1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
|
from __future__ import division
import operator, re, types
source = None
display_run = 0
global globalTicks
globalTicks = None
def issequence(t):
return isinstance(t, types.TupleType) or isinstance(t, types.ListType)
def total(f):
if isinstance(f, FormulaStat):
v = f.value
else:
v = f
f = FormulaStat()
if issequence(v):
f.value = reduce(operator.add, v)
else:
f.value = v
return f
def unaryop(op, f):
if isinstance(f, FormulaStat):
v = f.value
else:
v = f
if issequence(v):
return map(op, v)
else:
return op(v)
def zerodiv(lv, rv):
if rv == 0.0:
return 0.0
else:
return operator.truediv(lv, rv)
def wrapop(op, lv, rv):
if isinstance(lv, str):
return lv
if isinstance(rv, str):
return rv
return op(lv, rv)
def same(lrun, rrun):
for lx,rx in zip(lrun.keys(),rrun.keys()):
if lx != rx:
print 'lx != rx'
print lx, rx
print lrun.keys()
print rrun.keys()
return False
for ly,ry in zip(lrun[lx].keys(),rrun[rx].keys()):
if ly != ry:
print 'ly != ry'
print ly, ry
print lrun[lx].keys()
print rrun[rx].keys()
return False
return True
def binaryop(op, lf, rf):
result = {}
if isinstance(lf, FormulaStat) and isinstance(rf, FormulaStat):
lv = lf.value
rv = rf.value
theruns = []
for r in lv.keys():
if rv.has_key(r):
if same(lv[r], rv[r]):
theruns.append(r)
else:
raise AttributeError
for run in theruns:
result[run] = {}
for x in lv[run].keys():
result[run][x] = {}
for y in lv[run][x].keys():
result[run][x][y] = wrapop(op, lv[run][x][y],
rv[run][x][y])
elif isinstance(lf, FormulaStat):
lv = lf.value
for run in lv.keys():
result[run] = {}
for x in lv[run].keys():
result[run][x] = {}
for y in lv[run][x].keys():
result[run][x][y] = wrapop(op, lv[run][x][y], rf)
elif isinstance(rf, FormulaStat):
rv = rf.value
for run in rv.keys():
result[run] = {}
for x in rv[run].keys():
result[run][x] = {}
for y in rv[run][x].keys():
result[run][x][y] = wrapop(op, lf, rv[run][x][y])
return result
def sums(x, y):
if issequence(x):
return map(lambda x, y: x + y, x, y)
else:
return x + y
def alltrue(list):
return reduce(lambda x, y: x and y, list)
def allfalse(list):
return not reduce(lambda x, y: x or y, list)
def enumerate(list):
return map(None, range(len(list)), list)
def cmp(a, b):
if a < b:
return -1
elif a == b:
return 0
else:
return 1
class Statistic(object):
def __init__(self, data):
self.__dict__.update(data.__dict__)
if not self.__dict__.has_key('value'):
self.__dict__['value'] = None
if not self.__dict__.has_key('bins'):
self.__dict__['bins'] = None
if not self.__dict__.has_key('ticks'):
self.__dict__['ticks'] = None
if 'vc' not in self.__dict__:
self.vc = {}
def __getattribute__(self, attr):
if attr == 'ticks':
if self.__dict__['ticks'] != globalTicks:
self.__dict__['value'] = None
self.__dict__['ticks'] = globalTicks
return self.__dict__['ticks']
if attr == 'value':
if self.__dict__['ticks'] != globalTicks:
if self.__dict__['ticks'] != None and \
len(self.__dict__['ticks']) == 1:
self.vc[self.__dict__['ticks'][0]] = self.__dict__['value']
self.__dict__['ticks'] = globalTicks
if len(globalTicks) == 1 and self.vc.has_key(globalTicks[0]):
self.__dict__['value'] = self.vc[globalTicks[0]]
else:
self.__dict__['value'] = None
if self.__dict__['value'] == None:
self.__dict__['value'] = self.getValue()
return self.__dict__['value']
else:
return super(Statistic, self).__getattribute__(attr)
def __setattr__(self, attr, value):
if attr == 'bins' or attr == 'ticks':
if attr == 'bins':
if value is not None:
value = source.getBin(value)
#elif attr == 'ticks' and type(value) is str:
# value = [ int(x) for x in value.split() ]
self.__dict__[attr] = value
self.__dict__['value'] = None
self.vc = {}
else:
super(Statistic, self).__setattr__(attr, value)
def getValue(self):
raise AttributeError, 'getValue() must be defined'
def zero(self):
return False
