_stat_v_tmr))(zero)
mtpr r8, icperr_stat // Clear Icache parity error & timeout status
//orig lda r8, <<1@dcperr_stat$v_lock> ! <1@dcperr_stat$v_seo>>(r31)
lda r8,(BIT(dcperr_stat_v_lock)|BIT(dcperr_stat_v_seo))(r31)
mtpr r8, dcperr_stat // Clear Dcache parity error status
rc r0 // clear intr_flag
mtpr r31, pt_trap
mfpr r0, pt_misc
srl r0, pt_misc_v_switch, r1
blbs r1, sys_reset_switch // see if we got here from swppal
// Rest of the "real" reset flow
// ASN
mtpr r31, dtb_asn
mtpr r31, itb_asn
lda r1, 0x67(r31)
sll r1, hwint_clr_v_pc0c, r1
mtpr r1, hwint_clr // Clear hardware interrupt requests
lda r1, BIT(mces_v_dpc)(r31) // 1 in disable processor correctable error
mfpr r0, pt1 // get whami
insbl r0, 1, r0 // isolate whami in correct pt_misc position
or r0, r1, r1 // combine whami and mces
mtpr r1, pt_misc // store whami and mces, swap bit clear
zapnot r3, 1, r0 // isolate halt code
mtpr r0, pt0 // save entry type
// Cycle counter
or r31, 1, r9 // get a one
sll r9, 32, r9 // shift to <32>
mtpr r31, cc // clear Cycle Counter
mtpr r9, cc_ctl // clear and enable the Cycle Counter
mtpr r31, pt_scc // clear System Cycle Counter
// Misc PALtemps
mtpr r31, maf_mode // no mbox instructions for 3 cycles
or r31, 1, r1 // get bogus scbb value
mtpr r1, pt_scbb // load scbb
mtpr r31, pt_prbr // clear out prbr
#ifdef SIMOS
// or zero,kludge_initial_pcbb,r1
GET_ADDR(r1, (kludge_initial_pcbb-pal_base), r1)
#else
mfpr r1, pal_base
//orig sget_addr r1, (kludge_initial_pcbb-pal$base), r1, verify=0// get address for temp pcbb
GET_ADDR(r1, (kludge_initial_pcbb-pal_base), r1)
#endif
mtpr r1, pt_pcbb // load pcbb
lda r1, 2(r31) // get a two
sll r1, 32, r1 // gen up upper bits
mtpr r1, mvptbr
mtpr r1, ivptbr
mtpr r31, pt_ptbr
// Performance counters
mtpr r31, pmctr
#if init_cbox != 0
// .if ne init_cbox
// Only init the Scache and the Bcache if there have been no previous
// cacheable dstream loads or stores.
//
// Inputs:
// r5 - sc_ctl
// r6 - bc_ctl
// r7 - bc_cnfg
ldah r0, 0xfff0(r31)
zap r0, 0xE0, r0 // Get Cbox IPR base
ldqp r19, ev5__sc_ctl(r0) // read current sc_ctl
temp = <<<1@bc_ctl$v_ei_dis_err> + <1@bc_ctl$v_ei_ecc_or_parity> + <1@bc_ctl$v_corr_fill_dat>>@-1>
lda r20, temp(r31) // create default bc_ctl (bc disabled, errors disabled, ecc mode)
sll r20, 1, r20
temp = 0x017441 // default bc_config
get_addr r21, temp, r31 // create default bc_config
lda r23, <1@sc_ctl_v_sc_flush>(r31) //set flag to invalidate scache in set_sc_bc_ctl
// XXX bugnion pvc$jsr scbcctl, bsr=1
bsr r10, set_sc_bc_ctl
update_bc_ctl_shadow r6, r23 // update bc_ctl shadow using r6 as input// r23 gets adjusted impure pointer
store_reg1 bc_config, r7, r23, ipr=1 // update bc_config shadow in impure area
// .endc
#endif
// Clear pmctr_ctl in impure area
#ifndef SIMOS
// can't assemble ???
update_pmctr_ctl r31, r1 // clear pmctr_ctl // r1 trashed
#endif
ldah r14, 0xfff0(r31)
zap r14, 0xE0, r14 // Get Cbox IPR base
#ifndef SIMOS
ldqp r31, sc_stat(r14) // Clear sc_stat and sc_addr
ldqp r31, ei_stat(r14)
ldqp r31, ei_stat(r14) // Clear ei_stat, ei_addr, bc_tag_addr, fill_syn
#endif
GET_IMPURE(r13)
stqpc r31, 0(r13) // Clear lock_flag
mfpr r0, pt0 // get entry type
br r31, sys_enter_console // enter the cosole
#endif /* rax_mode == 0 */
//.if ne rax_mode
#if rax_mode != 0
// For RAX:
// r0 - icsr at first, then used for cbox ipr base offset
// r2 - mcsr
// r3 - dc_mode
// r4 - maf_mode
// r5 - sc_ctl
// r6 - bc_ctl
// r7 - bc_cnfg
.globl sys_reset
sys_reset:
mtpr r31, ev5__dtb_cm // set mbox mode to kernel
mtpr r31, ev5__ps // set Ibox mode to kernel - E1
mtpr r0, ev5__icsr // Load ICSR - E1
mtpr r2, ev5__mcsr
mfpr r8, pal_base
ldah r0, 0xfff0(r31)
