1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
|
# Copyright (c) 2003-2004 The Regents of The University of Michigan
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Nathan Binkert
import MySQLdb, re, string
def statcmp(a, b):
v1 = a.split('.')
v2 = b.split('.')
last = min(len(v1), len(v2)) - 1
for i,j in zip(v1[0:last], v2[0:last]):
if i != j:
return cmp(i, j)
# Special compare for last element.
if len(v1) == len(v2):
return cmp(v1[last], v2[last])
else:
return cmp(len(v1), len(v2))
class RunData:
def __init__(self, row):
self.run = int(row[0])
self.name = row[1]
self.user = row[2]
self.project = row[3]
class SubData:
def __init__(self, row):
self.stat = int(row[0])
self.x = int(row[1])
self.y = int(row[2])
self.name = row[3]
self.descr = row[4]
class Data:
def __init__(self, row):
if len(row) != 5:
raise 'stat db error'
self.stat = int(row[0])
self.run = int(row[1])
self.x = int(row[2])
self.y = int(row[3])
self.data = float(row[4])
def __repr__(self):
return '''Data(['%d', '%d', '%d', '%d', '%f'])''' % ( self.stat,
self.run, self.x, self.y, self.data)
class StatData(object):
def __init__(self, row):
self.stat = int(row[0])
self.name = row[1]
self.desc = row[2]
self.type = row[3]
self.prereq = int(row[5])
self.precision = int(row[6])
import flags
self.flags = 0
if int(row[4]): self.flags |= flags.printable
if int(row[7]): self.flags |= flags.nozero
if int(row[8]): self.flags |= flags.nonan
if int(row[9]): self.flags |= flags.total
if int(row[10]): self.flags |= flags.pdf
if int(row[11]): self.flags |= flags.cdf
if self.type == 'DIST' or self.type == 'VECTORDIST':
self.min = float(row[12])
self.max = float(row[13])
self.bktsize = float(row[14])
self.size = int(row[15])
if self.type == 'FORMULA':
self.formula = self.db.allFormulas[self.stat]
class Node(object):
def __init__(self, name):
self.name = name
def __str__(self):
return self.name
class Result(object):
def __init__(self, x, y):
self.data = {}
self.x = x
self.y = y
def __contains__(self, run):
return run in self.data
def __getitem__(self, run):
if run not in self.data:
self.data[run] = [ [ 0.0 ] * self.y for i in xrange(self.x) ]
return self.data[run]
class Database(object):
def __init__(self):
self.host = 'zizzer.pool'
self.user = ''
self.passwd = ''
self.db = 'm5stats'
self.cursor = None
self.allStats = []
self.allStatIds = {}
self.allStatNames = {}
self.allSubData = {}
self.allRuns = []
self.allRunIds = {}
self.allRunNames = {}
self.allBins = []
self.allBinIds = {}
self.allBinNames = {}
self.allFormulas = {}
self.stattop = {}
self.statdict = {}
self.statlist = []
self.mode = 'sum';
self.runs = None
self.bins = None
self.ticks = None
self.method = 'sum'
self._method = type(self).sum
def get(self, job, stat, system=None):
run = self.allRunNames.get(str(job), None)
if run is None:
return None
from info import ProxyError, scalar, vector, value, values, total, len
if system is None and hasattr(job, 'system'):
system = job.system
if system is not None:
stat.system = self[system]
try:
if scalar(stat):
return value(stat, run.run)
if vector(stat):
return values(stat, run.run)
except ProxyError:
return None
return None
def query(self, sql):
self.cursor.execute(sql)
def update_dict(self, dict):
dict.update(self.stattop)
def append(self, stat):
statname = re.sub(':', '__', stat.name)
path = string.split(statname, '.')