def __ne__(self, other):
return not (self == other)
def __str__(self):
return '%f' % (float(self))
class FormulaStat(object):
def __add__(self, other):
f = FormulaStat()
f.value = binaryop(operator.add, self, other)
return f
def __sub__(self, other):
f = FormulaStat()
f.value = binaryop(operator.sub, self, other)
return f
def __mul__(self, other):
f = FormulaStat()
f.value = binaryop(operator.mul, self, other)
return f
def __truediv__(self, other):
f = FormulaStat()
f.value = binaryop(zerodiv, self, other)
return f
def __mod__(self, other):
f = FormulaStat()
f.value = binaryop(operator.mod, self, other)
return f
def __radd__(self, other):
f = FormulaStat()
f.value = binaryop(operator.add, other, self)
return f
def __rsub__(self, other):
f = FormulaStat()
f.value = binaryop(operator.sub, other, self)
return f
def __rmul__(self, other):
f = FormulaStat()
f.value = binaryop(operator.mul, other, self)
return f
def __rtruediv__(self, other):
f = FormulaStat()
f.value = binaryop(zerodiv, other, self)
return f
def __rmod__(self, other):
f = FormulaStat()
f.value = binaryop(operator.mod, other, self)
return f
def __neg__(self):
f = FormulaStat()
f.value = unaryop(operator.neg, self)
return f
def __getitem__(self, idx):
f = FormulaStat()
f.value = {}
for key in self.value.keys():
f.value[key] = {}
f.value[key][0] = {}
f.value[key][0][0] = self.value[key][idx][0]
return f
def __float__(self):
if isinstance(self.value, FormulaStat):
return float(self.value)
if not self.value.has_key(display_run):
return (1e300*1e300)
if len(self.value[display_run]) == 1:
return self.value[display_run][0][0]
else:
#print self.value[display_run]
return self.value[display_run][4][0]
#raise ValueError
def display(self):
import display
d = display.VectorDisplay()
d.flags = 0
d.precision = 1
d.name = 'formula'
d.desc = 'formula'
val = self.value[display_run]
d.value = [ val[x][0] for x in val.keys() ]
d.display()
class Scalar(Statistic,FormulaStat):
def getValue(self):
return source.data(self, self.bins, self.ticks)
def display(self):
import display
p = display.Print()
p.name = self.name
p.desc = self.desc
p.value = float(self)
p.flags = self.flags
p.precision = self.precision
if display.all or (self.flags & flags.printable):
p.display()
def comparable(self, other):
return self.name == other.name
def __eq__(self, other):
return self.value == other.value
def __isub__(self, other):
self.value -= other.value
return self
def __iadd__(self, other):
self.value += other.value
return self
def __itruediv__(self, other):
if not other:
return self
self.value /= other
return self
class Vector(Statistic,FormulaStat):
def getValue(self):
return source.data(self, self.bins, self.ticks);
def display(self):
import display
if not display.all and not (self.flags & flags.printable):
return
d = display.VectorDisplay()
d.__dict__.update(self.__dict__)
d.display()
def comparable(self, other):
return self.name == other.name and \
len(self.value) == len(other.value)
def __eq__(self, other):
if issequence(self.value) != issequence(other.value):
return False
if issequence(self.value):
if len(self.value) != len(other.value):
return False
else:
for v1,v2 in zip(self.value, other.value):
if v1 != v2:
return False
return True
else:
return self.value == other.value
def __isub__(self, other):
self.value = binaryop(operator.sub, self.value, other.value)
return self
def __iadd__(self, other):
self.value = binaryop(operator.add, self.value, other.value)
return self
def __itruediv__(self, other):
if not other:
return self
if issequence(self.value):
for i in xrange(len(self.value)):
self.value[i] /= other
else:
self.value /= other
return self
class Formula(Vector):
def getValue(self):
formula = re.sub(':', '__', self.formula)
x = eval(formula, source.stattop)
return x.value
def comparable(self, other):
return self.name == other.name and \