zap r0, 0xE0, r0 // Get Cbox IPR base
mtpr r31, ev5__itb_asn // clear asn - E1
ldqp r19, ev5__sc_ctl(r0) // read current sc_ctl
temp = <<<1@bc_ctl$v_ei_dis_err> + <1@bc_ctl$v_ei_ecc_or_parity> + <1@bc_ctl$v_corr_fill_dat>>@-1>
lda r20, temp(r31) // create default bc_ctl (bc disabled, errors disabled, ecc mode)
sll r20, 1, r20
temp = 0x017441 // default bc_config
get_addr r21, temp, r31 // create default bc_config
lda r23, <1@sc_ctl_v_sc_flush>(r31) //set flag to invalidate scache in set_sc_bc_ctl
// XXX bugnion pvc$jsr scbcctl, bsr=1
bsr r10, set_sc_bc_ctl
update_bc_ctl_shadow r6, r2 // initialize bc_ctl shadow// adjusted impure pointer in r2
store_reg1 pmctr_ctl, r31, r2, ipr=1 // clear pmctr_ctl
store_reg1 bc_config, r7, r2, ipr=1 // initialize bc_config shadow
mtpr r3, ev5__dc_mode // write dc_mode
mtpr r31, ev5__dc_flush // flush dcache
mtpr r31, ev5__exc_sum // clear exc_sum - E1
mtpr r31, ev5__exc_mask // clear exc_mask - E1
ldah r2, 4(r31) // For EXC_ADDR
mtpr r2, ev5__exc_addr // EXC_ADDR to 40000 (hex)
mtpr r31, ev5__sirr // Clear SW interrupts (for ISP)
mtpr r4, ev5__maf_mode // write maf_mode
mtpr r31, ev5__alt_mode // set alt_mode to kernel
mtpr r31, ev5__itb_ia // clear ITB - E1
lda r1, 0x1F(r31) // For IPL
mtpr r1, ev5__ipl // IPL to 1F
mtpr r31, ev5__hwint_clr // clear hardware interrupts
mtpr r31, ev5__aster // disable AST interrupts
mtpr r31, ev5__astrr // clear AST requests
mtpr r31, ev5__dtb_ia // clear dtb
nop
mtpr r31, pt_trap
srl r2, page_offset_size_bits, r9 // Start to make PTE for address 40000
sll r9, 32, r9
lda r9, 0x7F01(r9) // Make PTE, V set, all RE set, all but UWE set
nop
mtpr r9, dtb_pte // ACORE hack, load TB with 1-1 translation for address 40000
mtpr r2, itb_tag // ACORE hack, load TB with 1-1 translation for address 40000
mtpr r2, dtb_tag
mtpr r9, itb_pte
and r31, r31, r0 // clear deposited registers, note: r2 already overwritten
and r31, r31, r3
and r31, r31, r4
and r31, r31, r5
and r31, r31, r6
and r31, r31, r7
hw_rei //May need to be a rei_stall since
//we write to TB's above
//However, it currently works ok. (JH)
// .endc
#endif /*rax_mode != 0 */
// swppal entry
// r0 - pt_misc
// r17 - new PC
// r18 - new PCBB
// r19 - new VPTB
sys_reset_switch:
or r31, 1, r9
sll r9, pt_misc_v_switch, r9
bic r0, r9, r0 // clear switch bit
mtpr r0, pt_misc
rpcc r1 // get cyccounter
ldqp r22, osfpcb_q_fen(r18) // get new fen/pme
ldlp r23, osfpcb_l_cc(r18) // get cycle counter
ldlp r24, osfpcb_l_asn(r18) // get new asn
ldqp r25, osfpcb_q_Mmptr(r18)// get new mmptr
sll r25, page_offset_size_bits, r25 // convert pfn to pa
mtpr r25, pt_ptbr // load the new mmptr
mtpr r18, pt_pcbb // set new pcbb
bic r17, 3, r17 // clean use pc
mtpr r17, exc_addr // set new pc
mtpr r19, mvptbr
mtpr r19, ivptbr
ldqp r30, osfpcb_q_Usp(r18) // get new usp
mtpr r30, pt_usp // save usp
sll r24, dtb_asn_v_asn, r8
mtpr r8, dtb_asn
sll r24, itb_asn_v_asn, r24
mtpr r24, itb_asn
mfpr r25, icsr // get current icsr
lda r24, 1(r31)
sll r24, icsr_v_fpe, r24 // 1 in icsr<fpe> position
bic r25, r24, r25 // clean out old fpe
and r22, 1, r22 // isolate new fen bit
sll r22, icsr_v_fpe, r22
or r22, r25, r25 // or in new fpe
mtpr r25, icsr // update ibox ipr
subl r23, r1, r1 // gen new cc offset
insll r1, 4, r1 // << 32
mtpr r1, cc // set new offset
or r31, r31, r0 // set success
ldqp r30, osfpcb_q_Ksp(r18) // get new ksp
mfpr r31, pt0 // stall
hw_rei_stall
// .sbttl "SYS_MACHINE_CHECK - Machine check PAL"
ALIGN_BLOCK
//+
//sys$machine_check
// A machine_check trap has occurred. The Icache has been flushed.
//
//-
EXPORT(sys_machine_check)
// Need to fill up the refill buffer (32 instructions) and
// then flush the Icache again.
