diff options
Diffstat (limited to 'source')
-rw-r--r-- | source/fitz/ftoa.c | 12 | ||||
-rw-r--r-- | source/fitz/string.c | 19 | ||||
-rw-r--r-- | source/fitz/strtof.c | 471 |
3 files changed, 483 insertions, 19 deletions
diff --git a/source/fitz/ftoa.c b/source/fitz/ftoa.c index 9f2d8b9f..a3f7b5c6 100644 --- a/source/fitz/ftoa.c +++ b/source/fitz/ftoa.c @@ -42,16 +42,14 @@ OTHER DEALINGS IN THE SOFTWARE. */ -typedef union -{ - float d; - uint32_t n; -} converter_t; - static uint32_t float_to_uint32(float d) { - converter_t tmp; + union + { + float d; + uint32_t n; + } tmp; tmp.d = d; return tmp.n; } diff --git a/source/fitz/string.c b/source/fitz/string.c index b625dd4d..d22efe8e 100644 --- a/source/fitz/string.c +++ b/source/fitz/string.c @@ -354,20 +354,15 @@ fz_runelen(int c) float fz_atof(const char *s) { - double d; + float result; - /* The errno voodoo here checks for us reading numbers that are too - * big to fit into a double. The checks for FLT_MAX ensure that we - * don't read a number that's OK as a double and then become invalid - * as we convert to a float. */ errno = 0; - d = fz_strtod(s, NULL); - if (errno == ERANGE || isnan(d)) { - /* Return 1.0, as it's a small known value that won't cause a divide by 0. */ - return 1.0; - } - d = fz_clampd(d, -FLT_MAX, FLT_MAX); - return (float)d; + result = fz_strtof(s, NULL); + if ((errno == ERANGE && result == 0) || isnan(result)) + /* Return 1.0 on underflow, as it's a small known value that won't cause a divide by 0. */ + return 1; + result = fz_clamp(result, -FLT_MAX, FLT_MAX); + return result; } int fz_atoi(const char *s) diff --git a/source/fitz/strtof.c b/source/fitz/strtof.c new file mode 100644 index 00000000..71345258 --- /dev/null +++ b/source/fitz/strtof.c @@ -0,0 +1,471 @@ +#include "mupdf/fitz.h" + +#ifndef INFINITY +#define INFINITY (DBL_MAX+DBL_MAX) +#endif +#ifndef NAN +#define NAN (INFINITY-INFINITY) +#endif + +/* + We use "Algorithm D" from "Contributions to a Proposed Standard for Binary + Floating-Point Arithmetic" by Jerome Coonen (1984). + + The implementation uses a self-made floating point type, 'strtof_fp_t', with + a 32-bit significand. The steps of the algorithm are + + INPUT: Up to 9 decimal digits d1 , ... d9 and an exponent dexp. + OUTPUT: A float corresponding to the number d1 ... d9 * 10^dexp. + + 1) Convert the integer d1 ... d9 to an strtof_fp_t x. + 2) Lookup the strtof_fp_t power = 10 ^ |dexp|. + 3) If dexp is positive set x = x * power, else set x = x / power. Use rounding mode 'round to odd'. + 4) Round x to a float using rounding mode 'to even'. + + Step 1) is always lossless as the strtof_fp_t's significand can hold a 9-digit integer. + In the case |dexp| <= 13 the cached power is exact and the algoritm returns + the exactly rounded result (with rounding mode 'to even'). + There is no double-rounding in 3), 4) as the multiply/divide uses 'round to odd'. + + For |dexp| > 13 the maximum error is bounded by (1/2 + 1/256) ulp. + This is small enough to ensure that binary to decimal to binary conversion + is the identity if the decimal format uses 9 correctly rounded significant