1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
|
# Copyright (c) 2005-2006 The Regents of The University of Michigan
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Nathan Binkert
# Lisa Hsu
import matplotlib, pylab
from matplotlib.font_manager import FontProperties
from matplotlib.numerix import array, arange, reshape, shape, transpose, zeros
from matplotlib.numerix import Float
from matplotlib.ticker import NullLocator
matplotlib.interactive(False)
from chart import ChartOptions
class BarChart(ChartOptions):
def __init__(self, default=None, **kwargs):
super(BarChart, self).__init__(default, **kwargs)
self.inputdata = None
self.chartdata = None
self.inputerr = None
self.charterr = None
def gen_colors(self, count):
cmap = matplotlib.cm.get_cmap(self.colormap)
if count == 1:
return cmap([ 0.5 ])
if count < 5:
return cmap(arange(5) / float(4))[:count]
return cmap(arange(count) / float(count - 1))
# The input data format does not match the data format that the
# graph function takes because it is intuitive. The conversion
# from input data format to chart data format depends on the
# dimensionality of the input data. Check here for the
# dimensionality and correctness of the input data
def set_data(self, data):
if data is None:
self.inputdata = None
self.chartdata = None
return
data = array(data)
dim = len(shape(data))
if dim not in (1, 2, 3):
raise AttributeError, "Input data must be a 1, 2, or 3d matrix"
self.inputdata = data
# If the input data is a 1d matrix, then it describes a
# standard bar chart.
if dim == 1:
self.chartdata = array([[data]])
# If the input data is a 2d matrix, then it describes a bar
# chart with groups. The matrix being an array of groups of
# bars.
if dim == 2:
self.chartdata = transpose([data], axes=(2,0,1))
# If the input data is a 3d matrix, then it describes an array
# of groups of bars with each bar being an array of stacked
# values.
if dim == 3:
self.chartdata = transpose(data, axes=(1,2,0))
def get_data(self):
return self.inputdata
data = property(get_data, set_data)
def set_err(self, err):
if err is None:
self.inputerr = None
self.charterr = None
return
err = array(err)
dim = len(shape(err))
if dim not in (1, 2, 3):
raise AttributeError, "Input err must be a 1, 2, or 3d matrix"
self.inputerr = err
if dim == 1:
self.charterr = array([[err]])
if dim == 2:
self.charterr = transpose([err], axes=(2,0,1))
if dim == 3:
self.charterr = transpose(err, axes=(1,2,0))
def get_err(self):
return self.inputerr
err = property(get_err, set_err)
# Graph the chart data.
# Input is a 3d matrix that describes a plot that has multiple
# groups, multiple bars in each group, and multiple values stacked
# in each bar. The underlying bar() function expects a sequence of
# bars in the same stack location and same group location, so the
# organization of the matrix is that the inner most sequence
# represents one of these bar groups, then those are grouped
# together to make one full stack of bars in each group, and then
# the outer most layer describes the groups. Here is an example
# data set and how it gets plotted as a result.
#
# e.g. data = [[[10,11,12], [13,14,15], [16,17,18], [19,20,21]],
# [[22,23,24], [25,26,27], [28,29,30], [31,32,33]]]
#
# will plot like this:
#
# 19 31 20 32 21 33
# 16 28 17 29 18 30
# 13 25 14 26 15 27
# 10 22 11 23 12 24
#
# Because this arrangement is rather conterintuitive, the rearrange
# function takes various matricies and arranges them to fit this
# profile.
#
# This code deals with one of the dimensions in the matrix being
# one wide.
#
def graph(self):
if self.chartdata is None:
raise AttributeError, "Data not set for bar chart!"