// Also, due to possible 2nd Cbox register file write for
// uncorrectable errors, no register file read or write for 7 cycles.
nop
mtpr r0, pt0 // Stash for scratch -- OK if Cbox overwrites r0 later
nop
nop
nop
nop
nop
nop
nop
nop
// 10 instructions// 5 cycles
nop
nop
nop
nop
// Register file can now be written
lda r0, scb_v_procmchk(r31) // SCB vector
mfpr r13, pt_mces // Get MCES
sll r0, 16, r0 // Move SCBv to correct position
// bis r13, #<1@mces$v_mchk>, r14 // Set MCES<MCHK> bit
bis r13, BIT(mces_v_mchk), r14 // Set MCES<MCHK> bit
zap r14, 0x3C, r14 // Clear mchk_code word and SCBv word
mtpr r14, pt_mces
// 20 instructions
nop
or r14, r0, r14 // Insert new SCB vector
lda r0, mchk_c_proc_hrd_error(r31) // MCHK code
mfpr r12, exc_addr
sll r0, 32, r0 // Move MCHK code to correct position
mtpr r4, pt4
or r14, r0, r14 // Insert new MCHK code
mtpr r14, pt_misc // Store updated MCES, MCHK code, and SCBv
ldah r14, 0xfff0(r31)
mtpr r1, pt1 // Stash for scratch - 30 instructions
zap r14, 0xE0, r14 // Get Cbox IPR base
mtpr r12, pt10 // Stash exc_addr
mtpr r31, ic_flush_ctl // Second Icache flush, now it is really flushed.
blbs r13, sys_double_machine_check // MCHK halt if double machine check
mtpr r6, pt6
mtpr r5, pt5
// Look for the powerfail cases here....
mfpr r4, isr
srl r4, isr_v_pfl, r4
blbc r4, sys_mchk_collect_iprs // skip if no powerfail interrupt pending
lda r4, 0xffc4(r31) // get GBUS$MISCR address bits
sll r4, 24, r4 // shift to proper position
ldqp r4, 0(r4) // read GBUS$MISCR
srl r4, 5, r4 // isolate bit <5>
blbc r4, sys_mchk_collect_iprs // skip if already cleared
// No missed CFAIL mchk
lda r5, 0xffc7(r31) // get GBUS$SERNUM address bits
sll r5, 24, r5 // shift to proper position
lda r6, 0x40(r31) // get bit <6> mask
ldqp r4, 0(r5) // read GBUS$SERNUM
or r4, r6, r6 // set bit <6>
stqp r6, 0(r5) // clear GBUS$SERNUM<6>
mb
mb
//+
// Start to collect the IPRs. Common entry point for mchk flows.
//
// Current state:
// pt0 - saved r0
// pt1 - saved r1
// pt4 - saved r4
// pt5 - saved r5
// pt6 - saved r6
// pt10 - saved exc_addr
// pt_misc<47:32> - mchk code
// pt_misc<31:16> - scb vector
// r14 - base of Cbox IPRs in IO space
// r0, r1, r4, r5, r6, r12, r13, r25 - available
// r8, r9, r10 - available as all loads are physical
// MCES<mchk> is set
//
//-
EXPORT(sys_mchk_collect_iprs)
mb // MB before reading Scache IPRs
mfpr r1, icperr_stat
mfpr r8, dcperr_stat
mtpr r31, dc_flush // Flush the Dcache
mfpr r31, pt0 // Pad Mbox instructions from dc_flush
mfpr r31, pt0
nop
nop
ldqp r9, sc_addr(r14) // SC_ADDR IPR
bis r9, r31, r31 // Touch ld to make sure it completes before
// read of SC_STAT
ldqp r10, sc_stat(r14) // SC_STAT, also unlocks SC_ADDR
ldqp r12, ei_addr(r14) // EI_ADDR IPR
ldqp r13, bc_tag_addr(r14) // BC_TAG_ADDR IPR
ldqp r0, fill_syn(r14) // FILL_SYN IPR
bis r12, r13, r31 // Touch lds to make sure they complete before reading EI_STAT
bis r0, r0, r31 // Touch lds to make sure they complete before reading EI_STAT
ldqp r25, ei_stat(r14) // EI_STAT, unlock EI_ADDR, BC_TAG_ADDR, FILL_SYN
ldqp r31, ei_stat(r14) // Read again to insure it is unlocked
//+
// Look for nonretryable cases
// In this segment:
// r5<0> = 1 means retryable
// r4, r6, and r14 are available for scratch
//
//-
bis r31, r31, r5 // Clear local retryable flag
srl r25, ei_stat_v_bc_tperr, r25 // Move EI_STAT status bits to low bits
lda r4, 1(r31)
sll r4, icperr_stat_v_tmr, r4
and r1, r4, r4 // Timeout reset
bne r4, sys_cpu_mchk_not_retryable
and r8, BIT(dcperr_stat_v_lock), r4 // DCache parity error locked
bne r4, sys_cpu_mchk_not_retryable
lda r4, 1(r31)
sll r4, sc_stat_v_sc_scnd_err, r4
and r10, r4, r4 // 2nd Scache error occurred
bne r4, sys_cpu_mchk_not_retryable
bis r31, 0xa3, r4 // EI_STAT Bcache Tag Parity Error, Bcache Tag Control
// Parity Error, Interface Parity Error, 2nd Error
and r25, r4, r4
bne r4, sys_cpu_mchk_not_retryable
// bis r31, #<1@<ei_stat$v_unc_ecc_err-ei_stat$v_bc_tperr>>, r4
bis r31, BIT((ei_stat_v_unc_ecc_err-ei_stat_v_bc_tperr)), r4
and r25, r4, r4 // Isolate the Uncorrectable Error Bit
// bis r31, #<1@<ei_stat$v_fil_ird-ei_stat$v_bc_tperr>>, r6
bis r31, BIT((ei_stat_v_fil_ird-ei_stat_v_bc_tperr)), r6 // Isolate the Iread bit
cmovne r6, 0, r4 // r4 = 0 if IRD or if No Uncorrectable Error
bne r4, sys_cpu_mchk_not_retryable
lda r4, 7(r31)
and r10, r4, r4 // Isolate the Scache Tag Parity Error bits
bne r4, sys_cpu_mchk_not_retryable // All Scache Tag PEs are not retryable
lda r4, 0x7f8(r31)
and r10, r4, r4 // Isolate the Scache Data Parity Error bits
srl r10, sc_stat_v_cbox_cmd, r6
and r6, 0x1f, r6 // Isolate Scache Command field
subq r6, 1, r6 // Scache Iread command = 1
cmoveq r6, 0, r4 // r4 = 0 if IRD or if No Parity Error
bne r4, sys_cpu_mchk_not_retryable
// Look for the system unretryable cases here....