pathtop = path[0]
fullname = ''
x = self
while len(path) > 1:
name = path.pop(0)
if not x.__dict__.has_key(name):
x.__dict__[name] = Node(fullname + name)
x = x.__dict__[name]
fullname = '%s%s.' % (fullname, name)
name = path.pop(0)
x.__dict__[name] = stat
self.stattop[pathtop] = self.__dict__[pathtop]
self.statdict[statname] = stat
self.statlist.append(statname)
def connect(self):
# connect
self.thedb = MySQLdb.connect(db=self.db,
host=self.host,
user=self.user,
passwd=self.passwd)
# create a cursor
self.cursor = self.thedb.cursor()
self.query('''select rn_id,rn_name,rn_sample,rn_user,rn_project
from runs''')
for result in self.cursor.fetchall():
run = RunData(result);
self.allRuns.append(run)
self.allRunIds[run.run] = run
self.allRunNames[run.name] = run
self.query('select * from bins')
for id,name in self.cursor.fetchall():
self.allBinIds[int(id)] = name
self.allBinNames[name] = int(id)
self.query('select sd_stat,sd_x,sd_y,sd_name,sd_descr from subdata')
for result in self.cursor.fetchall():
subdata = SubData(result)
if self.allSubData.has_key(subdata.stat):
self.allSubData[subdata.stat].append(subdata)
else:
self.allSubData[subdata.stat] = [ subdata ]
self.query('select * from formulas')
for id,formula in self.cursor.fetchall():
self.allFormulas[int(id)] = formula.tostring()
StatData.db = self
self.query('select * from stats')
import info
for result in self.cursor.fetchall():
stat = info.NewStat(self, StatData(result))
self.append(stat)
self.allStats.append(stat)
self.allStatIds[stat.stat] = stat
self.allStatNames[stat.name] = stat
# Name: listbins
# Desc: Prints all bins matching regex argument, if no argument
# is given all bins are returned
def listBins(self, regex='.*'):
print '%-50s %-10s' % ('bin name', 'id')
print '-' * 61
names = self.allBinNames.keys()
names.sort()
for name in names:
id = self.allBinNames[name]
print '%-50s %-10d' % (name, id)
# Name: listruns
# Desc: Prints all runs matching a given user, if no argument
# is given all runs are returned
def listRuns(self, user=None):
print '%-40s %-10s %-5s' % ('run name', 'user', 'id')
print '-' * 62
for run in self.allRuns:
if user == None or user == run.user:
print '%-40s %-10s %-10d' % (run.name, run.user, run.run)
# Name: listTicks
# Desc: Prints all samples for a given run
def listTicks(self, runs=None):
print "tick"
print "----------------------------------------"
sql = 'select distinct dt_tick from data where dt_stat=1180 and ('
if runs != None:
first = True
for run in runs:
if first:
# sql += ' where'
first = False
else:
sql += ' or'
sql += ' dt_run=%s' % run.run
sql += ')'
self.query(sql)
for r in self.cursor.fetchall():
print r[0]
# Name: retTicks
# Desc: Prints all samples for a given run
def retTicks(self, runs=None):
sql = 'select distinct dt_tick from data where dt_stat=1180 and ('
if runs != None:
first = True
for run in runs:
if first:
first = False
else:
sql += ' or'
sql += ' dt_run=%s' % run.run
sql += ')'
self.query(sql)
ret = []
for r in self.cursor.fetchall():
ret.append(r[0])
return ret
# Name: liststats
# Desc: Prints all statistics that appear in the database,
# the optional argument is a regular expression that can
# be used to prune the result set
def listStats(self, regex=None):
print '%-60s %-8s %-10s' % ('stat name', 'id', 'type')
print '-' * 80
rx = None
if regex != None:
rx = re.compile(regex)
stats = [ stat.name for stat in self.allStats ]
stats.sort(statcmp)
for stat in stats:
stat = self.allStatNames[stat]
if rx == None or rx.match(stat.name):
print '%-60s %-8s %-10s' % (stat.name, stat.stat, stat.type)
# Name: liststats
# Desc: Prints all statistics that appear in the database,
# the optional argument is a regular expression that can
# be used to prune the result set
def listFormulas(self, regex=None):
print '%-60s %s' % ('formula name', 'formula')
print '-' * 80
rx = None
if regex != None:
rx = re.compile(regex)
stats = [ stat.name for stat in self.allStats ]
stats.sort(statcmp)
for stat in stats:
stat = self.allStatNames[stat]