digits. +*/ +typedef struct strtof_fp_t +{ + uint32_t f; + int e; +} strtof_fp_t; + +/* Multiply/Divide x by y with 'round to odd'. Assume that x and y are normalized. */ + +static strtof_fp_t +strtof_multiply(strtof_fp_t x, strtof_fp_t y) +{ + uint64_t tmp; + strtof_fp_t res; + + assert(x.f & y.f & 0x80000000); + + res.e = x.e + y.e + 32; + tmp = (uint64_t) x.f * y.f; + /* Normalize. */ + if ((tmp < ((uint64_t) 1 << 63))) + { + tmp <<= 1; + --res.e; + } + + res.f = tmp >> 32; + + /* Set the last bit of the significand to 1 if the result is + inexact. */ + if (tmp & 0xffffffff) + res.f |= 1; + return res; +} + +static strtof_fp_t +divide(strtof_fp_t x, strtof_fp_t y) +{ + uint64_t product, quotient; + uint32_t remainder; + strtof_fp_t res; + + res.e = x.e - y.e - 32; + product = (uint64_t) x.f << 32; + quotient = product / y.f; + remainder = product % y.f; + /* 2^31 <= quotient <= 2^33 - 2. */ + if (quotient <= 0xffffffff) + res.f = quotient; + else + { + ++res.e; + /* If quotient % 2 != 0 we have remainder != 0. */ + res.f = quotient >> 1; + } + if (remainder) + res.f |= 1; + return res; +} + + + +/* From 10^0 to 10^54. Generated with GNU MPFR. */ +static const uint32_t strtof_powers_ten[55] = { + 0x80000000, 0xa0000000, 0xc8000000, 0xfa000000, 0x9c400000, 0xc3500000, + 0xf4240000, 0x98968000, 0xbebc2000, 0xee6b2800, 0x9502f900, 0xba43b740, + 0xe8d4a510, 0x9184e72a, 0xb5e620f4, 0xe35fa932, 0x8e1bc9bf, 0xb1a2bc2f, + 0xde0b6b3a, 0x8ac72305, 0xad78ebc6, 0xd8d726b7, 0x87867832, 0xa968163f, + 0xd3c21bcf, 0x84595161, 0xa56fa5ba, 0xcecb8f28, 0x813f3979, 0xa18f07d7, + 0xc9f2c9cd, 0xfc6f7c40, 0x9dc5ada8, 0xc5371912, 0xf684df57, 0x9a130b96, + 0xc097ce7c, 0xf0bdc21b, 0x96769951, 0xbc143fa5, 0xeb194f8e, 0x92efd1b9, + 0xb7abc627, 0xe596b7b1, 0x8f7e32ce, 0xb35dbf82, 0xe0352f63, 0x8c213d9e, + 0xaf298d05, 0xdaf3f046, 0x88d8762c, 0xab0e93b7, 0xd5d238a5, 0x85a36367, + 0xa70c3c41 +}; +static const int strtof_powers_ten_e[55] = { + -31, -28, -25, -22, -18, -15, -12, -8, -5, -2, + 2, 5, 8, 12, 15, 18, 22, 25, 28, 32, 35, 38, 42, 45, 48, 52, 55, 58, 62, 65, + 68, 71, 75, 78, 81, 85, 88, 91, 95, 98, 101, 105, 108, 111, 115, 118, 121, + 125, 128, 131, 135, 138, 141, 145, 148 +}; + +static strtof_fp_t +strtof_cached_power(int i) +{ + strtof_fp_t result; + assert (i >= 0 && i <= 54); + result.f = strtof_powers_ten[i]; + result.e = strtof_powers_ten_e[i]; + return result; +} + +/* Find number of leading zero bits in an uint32_t. Derived from the + "Bit Twiddling Hacks" at graphics.stanford.edu/~seander/bithacks.html. */ +static unsigned char clz_table[256] = { + 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, +# define sixteen_times(N) N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, + sixteen_times (3) sixteen_times (2) sixteen_times (2) + sixteen_times (1) sixteen_times (1) sixteen_times (1) sixteen_times (1) + /* Zero for the rest. */ +}; +static unsigned +leading_zeros (uint32_t x) +{ + unsigned tmp1, tmp2; + + tmp1 = x >> 16; + if (tmp1) + { + tmp2 = tmp1 >> 8; + if (tmp2) + return clz_table[tmp2]; + else + return 8 + clz_table[tmp1]; + } + else + { + tmp1 = x >> 8; + if (tmp1) + return 