mfpr r4, isr // mchk_interrupt pin asserted
srl r4, isr_v_mck, r4
blbs r4, sys_cpu_mchk_not_retryable
//+
// Look for retryable cases
// In this segment:
// r5<0> = 1 means retryable
// r6 - holds the mchk code
// r4 and r14 are available for scratch
//
//-
// Within the chip, the retryable cases are Istream errors
lda r4, 3(r31)
sll r4, icperr_stat_v_dpe, r4
and r1, r4, r4
cmovne r4, 1, r5 // Retryable if just Icache parity error
lda r4, 0x7f8(r31)
and r10, r4, r4 // Isolate the Scache Data Parity Error bits
srl r10, sc_stat_v_cbox_cmd, r14
and r14, 0x1f, r14 // Isolate Scache Command field
subq r14, 1, r14 // Scache Iread command = 1
cmovne r4, 1, r4 // r4 = 1 if Scache data parity error bit set
cmovne r14, 0, r4 // r4 = 1 if Scache PE and Iread
bis r4, r5, r5 // Accumulate
bis r31, BIT((ei_stat_v_unc_ecc_err-ei_stat_v_bc_tperr)), r4
and r25, r4, r4 // Isolate the Uncorrectable Error Bit
and r25, BIT((ei_stat_v_fil_ird-ei_stat_v_bc_tperr)), r14 // Isolate the Iread bit
cmovne r4, 1, r4 // r4 = 1 if uncorr error
cmoveq r14, 0, r4 // r4 = 1 if uncorr and Iread
bis r4, r5, r5 // Accumulate
mfpr r6, pt_misc
extwl r6, 4, r6 // Fetch mchk code
bic r6, 1, r6 // Clear flag from interrupt flow
cmovne r5, mchk_c_retryable_ird, r6 // Set mchk code
// In the system, the retryable cases are ...
// (code here handles beh model read NXM)
#if beh_model != 0
// .if ne beh_model
ldah r4, 0xC000(r31) // Get base of demon space
lda r4, 0x550(r4) // Add NXM demon flag offset
ldqp r4, 0(r4) // Read the demon register
lda r14, mchk_c_read_nxm(r31)
cmovlbs r4, r14, r6 // Set mchk code if read NXM
cmovlbs r4, 1, r4
bis r4, r5, r5 // Accumulate retry bit
#endif
//+
// Write the logout frame
//
// Current state:
// r0 - fill_syn
// r1 - icperr_stat
// r4 - available
// r5<0> - retry flag
// r6 - mchk code
// r8 - dcperr_stat
// r9 - sc_addr
// r10 - sc_stat
// r12 - ei_addr
// r13 - bc_tag_addr
// r14 - available
// r25 - ei_stat (shifted)
// pt0 - saved r0
// pt1 - saved r1
// pt4 - saved r4
// pt5 - saved r5
// pt6 - saved r6
// pt10 - saved exc_addr
//
//-
sys_mchk_write_logout_frame:
// Get base of the logout area.
GET_IMPURE(r14) // addr of per-cpu impure area
GET_ADDR(r14,pal_logout_area+mchk_mchk_base,r14)
// Write the first 2 quadwords of the logout area:
sll r5, 63, r5 // Move retry flag to bit 63
lda r4, mchk_size(r5) // Combine retry flag and frame size
stqp r4, mchk_flag(r14) // store flag/frame size
lda r4, mchk_sys_base(r31) // sys offset
sll r4, 32, r4
lda r4, mchk_cpu_base(r4) // cpu offset
stqp r4, mchk_offsets(r14) // store sys offset/cpu offset into logout frame
//+
// Write the mchk code to the logout area
// Write error IPRs already fetched to the logout area
// Restore some GPRs from PALtemps
//-
mfpr r5, pt5
stqp r6, mchk_mchk_code(r14)
mfpr r4, pt4
stqp r1, mchk_ic_perr_stat(r14)
mfpr r6, pt6
stqp r8, mchk_dc_perr_stat(r14)
mfpr r1, pt1
stqp r9, mchk_sc_addr(r14)
stqp r10, mchk_sc_stat(r14)
stqp r12, mchk_ei_addr(r14)
stqp r13, mchk_bc_tag_addr(r14)
stqp r0, mchk_fill_syn(r14)
mfpr r0, pt0
sll r25, ei_stat_v_bc_tperr, r25 // Move EI_STAT status bits back to expected position
// retrieve lower 28 bits again from ei_stat and restore before storing to logout frame
ldah r13, 0xfff0(r31)
zapnot r13, 0x1f, r13
ldqp r13, ei_stat(r13)
sll r13, 64-ei_stat_v_bc_tperr, r13
srl r13, 64-ei_stat_v_bc_tperr, r13
or r25, r13, r25
stqp r25, mchk_ei_stat(r14)
//+
// complete the CPU-specific part of the logout frame
//-
#ifndef SIMOS
// cant' assemble.Where is the macro ?
mchk_logout mm_stat
mchk_logout va // Unlocks VA and MM_STAT
mchk_logout isr
mchk_logout icsr
mchk_logout pal_base
mchk_logout exc_mask
mchk_logout exc_sum
#endif
ldah r13, 0xfff0(r31)
zap r13, 0xE0, r13 // Get Cbox IPR base
ldqp r13, ld_lock(r13) // Get ld_lock IPR
stqp r13, mchk_ld_lock(r14) // and stash it in the frame
//+
// complete the PAL-specific part of the logout frame
//-
#ifdef vms
t = 0
.repeat 24
pt_mchk_logout \t
t = t + 1
.endr
#endif
#ifndef SIMOS
//can't assemble ?
