1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
|
#include "fitz-base.h"
void fz_invert3x3(float *dst, float *m)
{
float det;
int i;
#define M3(m,i,j) (m)[3*i+j]
#define D2(a,b,c,d) (a * d - b * c)
#define D3(a1,a2,a3,b1,b2,b3,c1,c2,c3) \
(a1 * D2(b2,b3,c2,c3)) - \
(b1 * D2(a2,a3,c2,c3)) + \
(c1 * D2(a2,a3,b2,b3))
det = D3(M3(m,0,0), M3(m,1,0), M3(m,2,0),
M3(m,0,1), M3(m,1,1), M3(m,2,1),
M3(m,0,2), M3(m,1,2), M3(m,2,2));
if (det == 0)
det = 1.0;
det = 1.0 / det;
M3(dst,0,0) = M3(m,1,1) * M3(m,2,2) - M3(m,1,2) * M3(m,2,1);
M3(dst,0,1) = -M3(m,0,1) * M3(m,2,2) + M3(m,0,2) * M3(m,2,1);
M3(dst,0,2) = M3(m,0,1) * M3(m,1,2) - M3(m,0,2) * M3(m,1,1);
M3(dst,1,0) = -M3(m,1,0) * M3(m,2,2) + M3(m,1,2) * M3(m,2,0);
M3(dst,1,1) = M3(m,0,0) * M3(m,2,2) - M3(m,0,2) * M3(m,2,0);
M3(dst,1,2) = -M3(m,0,0) * M3(m,1,2) + M3(m,0,2) * M3(m,1,0);
M3(dst,2,0) = M3(m,1,0) * M3(m,2,1) - M3(m,1,1) * M3(m,2,0);
M3(dst,2,1) = -M3(m,0,0) * M3(m,2,1) + M3(m,0,1) * M3(m,2,0);
M3(dst,2,2) = M3(m,0,0) * M3(m,1,1) - M3(m,0,1) * M3(m,1,0);
for (i = 0; i < 9; i++)
dst[i] *= det;
}
fz_matrix
fz_concat(fz_matrix one, fz_matrix two)
{
fz_matrix dst;
dst.a = one.a * two.a + one.b * two.c;
dst.b = one.a * two.b + one.b * two.d;
dst.c = one.c * two.a + one.d * two.c;
dst.d = one.c * two.b + one.d * two.d;
dst.e = one.e * two.a + one.f * two.c + two.e;
dst.f = one.e * two.b + one.f * two.d + two.f;
return dst;
}
fz_matrix
fz_identity(void)
{
fz_matrix m;
m.a = 1; m.b = 0;
m.c = 0; m.d = 1;
m.e = 0; m.f = 0;
return m;
}
fz_matrix
fz_scale(float sx, float sy)
{
fz_matrix m;
m.a = sx; m.b = 0;
m.c = 0; m.d = sy;
m.e = 0; m.f = 0;
return m;
}
fz_matrix
fz_rotate(float theta)
{
fz_matrix m;
float s = sin(theta * M_PI / 180.0);
float c = cos(theta * M_PI / 180.0);
m.a = c; m.b = s;
m.c = -s; m.d = c;
m.e = 0; m.f = 0;
return m;
}
fz_matrix
fz_translate(float tx, float ty)
{
fz_matrix m;
m.a = 1; m.b = 0;
m.c = 0; m.d = 1;
m.e = tx; m.f = ty;
return m;
}
fz_matrix
fz_invertmatrix(fz_matrix src)
{
fz_matrix dst;
float rdet = 1.0 / (src.a * src.d - src.b * src.c);
dst.a = src.d * rdet;
dst.b = -src.b * rdet;
dst.c = -src.c * rdet;
dst.d = src.a * rdet;
dst.e = -src.e * dst.a - src.f * dst.c;
dst.f = -src.e * dst.b - src.f * dst.d;
return dst;
}
int
fz_isrectilinear(fz_matrix m)
{
return (fabs(m.b) < FLT_EPSILON && fabs(m.c) < FLT_EPSILON) ||
(fabs(m.a) < FLT_EPSILON && fabs(m.d) < FLT_EPSILON);
}
float
fz_matrixexpansion(fz_matrix m)
{
return sqrt(fabs(m.a * m.d - m.b * m.c));
}
fz_point
fz_transformpoint(fz_matrix m, fz_point p)
{
fz_point t;
t.x = p.x * m.a + p.y * m.c + m.e;
t.y = p.x * m.b + p.y * m.d + m.f;
return t;
}
fz_rect
fz_transformaabb(fz_matrix m, fz_rect r)
{
fz_point s, t, u, v;
if (fz_isinfiniterect(r))
return r;
s.x = r.x0; s.y = r.y0;
t.x = r.x0; t.y = r.y1;
u.x = r.x1; u.y = r.y1;
v.x = r.x1; v.y = r.y0;
s = fz_transformpoint(m, s);
t = fz_transformpoint(m, t);
u = fz_transformpoint(m, u);
v = fz_transformpoint(m, v);
r.x0 = MIN4(s.x, t.x, u.x, v.x);
r.y0 = MIN4(s.y, t.y, u.y, v.y);
r.x1 = MAX4(s.x, t.x, u.x, v.x);
r.y1 = MAX4(s.y, t.y, u.y, v.y);
return r;
}
|