compare(self.dist, other.dist)
def __eq__(self, other):
return self.value == other.value
def __isub__(self, other):
return self
def __iadd__(self, other):
return self
def __itruediv__(self, other):
if not other:
return self
return self
class SimpleDist(object):
def __init__(self, sums, squares, samples):
self.sums = sums
self.squares = squares
self.samples = samples
def getValue(self):
return 0.0
def display(self, name, desc, flags, precision):
import display
p = display.Print()
p.flags = flags
p.precision = precision
if self.samples > 0:
p.name = name + ".mean"
p.value = self.sums / self.samples
p.display()
p.name = name + ".stdev"
if self.samples > 1:
var = (self.samples * self.squares - self.sums ** 2) \
/ (self.samples * (self.samples - 1))
if var >= 0:
p.value = math.sqrt(var)
else:
p.value = 'NaN'
else:
p.value = 0.0
p.display()
p.name = name + ".samples"
p.value = self.samples
p.display()
def comparable(self, other):
return True
def __eq__(self, other):
return self.sums == other.sums and self.squares == other.squares and \
self.samples == other.samples
def __isub__(self, other):
self.sums -= other.sums
self.squares -= other.squares
self.samples -= other.samples
return self
def __iadd__(self, other):
self.sums += other.sums
self.squares += other.squares
self.samples += other.samples
return self
def __itruediv__(self, other):
if not other:
return self
self.sums /= other
self.squares /= other
self.samples /= other
return self
class FullDist(SimpleDist):
def __init__(self, sums, squares, samples, minval, maxval,
under, vec, over, min, max, bsize, size):
self.sums = sums
self.squares = squares
self.samples = samples
self.minval = minval
self.maxval = maxval
self.under = under
self.vec = vec
self.over = over
self.min = min
self.max = max
self.bsize = bsize
self.size = size
def getValue(self):
return 0.0
def display(self, name, desc, flags, precision):
import display
p = display.Print()
p.flags = flags
p.precision = precision
p.name = name + '.min_val'
p.value = self.minval
p.display()
p.name = name + '.max_val'
p.value = self.maxval
p.display()
p.name = name + '.underflow'
p.value = self.under
p.display()
i = self.min
for val in self.vec[:-1]:
p.name = name + '[%d:%d]' % (i, i + self.bsize - 1)
p.value = val
p.display()
i += self.bsize
p.name = name + '[%d:%d]' % (i, self.max)
p.value = self.vec[-1]
p.display()
p.name = name + '.overflow'
p.value = self.over
p.display()
SimpleDist.display(self, name, desc, flags, precision)
def comparable(self, other):
return self.min == other.min and self.max == other.max and \
self.bsize == other.bsize and self.size == other.size
def __eq__(self, other):
return self.sums == other.sums and self.squares == other.squares and \
self.samples == other.samples
def __isub__(self, other):
self.sums -= other.sums
self.squares -= other.squares
self.samples -= other.samples
if other.samples:
self.minval = min(self.minval, other.minval)
self.maxval = max(self.maxval, other.maxval)
self.under -= under
self.vec = map(lambda x,y: x - y, self.vec, other.vec)
self.over -= over
return self
def __iadd__(self, other):
if not self.samples and other.samples:
self = other
return self
self.sums += other.sums
self.squares += other.squares
self.samples += other.samples
if other.samples:
self.minval = min(self.minval, other.minval)
self.maxval = max(self.maxval, other.maxval)
self.under += other.under
self.vec = map(lambda x,y: x + y, self.vec, other.vec)
self.over += other.over
return self
def __itruediv__(self, other):
if not other:
return self
self.sums /= other
self.squares /= other
self.samples /= other
if self.samples:
self.under /= other
for i in xrange(len(self.vec)):
self.vec[i] /= other
self.over /= other
return self
class Dist(Statistic):
def getValue(self):
return 0.0
def display(self):
import display