pt_mchk_logout 0
pt_mchk_logout 1
pt_mchk_logout 2
pt_mchk_logout 3
pt_mchk_logout 4
pt_mchk_logout 5
pt_mchk_logout 6
pt_mchk_logout 7
pt_mchk_logout 8
pt_mchk_logout 9
pt_mchk_logout 10
pt_mchk_logout 11
pt_mchk_logout 12
pt_mchk_logout 13
pt_mchk_logout 14
pt_mchk_logout 15
pt_mchk_logout 16
pt_mchk_logout 17
pt_mchk_logout 18
pt_mchk_logout 19
pt_mchk_logout 20
pt_mchk_logout 21
pt_mchk_logout 22
pt_mchk_logout 23
#endif
//+
// Log system specific info here
//-
#if alpha_fw != 0
// .if ne alpha_fw
storeTLEP_:
lda r13, 0xffc4(r31) // Get GBUS$MISCR address
sll r13, 24, r13
ldqp r13, 0(r13) // Read GBUS$MISCR
sll r13, 16, r13 // shift up to proper field
mfpr r8, pt_whami // get our node id
extbl r8, 1, r8 // shift to bit 0
or r13, r8, r13 // merge MISCR and WHAMI
stlp r13, mchk$gbus(r14) // write to logout area
srl r8, 1, r8 // shift off cpu number
Get_TLSB_Node_Address r8,r13 // compute our nodespace address
OSFmchk_TLEPstore tldev, tlsb=1
OSFmchk_TLEPstore tlber, tlsb=1, clr=1
OSFmchk_TLEPstore tlcnr, tlsb=1
OSFmchk_TLEPstore tlvid, tlsb=1
OSFmchk_TLEPstore tlesr0, tlsb=1, clr=1
OSFmchk_TLEPstore tlesr1, tlsb=1, clr=1
OSFmchk_TLEPstore tlesr2, tlsb=1, clr=1
OSFmchk_TLEPstore tlesr3, tlsb=1, clr=1
OSFmchk_TLEPstore tlmodconfig
OSFmchk_TLEPstore tlepaerr, clr=1
OSFmchk_TLEPstore tlepderr, clr=1
OSFmchk_TLEPstore tlepmerr, clr=1
OSFmchk_TLEPstore tlintrmask0
OSFmchk_TLEPstore tlintrmask1
OSFmchk_TLEPstore tlintrsum0
OSFmchk_TLEPstore tlintrsum1
OSFmchk_TLEPstore tlep_vmg
// .endc
#endif /*alpha_fw != 0 */
// Unlock IPRs
lda r8, (BIT(dcperr_stat_v_lock)|BIT(dcperr_stat_v_seo))(r31)
mtpr r8, dcperr_stat // Clear Dcache parity error status
lda r8, (BIT(icperr_stat_v_dpe)|BIT(icperr_stat_v_tpe)|BIT(icperr_stat_v_tmr))(r31)
mtpr r8, icperr_stat // Clear Icache parity error & timeout status
1: ldqp r8, mchk_ic_perr_stat(r14) // get ICPERR_STAT value
GET_ADDR(r0,0x1800,r31) // get ICPERR_STAT value
and r0, r8, r0 // compare
beq r0, 2f // check next case if nothing set
lda r0, mchk_c_retryable_ird(r31) // set new MCHK code
br r31, do_670 // setup new vector
2: ldqp r8, mchk_dc_perr_stat(r14) // get DCPERR_STAT value
GET_ADDR(r0,0x3f,r31) // get DCPERR_STAT value
and r0, r8, r0 // compare
beq r0, 3f // check next case if nothing set
lda r0, mchk_c_dcperr(r31) // set new MCHK code
br r31, do_670 // setup new vector
3: ldqp r8, mchk_sc_stat(r14) // get SC_STAT value
GET_ADDR(r0,0x107ff,r31) // get SC_STAT value
and r0, r8, r0 // compare
beq r0, 4f // check next case if nothing set
lda r0, mchk_c_scperr(r31) // set new MCHK code
br r31, do_670 // setup new vector
4: ldqp r8, mchk_ei_stat(r14) // get EI_STAT value
GET_ADDR(r0,0x30000000,r31) // get EI_STAT value
and r0, r8, r0 // compare
beq r0, 5f // check next case if nothing set
lda r0, mchk_c_bcperr(r31) // set new MCHK code
br r31, do_670 // setup new vector
5: ldlp r8, mchk_tlber(r14) // get TLBER value
GET_ADDR(r0,0xfe01,r31) // get high TLBER mask value
sll r0, 16, r0 // shift into proper position
GET_ADDR(r1,0x03ff,r31) // get low TLBER mask value
or r0, r1, r0 // merge mask values
and r0, r8, r0 // compare
beq r0, 6f // check next case if nothing set
GET_ADDR(r0, 0xfff0, r31) // set new MCHK code
br r31, do_660 // setup new vector
6: ldlp r8, mchk_tlepaerr(r14) // get TLEPAERR value
GET_ADDR(r0,0xff7f,r31) // get TLEPAERR mask value
and r0, r8, r0 // compare
beq r0, 7f // check next case if nothing set
GET_ADDR(r0, 0xfffa, r31) // set new MCHK code
br r31, do_660 // setup new vector
7: ldlp r8, mchk_tlepderr(r14) // get TLEPDERR value
GET_ADDR(r0,0x7,r31) // get TLEPDERR mask value
and r0, r8, r0 // compare
beq r0, 8f // check next case if nothing set
GET_ADDR(r0, 0xfffb, r31) // set new MCHK code
br r31, do_660 // setup new vector
8: ldlp r8, mchk_tlepmerr(r14) // get TLEPMERR value
GET_ADDR(r0,0x3f,r31) // get TLEPMERR mask value
and r0, r8, r0 // compare
beq r0, 9f // check next case if nothing set