16 + clz_table[tmp1]; + else + return 24 + clz_table[x]; + } +} + +static strtof_fp_t +uint32_to_diy (uint32_t x) +{ + strtof_fp_t result = {x, 0}; + unsigned shift = leading_zeros(x); + + result.f <<= shift; + result.e -= shift; + return result; +} + + +#define SP_SIGNIFICAND_SIZE 23 +#define SP_EXPONENT_BIAS (127 + SP_SIGNIFICAND_SIZE) +#define SP_MIN_EXPONENT (-SP_EXPONENT_BIAS) +#define SP_EXPONENT_MASK 0x7f800000 +#define SP_SIGNIFICAND_MASK 0x7fffff +#define SP_HIDDEN_BIT 0x800000 /* 2^23 */ + +/* Convert normalized strtof_fp_t to IEEE-754 single with 'round to even'. + See "Implementing IEEE 754-2008 Rounding" in the + "Handbook of Floating-Point Arithmetik". +*/ +static float +diy_to_float(strtof_fp_t x, int negative) +{ + uint32_t result; + union + { + float f; + uint32_t n; + } tmp; + + assert(x.f & 0x80000000); + + /* We have 2^32 - 2^7 = 0xffffff80. */ + if (x.e > 96 || (x.e == 96 && x.f >= 0xffffff80)) + { + /* Overflow. Set result to infinity. */ + errno = ERANGE; + result = 0xff << SP_SIGNIFICAND_SIZE; + } + /* We have 2^32 - 2^8 = 0xffffff00. */ + else if (x.e > -158) + { + /* x is greator or equal to FLT_MAX. So we get a normalized number. */ + result = (uint32_t) (x.e + 158) << SP_SIGNIFICAND_SIZE; + result |= (x.f >> 8) & SP_SIGNIFICAND_MASK; + + if (x.f & 0x80) + { + /* Round-bit is set. */ + if (x.f & 0x7f) + /* Sticky-bit is set. */ + ++result; + else if (x.f & 0x100) + /* Significand is odd. */ + ++result; + } + } + else if (x.e == -158 && x.f >= 0xffffff00) + { + /* x is in the range (2^32, 2^32 - 2^8] * 2^-158, so its smaller than + FLT_MIN but still rounds to it. */ + result = 1U << SP_SIGNIFICAND_SIZE; + } + else if (x.e > -181) + { + /* Non-zero Denormal. */ + int shift = -149 - x.e; /* 9 <= shift <= 31. */ + + result = x.f >> shift; + + if (x.f & (1U << (shift - 1))) + /* Round-bit is set. */ + { + if (x.f & ((1U << (shift - 1)) - 1)) + /* Sticky-bit is set. */ + ++result; + else if (x.f & 1U << shift) + /* Significand is odd. */ + ++result; + } + } + else if (x.e == -181 && x.f > 0x80000000) + { + /* x is in the range (0.5,1) * 2^-149 so it rounds to the smallest + denormal. Cant't handle this in the previous case as shifting a + uint32_t 32 bits to the right is undefined behaviour. */ + result = 1; + } + else + { + /* Underflow. */ + errno = ERANGE; + result = 0; + } + + if (negative) + result |= 0x80000000; + + tmp.n = result; + return tmp.f; +} + +static float +scale_integer_to_float(uint32_t M, int N, int negative) +{ + strtof_fp_t result, x, power; + + if (M == 0) + return negative ? -0.f : 0.f; + if (N > 38) + { + /* Overflow. */ + errno = ERANGE; + return negative ? -INFINITY : INFINITY; + } + if (N < -54) + { + /* Underflow. */ + errno = ERANGE; + return negative ? -0.f : 0.f; + } + /* If N is in the range {-13, ..., 13} the conversion is exact. + Try to scale N into this region. */ + while (N > 13 && M <= 0xffffffff / 10) + { + M *= 10; + --N; + } + + while (N < -13 && M % 10 == 0) + { + M /= 10; + ++N; + } + + x = uint32_to_diy (M); + if (N >= 0) + { + power = strtof_cached_power(N); + result = strtof_multiply(x, power); + } + else + { + power = strtof_cached_power(-N); + result = divide(x, power); + } + + return diy_to_float(result, negative); +} + +/* Return non-zero if *s starts with string (must be uppercase), ignoring case, + and increment *s by its length. */ +static int +starts_with(const char **s, const char *string) +{ + const char *x = *s, *y = string; + while (*x && *y && (*x == *y || *x == *y + 32)) + ++x, ++y; + if (*y == 0) + { + /* Match. */ + *s = x; + return 1; + } + else + return 0; +} +#define SET_TAILPTR(tailptr, s) \ + do \ + if (tailptr) \ + *tailptr = (char *) s; \ + while (0) + +static float +strtof_internal(const char *string, char **tailptr, int exp_format) +{ + /* FIXME: error (1/2 + 1/256) ulp */ + const char *s; + uint32_t M = 0; + int N = 0; + /* If decimal_digits gets 9 we truncate all following digits. */ + int decimal_digits = 0; + int negative = 0; + const char *number_start = 0; + + /* Skip leading whitespace (isspace in "C" locale). */ + s = string; + while (*s == ' ' || *s == '\f' || *s == '\n' || *s == '\r' || *s == '\t' + || *s == '\v') + ++s; + + /* Parse sign. */ + if (*s == '+') + ++s; + if (*s == '-') + { + negative = 1; + ++s; + } + number_start = s; + /* Parse digits before decimal point. */ + while (*s >= '0' && *s <= '9') + { + if (decimal_digits) + { + if (decimal_digits < 9) + { + ++decimal_digits; + M = M * 10 + *s - '0'; + } + /* Really arcane strings might overflow N. */ + else if (N < 1000) + ++N; + } + else if (*s > '0') + { + M = *s - '0'; + ++decimal_digits; + } + ++s; + } + + /* Parse decimal point. */ + if (*s == '.') + ++s; + + /* Parse digits after decimal point. */ + while (*s >= '0' && *s <= '9') + { + if (decimal_digits < 9) + { + if (decimal_digits || *s > '0') + { + ++decimal_digits; + M = M * 10 + *s - '0'; + } + --N; + } + ++s; + } + if ((s == number_start + 1 && *number_start == '.') || number_start == s) + { + /* No Number. Check for INF and NAN strings. */ + s = number_start; + if (starts_with(&s, "INFINITY") || starts_with(&s, "INF")) + { + errno = ERANGE; + SET_TAILPTR(tailptr, s); + return negative ? -INFINITY : +INFINITY; + } + else if (starts_with(&s, "NAN")) + { + SET_TAILPTR(tailptr, s); + return (float)NAN; + } + else + { + SET_TAILPTR(tailptr, string); + return 0.f; + } + } + + /* Parse exponent. */ + if (exp_format && (*s == 'e' || *s == 'E')) + { + int exp_negative = 0; + int exp = 0; + const char *int_start; + const char *exp_start = s; + + ++s; + if (*s == '+') + ++s; + else if (*s == '-') + { + ++s; + exp_negative = 1; + } + int_start = s; + /* Parse integer. */ + while (*s >= '0' && *s <= '9') + { + /* Make sure exp does not get overflowed. */ + if (exp < 100) + exp = exp * 10 + *s - '0'; + ++s; + } + if (exp_negative) + exp = -exp; + if (s == int_start) + /* No Number. */ + s = exp_start; + else + N += exp; + } + + SET_TAILPTR(tailptr, s); + return scale_integer_to_float(M, N, negative); +} + +float +fz_strtof(const char *string, char **tailptr) +{ + return strtof_internal(string, tailptr, 1); +} + +float +fz_strtof_no_exp(const char *string, char **tailptr) +{ + return strtof_internal(string, tailptr, 0); +} |