if stat.type == 'FORMULA' and (rx == None or rx.match(stat.name)):
print '%-60s %s' % (stat.name, self.allFormulas[stat.stat])
def getStat(self, stats):
if type(stats) is not list:
stats = [ stats ]
ret = []
for stat in stats:
if type(stat) is int:
ret.append(self.allStatIds[stat])
if type(stat) is str:
rx = re.compile(stat)
for stat in self.allStats:
if rx.match(stat.name):
ret.append(stat)
return ret
def getBin(self, bins):
if type(bins) is not list:
bins = [ bins ]
ret = []
for bin in bins:
if type(bin) is int:
ret.append(bin)
elif type(bin) is str:
ret.append(self.allBinNames[bin])
else:
for name,id in self.allBinNames.items():
if bin.match(name):
ret.append(id)
return ret
def getNotBin(self, bin):
map = {}
for bin in getBin(bin):
map[bin] = 1
ret = []
for bin in self.allBinIds.keys():
if not map.has_key(bin):
ret.append(bin)
return ret
#########################################
# get the data
#
def inner(self, op, stat, bins, ticks, group=False):
sql = 'select '
sql += 'dt_stat as stat, '
sql += 'dt_run as run, '
sql += 'dt_x as x, '
sql += 'dt_y as y, '
if group:
sql += 'dt_tick as tick, '
sql += '%s(dt_data) as data ' % op
sql += 'from data '
sql += 'where '
if isinstance(stat, list):
val = ' or '.join([ 'dt_stat=%d' % s.stat for s in stat ])
sql += ' (%s)' % val
else:
sql += ' dt_stat=%d' % stat.stat
if self.runs != None and len(self.runs):
val = ' or '.join([ 'dt_run=%d' % r for r in self.runs ])
sql += ' and (%s)' % val
if bins != None and len(bins):
val = ' or '.join([ 'dt_bin=%d' % b for b in bins ])
sql += ' and (%s)' % val
if ticks != None and len(ticks):
val = ' or '.join([ 'dt_tick=%d' % s for s in ticks ])
sql += ' and (%s)' % val
sql += ' group by dt_stat,dt_run,dt_x,dt_y'
if group:
sql += ',dt_tick'
return sql
def outer(self, op_out, op_in, stat, bins, ticks):
sql = self.inner(op_in, stat, bins, ticks, True)
sql = 'select stat,run,x,y,%s(data) from (%s) as tb ' % (op_out, sql)
sql += 'group by stat,run,x,y'
return sql
# Name: sum
# Desc: given a run, a stat and an array of samples and bins,
# sum all the bins and then get the standard deviation of the
# samples for non-binned runs. This will just return the average
# of samples, however a bin array still must be passed
def sum(self, stat, bins, ticks):
return self.inner('sum', stat, bins, ticks)
# Name: avg
# Desc: given a run, a stat and an array of samples and bins,
# sum all the bins and then average the samples for non-binned
# runs this will just return the average of samples, however
# a bin array still must be passed
def avg(self, stat, bins, ticks):
return self.outer('avg', 'sum', stat, bins, ticks)
# Name: stdev
# Desc: given a run, a stat and an array of samples and bins,
# sum all the bins and then get the standard deviation of the
# samples for non-binned runs. This will just return the average
# of samples, however a bin array still must be passed
def stdev(self, stat, bins, ticks):
return self.outer('stddev', 'sum', stat, bins, ticks)
def __setattr__(self, attr, value):
super(Database, self).__setattr__(attr, value)
if attr != 'method':
return
if value == 'sum':
self._method = self.sum
elif value == 'avg':
self._method = self.avg
elif value == 'stdev':
self._method = self.stdev
else:
raise AttributeError, "can only set get to: sum | avg | stdev"
def data(self, stat, bins=None, ticks=None):
if bins is None:
bins = self.bins
if ticks is None:
ticks = self.ticks
sql = self._method(self, stat, bins, ticks)
self.query(sql)
runs = {}
xmax = 0
ymax = 0
for x in self.cursor.fetchall():
data = Data(x)
if not runs.has_key(data.run):
runs[data.run] = {}
if not runs[data.run].has_key(data.x):
runs[data.run][data.x] = {}
xmax = max(xmax, data.x)
ymax = max(ymax, data.y)
runs[data.run][data.x][data.y] = data.data
results = Result(xmax + 1, ymax + 1)
for run,data in runs.iteritems():
result = results[run]
for x,ydata in data.iteritems():
for y,data in ydata.iteritems():
result[x][y] = data
return results
def __getitem__(self, key):
return self.stattop[key]
|