GET_ADDR(r0, 0xfffc, r31) // set new MCHK code
br r31, do_660 // setup new vector
9: ldqp r8, mchk_ei_stat(r14) // get EI_STAT value
GET_ADDR(r0,0xb,r31) // get EI_STAT mask value
sll r0, 32, r0 // shift to upper lw
and r0, r8, r0 // compare
beq r0, 1f // check next case if nothing set
GET_ADDR(r0,0xfffd,r31) // set new MCHK code
br r31, do_660 // setup new vector
1: ldlp r8, mchk_tlepaerr(r14) // get TLEPAERR value
GET_ADDR(r0,0x80,r31) // get TLEPAERR mask value
and r0, r8, r0 // compare
beq r0, cont_logout_frame // check next case if nothing set
GET_ADDR(r0, 0xfffe, r31) // set new MCHK code
br r31, do_660 // setup new vector
do_670: lda r8, scb_v_procmchk(r31) // SCB vector
br r31, do_6x0_cont
do_660: lda r8, scb_v_sysmchk(r31) // SCB vector
do_6x0_cont:
sll r8, 16, r8 // shift to proper position
mfpr r1, pt_misc // fetch current pt_misc
GET_ADDR(r4,0xffff, r31) // mask for vector field
sll r4, 16, r4 // shift to proper position
bic r1, r4, r1 // clear out old vector field
or r1, r8, r1 // merge in new vector
mtpr r1, pt_misc // save new vector field
stlp r0, mchk_mchk_code(r14) // save new mchk code
cont_logout_frame:
// Restore some GPRs from PALtemps
mfpr r0, pt0
mfpr r1, pt1
mfpr r4, pt4
mfpr r12, pt10 // fetch original PC
blbs r12, sys_machine_check_while_in_pal // MCHK halt if machine check in pal
//XXXbugnion pvc_jsr armc, bsr=1
bsr r12, sys_arith_and_mchk // go check for and deal with arith trap
mtpr r31, exc_sum // Clear Exception Summary
mfpr r25, pt10 // write exc_addr after arith_and_mchk to pickup new pc
stqp r25, mchk_exc_addr(r14)
//+
// Set up the km trap
//-
sys_post_mchk_trap:
mfpr r25, pt_misc // Check for flag from mchk interrupt
extwl r25, 4, r25
blbs r25, sys_mchk_stack_done // Stack from already pushed if from interrupt flow
bis r14, r31, r12 // stash pointer to logout area
mfpr r14, pt10 // get exc_addr
sll r11, 63-3, r25 // get mode to msb
bge r25, 3f
mtpr r31, dtb_cm
mtpr r31, ev5__ps
mtpr r30, pt_usp // save user stack
mfpr r30, pt_ksp
3:
lda sp, 0-osfsf_c_size(sp) // allocate stack space
nop
stq r18, osfsf_a2(sp) // a2
stq r11, osfsf_ps(sp) // save ps
stq r14, osfsf_pc(sp) // save pc
mfpr r25, pt_entint // get the VA of the interrupt routine
stq r16, osfsf_a0(sp) // a0
lda r16, osfint_c_mchk(r31) // flag as mchk in a0
stq r17, osfsf_a1(sp) // a1
mfpr r17, pt_misc // get vector
stq r29, osfsf_gp(sp) // old gp
mtpr r25, exc_addr //
or r31, 7, r11 // get new ps (km, high ipl)
subq r31, 1, r18 // get a -1
extwl r17, 2, r17 // a1 <- interrupt vector
bis r31, ipl_machine_check, r25
mtpr r25, ipl // Set internal ipl
srl r18, 42, r18 // shift off low bits of kseg addr
sll r18, 42, r18 // shift back into position
mfpr r29, pt_kgp // get the kern r29
or r12, r18, r18 // EV4 algorithm - pass pointer to mchk frame as kseg address
hw_rei_spe // out to interrupt dispatch routine
//+
// The stack is pushed. Load up a0,a1,a2 and vector via entInt
//
//-
ALIGN_BRANCH
sys_mchk_stack_done:
lda r16, osfint_c_mchk(r31) // flag as mchk/crd in a0
lda r17, scb_v_sysmchk(r31) // a1 <- interrupt vector
subq r31, 1, r18 // get a -1
mfpr r25, pt_entInt
srl r18, 42, r18 // shift off low bits of kseg addr
mtpr r25, exc_addr // load interrupt vector
sll r18, 42, r18 // shift back into position
or r14, r18, r18 // EV4 algorithm - pass pointer to mchk frame as kseg address
hw_rei_spe // done
ALIGN_BRANCH
sys_cpu_mchk_not_retryable:
mfpr r6, pt_misc
extwl r6, 4, r6 // Fetch mchk code
br r31, sys_mchk_write_logout_frame //
//+
//sys$double_machine_check - a machine check was started, but MCES<MCHK> was
// already set. We will now double machine check halt.
//
// pt0 - old R0
//
//+
EXPORT(sys_double_machine_check)
#ifndef SIMOS
pvc$jsr updpcb, bsr=1
bsr r0, pal_update_pcb // update the pcb
#endif
lda r0, hlt_c_dbl_mchk(r31)
br r31, sys_enter_console
//+
//sys$machine_check_while_in_pal - a machine check was started, exc_addr points to
// a PAL PC. We will now machine check halt.