dim = len(shape(self.inputdata))
cshape = shape(self.chartdata)
if self.charterr is not None and shape(self.charterr) != cshape:
raise AttributeError, 'Dimensions of error and data do not match'
if dim == 1:
colors = self.gen_colors(cshape[2])
colors = [ [ colors ] * cshape[1] ] * cshape[0]
if dim == 2:
colors = self.gen_colors(cshape[0])
colors = [ [ [ c ] * cshape[2] ] * cshape[1] for c in colors ]
if dim == 3:
colors = self.gen_colors(cshape[1])
colors = [ [ [ c ] * cshape[2] for c in colors ] ] * cshape[0]
colors = array(colors)
self.figure = pylab.figure(figsize=self.chart_size)
outer_axes = None
inner_axes = None
if self.xsubticks is not None:
color = self.figure.get_facecolor()
self.metaaxes = self.figure.add_axes(self.figure_size,
axisbg=color, frameon=False)
for tick in self.metaaxes.xaxis.majorTicks:
tick.tick1On = False
tick.tick2On = False
self.metaaxes.set_yticklabels([])
self.metaaxes.set_yticks([])
size = [0] * 4
size[0] = self.figure_size[0]
size[1] = self.figure_size[1] + .12
size[2] = self.figure_size[2]
size[3] = self.figure_size[3] - .12
self.axes = self.figure.add_axes(size)
outer_axes = self.metaaxes
inner_axes = self.axes
else:
self.axes = self.figure.add_axes(self.figure_size)
outer_axes = self.axes
inner_axes = self.axes
bars_in_group = len(self.chartdata)
width = 1.0 / ( bars_in_group + 1)
center = width / 2
bars = []
for i,stackdata in enumerate(self.chartdata):
bottom = array([0.0] * len(stackdata[0]), Float)
stack = []
for j,bardata in enumerate(stackdata):
bardata = array(bardata)
ind = arange(len(bardata)) + i * width + center
yerr = None
if self.charterr is not None:
yerr = self.charterr[i][j]
bar = self.axes.bar(ind, bardata, width, bottom=bottom,
color=colors[i][j], yerr=yerr)
if self.xsubticks is not None:
self.metaaxes.bar(ind, [0] * len(bardata), width)
stack.append(bar)
bottom += bardata
bars.append(stack)
if self.xlabel is not None:
outer_axes.set_xlabel(self.xlabel)
if self.ylabel is not None:
inner_axes.set_ylabel(self.ylabel)
if self.yticks is not None:
ymin, ymax = self.axes.get_ylim()
nticks = float(len(self.yticks))
ticks = arange(nticks) / (nticks - 1) * (ymax - ymin) + ymin
inner_axes.set_yticks(ticks)
inner_axes.set_yticklabels(self.yticks)
elif self.ylim is not None:
inner_axes.set_ylim(self.ylim)
if self.xticks is not None:
outer_axes.set_xticks(arange(cshape[2]) + .5)
outer_axes.set_xticklabels(self.xticks)
if self.xsubticks is not None:
numticks = (cshape[0] + 1) * cshape[2]
inner_axes.set_xticks(arange(numticks) * width + 2 * center)
xsubticks = list(self.xsubticks) + [ '' ]
inner_axes.set_xticklabels(xsubticks * cshape[2], fontsize=7,
rotation=30)
if self.legend is not None:
if dim == 1:
lbars = bars[0][0]
if dim == 2:
lbars = [ bars[i][0][0] for i in xrange(len(bars))]
if dim == 3:
number = len(bars[0])
lbars = [ bars[0][number - j - 1][0] for j in xrange(number)]
if self.fig_legend:
self.figure.legend(lbars, self.legend, self.legend_loc,
prop=FontProperties(size=self.legend_size))
else:
self.axes.legend(lbars, self.legend, self.legend_loc,
prop=FontProperties(size=self.legend_size))
if self.title is not None:
self.axes.set_title(self.title)
def savefig(self, name):
self.figure.savefig(name)
def savecsv(self, name):
f = file(name, 'w')
data = array(self.inputdata)
dim = len(data.shape)
if dim == 1:
#if self.xlabel:
# f.write(', '.join(list(self.xlabel)) + '\n')
f.write(', '.join([ '%f' % val for val in data]) + '\n')
if dim == 2:
#if self.xlabel:
# f.write(', '.join([''] + list(self.xlabel)) + '\n')
for i,row in enumerate(data):
ylabel = []
#if self.ylabel:
# ylabel = [ self.ylabel[i] ]
f.write(', '.join(ylabel + [ '%f' % v for v in row]) + '\n')
if dim == 3:
f.write("don't do 3D csv files\n")
pass
f.close()
if __name__ == '__main__':
from random import randrange
import random, sys
dim = 3
number = 5
args = sys.argv[1:]
if len(args) > 3:
sys.exit("invalid number of arguments")
elif len(args) > 0:
myshape = [ int(x) for x in args ]
else:
myshape = [ 3, 4, 8 ]
# generate a data matrix of the given shape
size = reduce(lambda x,y: x*y, myshape)
#data = [ random.randrange(size - i) + 10 for i in xrange(size) ]
data = [ float(i)/100.0 for i in xrange(size) ]
data = reshape(data, myshape)
# setup some test bar charts
if True:
chart1 = BarChart()
chart1.data = data
chart1.xlabel = 'Benchmark'
chart1.ylabel = 'Bandwidth (GBps)'
chart1.legend = [ 'x%d' % x for x in xrange(myshape[-1]) ]
chart1.xticks = [ 'xtick%d' % x for x in xrange(myshape[0]) ]
chart1.title = 'this is the title'
if len(myshape) > 2:
chart1.xsubticks = [ '%d' % x for x in xrange(myshape[1]) ]
chart1.graph()
chart1.savefig('/tmp/test1.png')
chart1.savefig('/tmp/test1.ps')
chart1.savefig('/tmp/test1.eps')
chart1.savecsv('/tmp/test1.csv')
if False:
chart2 = BarChart()
chart2.data = data
chart2.colormap = 'gray'
chart2.graph()
chart2.savefig('/tmp/test2.png')
chart2.savefig('/tmp/test2.ps')
# pylab.show()
|