if not display.all and not (self.flags & flags.printable):
return
self.dist.display(self.name, self.desc, self.flags, self.precision)
def comparable(self, other):
return self.name == other.name and \
self.dist.compareable(other.dist)
def __eq__(self, other):
return self.dist == other.dist
def __isub__(self, other):
self.dist -= other.dist
return self
def __iadd__(self, other):
self.dist += other.dist
return self
def __itruediv__(self, other):
if not other:
return self
self.dist /= other
return self
class VectorDist(Statistic):
def getValue(self):
return 0.0
def display(self):
import display
if not display.all and not (self.flags & flags.printable):
return
if isinstance(self.dist, SimpleDist):
return
for dist,sn,sd,i in map(None, self.dist, self.subnames, self.subdescs,
range(len(self.dist))):
if len(sn) > 0:
name = '%s.%s' % (self.name, sn)
else:
name = '%s[%d]' % (self.name, i)
if len(sd) > 0:
desc = sd
else:
desc = self.desc
dist.display(name, desc, self.flags, self.precision)
if (self.flags & flags.total) or 1:
if isinstance(self.dist[0], SimpleDist):
disttotal = SimpleDist( \
reduce(sums, [d.sums for d in self.dist]),
reduce(sums, [d.squares for d in self.dist]),
reduce(sums, [d.samples for d in self.dist]))
else:
disttotal = FullDist( \
reduce(sums, [d.sums for d in self.dist]),
reduce(sums, [d.squares for d in self.dist]),
reduce(sums, [d.samples for d in self.dist]),
min([d.minval for d in self.dist]),
max([d.maxval for d in self.dist]),
reduce(sums, [d.under for d in self.dist]),
reduce(sums, [d.vec for d in self.dist]),
reduce(sums, [d.over for d in self.dist]),
dist[0].min,
dist[0].max,
dist[0].bsize,
dist[0].size)
name = '%s.total' % (self.name)
desc = self.desc
disttotal.display(name, desc, self.flags, self.precision)
def comparable(self, other):
return self.name == other.name and \
alltrue(map(lambda x, y : x.comparable(y),
self.dist,
other.dist))
def __eq__(self, other):
return alltrue(map(lambda x, y : x == y, self.dist, other.dist))
def __isub__(self, other):
if issequence(self.dist) and issequence(other.dist):
for sd,od in zip(self.dist, other.dist):
sd -= od
else:
self.dist -= other.dist
return self
def __iadd__(self, other):
if issequence(self.dist) and issequence(other.dist):
for sd,od in zip(self.dist, other.dist):
sd += od
else:
self.dist += other.dist
return self
def __itruediv__(self, other):
if not other:
return self
if issequence(self.dist):
for dist in self.dist:
dist /= other
else:
self.dist /= other
return self
class Vector2d(Statistic):
def getValue(self):
return 0.0
def display(self):
import display
if not display.all and not (self.flags & flags.printable):
return
d = display.VectorDisplay()
d.__dict__.update(self.__dict__)
if self.__dict__.has_key('ysubnames'):
ysubnames = list(self.ysubnames)
slack = self.x - len(ysubnames)
if slack > 0:
ysubnames.extend(['']*slack)
else:
ysubnames = range(self.x)
for x,sname in enumerate(ysubnames):
o = x * self.y
d.value = self.value[o:o+self.y]
d.name = '%s[%s]' % (self.name, sname)
d.display()
if self.flags & flags.total:
d.value = []
for y in range(self.y):
xtot = 0.0
for x in range(self.x):
xtot += self.value[y + x * self.x]
d.value.append(xtot)
d.name = self.name + '.total'
d.display()
def comparable(self, other):
return self.name == other.name and self.x == other.x and \
self.y == other.y
def __eq__(self, other):
return True
def __isub__(self, other):
return self
def __iadd__(self, other):
return self
def __itruediv__(self, other):
if not other:
return self
return self
def NewStat(data):
stat = None
if data.type == 'SCALAR':
stat = Scalar(data)
elif data.type == 'VECTOR':
stat = Vector(data)
elif data.type == 'DIST':
stat = Dist(data)
elif data.type == 'VECTORDIST':
stat = VectorDist(data)
elif data.type == 'VECTOR2D':
stat = Vector2d(data)
elif data.type == 'FORMULA':
stat = Formula(data)
return stat
|