//
// pt0 - old R0
//
//+
sys_machine_check_while_in_pal:
stqp r12, mchk_exc_addr(r14) // exc_addr has not yet been written
#ifndef SIMOS
pvc$jsr updpcb, bsr=1
bsr r0, pal_update_pcb // update the pcb
#endif
lda r0, hlt_c_mchk_from_pal(r31)
br r31, sys_enter_console
//ARITH and MCHK
// Check for arithmetic errors and build trap frame,
// but don't post the trap.
// on entry:
// pt10 - exc_addr
// r12 - return address
// r14 - logout frame pointer
// r13 - available
// r8,r9,r10 - available except across stq's
// pt0,1,6 - available
//
// on exit:
// pt10 - new exc_addr
// r17 = exc_mask
// r16 = exc_sum
// r14 - logout frame pointer
//
ALIGN_BRANCH
sys_arith_and_mchk:
mfpr r13, ev5__exc_sum
srl r13, exc_sum_v_swc, r13
bne r13, handle_arith_and_mchk
// XXX bugnion pvc$jsr armc, bsr=1, dest=1
ret r31, (r12) // return if no outstanding arithmetic error
handle_arith_and_mchk:
mtpr r31, ev5__dtb_cm // Set Mbox current mode to kernel -
// no virt ref for next 2 cycles
mtpr r14, pt0
mtpr r1, pt1 // get a scratch reg
and r11, osfps_m_mode, r1 // get mode bit
bis r11, r31, r25 // save ps
beq r1, 1f // if zero we are in kern now
bis r31, r31, r25 // set the new ps
mtpr r30, pt_usp // save user stack
mfpr r30, pt_ksp // get kern stack
1:
mfpr r14, exc_addr // get pc into r14 in case stack writes fault
lda sp, 0-osfsf_c_size(sp) // allocate stack space
mtpr r31, ev5__ps // Set Ibox current mode to kernel
mfpr r1, pt_entArith
stq r14, osfsf_pc(sp) // save pc
stq r17, osfsf_a1(sp)
mfpr r17, ev5__exc_mask // Get exception register mask IPR - no mtpr exc_sum in next cycle
stq r29, osfsf_gp(sp)
stq r16, osfsf_a0(sp) // save regs
bis r13, r31, r16 // move exc_sum to r16
stq r18, osfsf_a2(sp)
stq r11, osfsf_ps(sp) // save ps
mfpr r29, pt_kgp // get the kern gp
mfpr r14, pt0 // restore logout frame pointer from pt0
bis r25, r31, r11 // set new ps
mtpr r1, pt10 // Set new PC
mfpr r1, pt1
// XXX bugnion pvc$jsr armc, bsr=1, dest=1
ret r31, (r12) // return if no outstanding arithmetic error
// .sbttl "SYS$ENTER_CONSOLE - Common PALcode for ENTERING console"
ALIGN_BLOCK
// SYS$enter_console
//
// Entry:
// Entered when PAL wants to enter the console.
// usually as the result of a HALT instruction or button,
// or catastrophic error.
//
// Regs on entry...
//
// R0 = halt code
// pt0 <- r0
//
// Function:
//
// Save all readable machine state, and "call" the console
//
// Returns:
//
//
// Notes:
//
// In these routines, once the save state routine has been executed,
// the remainder of the registers become scratchable, as the only
// "valid" copy of them is the "saved" copy.
//
// Any registers or PTs that are modified before calling the save
// routine will have there data lost. The code below will save all
// state, but will loose pt 0,4,5.
//
//-
EXPORT(sys_enter_console)
mtpr r1, pt4
mtpr r3, pt5
#ifdef SIMOS
subq r31, 1, r1
sll r1, 42, r1
ldah r1, 1(r1)
#else /* SIMOS */
lda r3, pal_enter_console_ptr(r31) //find stored vector
ldqp r1, 0(r3)
#endif /* SIMOS */
#ifdef SIMOS
/* taken from scrmax, seems like the obvious thing to do */
mtpr r1, exc_addr
mfpr r1, pt4
mfpr r3, pt5
STALL
STALL
hw_rei_stall
#else
pvc$violate 1007
jmp r31, (r1) // off to common routine
#endif
// .sbttl "SYS$EXIT_CONSOLE - Common PALcode for ENTERING console"
//+
// sys$exit_console
//
// Entry:
// Entered when console wants to reenter PAL.
// usually as the result of a CONTINUE.
//
//
// Regs' on entry...
//
//
// Function:
//
// Restore all readable machine state, and return to user code.
//
//
//
//-
ALIGN_BLOCK
sys_exit_console:
//Disable physical mode:
#if enable_physical_console != 0
// .if ne enable_physical_console
mfpr r25, pt_ptbr
bic r25, 1, r25 // clear physical console flag
mtpr r25, pt_ptbr
#endif
GET_IMPURE(r1)
// clear lock and intr_flags prior to leaving console
rc r31 // clear intr_flag
// lock flag cleared by restore_state
#ifndef SIMOS
pvc$jsr rststa, bsr=1
bsr r3, pal_restore_state // go restore all state
// note, R1 and R3 are NOT restored
// by restore_state.
#endif
// TB's have been flushed
ldqp r3, (cns_gpr+(8*3))(r1) // restore r3
ldqp r1, (cns_gpr+8)(r1) // restore r1
hw_rei_stall // back to user
#if turbo_pcia_intr_fix != 0
// .if ne turbo_pcia_intr_fix
check_pcia_intr:
mfpr r14, pt14 // fetch saved PCIA interrupt info
beq r14, check_done // don't bother checking if no info
mfpr r13, ipl // check the current IPL
bic r13, 3, r25 // isolate ipl<5:2>
cmpeq r25, 0x14, r25 // is it an I/O interrupt?
beq r25, check_done // no, return
and r13, 3, r25 // get I/O interrupt index
extbl r14, r25, r13 // extract info for this interrupt
beq r13, check_done // if no info, return
// This is an RTI from a PCIA interrupt
lda r12, 1(r31) // get initial bit mask
sll r12, r25, r25 // shift to select interrupt index
zap r14, r25, r14 // clear out info from this interrupt
mtpr r14, pt14 // and save it
and r13, 3, r25 // isolate HPC field
subq r25, 1, r25 // subtract 1 to get HPC number
srl r13, 2, r13 // generate base register address
sll r13, 6, r13 // get slot/hose address bits
lda r13, 0x38(r13) // insert other high bits
sll r13, 28, r13 // shift high bits into position
// Read the IPROGx register
sll r25, 21, r14 // HPC address bit position
or r13, r14, r14 // add in upper bits
lda r14, 0x400(r14) // add in lower bits
ldqp r14, 0(r14) // read IPROG
srl r14, 4, r12 // check the In Progress bit
blbc r12, 1f // skip if none in progress
and r14, 0xf, r14 // isolate interrupt source
lda r12, 1(r31) // make initial mask
sll r12, r14, r14 // shift to make new intr source mask
br r31, 2f
// Write the SMPLIRQx register
1: or r31, r31, r14 // default interrupt source mask
2: GET_ADDR(r12, 0xffff, r31) // default SMPLIRQx data
bic r12, r14, r12 // clear any interrupts in progres
//orig lda r14, <0xbffc@-2>(r31) // get register address bits
lda r14,(0xbffc>>2)(r31)
sll r14, 10, r14 // shift into position
or r14, r13, r14 // add in upper bits
sll r25, 8, r25 // shift HPC number into position
or r14, r25, r14 // add in lower bits
stqp r12, 0(r14) // write SMPLIRQx register
mb
ldqp r12, 0(r14) // read it back
bis r12, r12, r12 // touch register to insure completion
check_done: // do these now and return
lda r25, osfsf_c_size(sp) // get updated sp
bis r25, r31, r14 // touch r14,r25 to stall mf exc_addr
br r31, pcia_check_return
#endif
// .sbttl KLUDGE_INITIAL_PCBB - PCB for Boot use only
ALIGN_128
kludge_initial_pcbb: // PCB is 128 bytes long
// .repeat 16
// .quad 0
// .endr
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop
// .sbttl "SET_SC_BC_CTL subroutine"
//
// Subroutine to set the SC_CTL, BC_CONFIG, and BC_CTL registers and flush the Scache
// There must be no outstanding memory references -- istream or dstream -- when
// these registers are written. EV5 prefetcher is difficult to turn off. So,
// this routine needs to be exactly 32 instructions long// the final jmp must
// be in the last octaword of a page (prefetcher doesn't go across page)
//
//
// Register expecations:
// r0 base address of CBOX iprs
// r5 value to set sc_ctl to (flush bit is added in)
// r6 value to set bc_ctl to
// r7 value to set bc_config to
// r10 return address
// r19 old sc_ctl value
// r20 old value of bc_ctl
// r21 old value of bc_config
// r23 flush scache flag
// Register usage:
// r17 sc_ctl with flush bit cleared
// r22 loop address
//
//
#ifndef SIMOS
align_page <32*4> // puts start of routine at next page boundary minus 32 longwords.
#endif
set_sc_bc_ctl:
#ifndef SIMOS
br r22, sc_ctl_loop //this branch must be in the same 4 instruction block as it's dest
sc_ctl_loop:
// XXX bugnion pvc$jsr scloop, dest=1
mb
mb
bis r5, r23, r5 //r5 <- same sc_ctl with flush bit set (if flag set in r23)
stqp r19, ev5__sc_ctl(r0) // write sc_ctl
stqp r20, ev5__bc_ctl(r0) // write bc_ctl
bis r31, r6, r20 // update r20 with new bc_ctl for 2nd time through loop
stqp r21, bc_config(r0) // write bc_config register
bis r31, r7, r21 // update r21 with new bc_config for 2nd time through loop
bic r19, BIT(sc_ctl_v_sc_flush), r17 //r17 <- same sc_ctl without flush bit set
//NOTE: only works because flush bit is in lower 16 bits
wmb // don't merge with other writes
stqp r17, ev5__sc_ctl(r0) // write sc_ctl without flush bit
ldqp r17, ev5__sc_ctl(r0) // read sc_ctl
bis r17, r17, r17 // stall until the data comes back
bis r31, r5, r19 // update r19 with new sc_ctl for 2nd time through loop
// fill with requisite number of nops (unops ok) to make exactly 32 instructions in loop
t = 0
.repeat 15
unop
t = t + 1
.endr
$opdef mnemonic= myjmp, -
format= <custom=iregister, iregister, branch_offset>, -
encoding= <26:31=0x1A, 21:25=%OP1,16:20=%OP2,14:15=0x00,0:13=%op3>
// XXXbugnion pvc$jsr scloop
myjmp r22,r22,sc_ctl_loop // first time, jump to sc_ctl_loop (hint will cause prefetcher to go to loop instead
// of straight) // r22 gets sc_ctl_done
// 2nd time, code continues at sc_ctl_done (I hope)
sc_ctl_done:
// XXX bugnion pvc$jsr scloop, dest=1
// XXX bugnion pvc$jsr scbcctl
#endif /*SIMOS*/
ret r31, (r10) // return to where we came from
.end
|